51
|
Vassiliadis D, Wong KH, Andrianopoulos A, Monahan BJ. A genome-wide analysis of carbon catabolite repression in Schizosaccharomyces pombe. BMC Genomics 2019; 20:251. [PMID: 30922219 PMCID: PMC6440086 DOI: 10.1186/s12864-019-5602-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Optimal glucose metabolism is central to the growth and development of cells. In microbial eukaryotes, carbon catabolite repression (CCR) mediates the preferential utilization of glucose, primarily by repressing alternate carbon source utilization. In fission yeast, CCR is mediated by transcriptional repressors Scr1 and the Tup/Ssn6 complex, with the Rst2 transcription factor important for activation of gluconeogenesis and sexual differentiation genes upon derepression. Through genetic and genome-wide methods, this study aimed to comprehensively characterize CCR in fission yeast by identifying the genes and biological processes that are regulated by Scr1, Tup/Ssn6 and Rst2, the core CCR machinery. RESULTS The transcriptional response of fission yeast to glucose-sufficient or glucose-deficient growth conditions in wild type and CCR mutant cells was determined by RNA-seq and ChIP-seq. Scr1 was found to regulate genes involved in carbon metabolism, hexose uptake, gluconeogenesis and the TCA cycle. Surprisingly, a role for Scr1 in the suppression of sexual differentiation was also identified, as homothallic scr1 deletion mutants showed ectopic meiosis in carbon and nitrogen rich conditions. ChIP-seq characterised the targets of Tup/Ssn6 and Rst2 identifying regulatory roles within and independent of CCR. Finally, a subset of genes bound by all three factors was identified, implying that regulation of certain loci may be modulated in a competitive fashion between the Scr1, Tup/Ssn6 repressors and the Rst2 activator. CONCLUSIONS By identifying the genes directly and indirectly regulated by Scr1, Tup/Ssn6 and Rst2, this study comprehensively defined the gene regulatory networks of CCR in fission yeast and revealed the transcriptional complexities governing this system.
Collapse
Affiliation(s)
- Dane Vassiliadis
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia. .,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, Victoria, Australia.
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China
| | - Alex Andrianopoulos
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendon J Monahan
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia. .,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, Victoria, Australia. .,Cancer Therapeutics (CTx), Parkville, Victoria, Australia.
| |
Collapse
|
52
|
RNA Sequencing Reveals Specific TranscriptomicSignatures Distinguishing Effects of the [ SWI⁺] Prion and SWI1 Deletion in Yeast Saccharomyces cerevisiae. Genes (Basel) 2019; 10:genes10030212. [PMID: 30871095 PMCID: PMC6471900 DOI: 10.3390/genes10030212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 01/02/2023] Open
Abstract
Prions are infectious, self-perpetuating protein conformers. In mammals, pathological aggregation of the prion protein causes incurable neurodegenerative disorders, while in yeast Saccharomyces cerevisiae, prion formation may be neutral or even beneficial. According to the prevailing contemporary point of view, prion formation is considered to be a functional inactivation of the corresponding protein whose conformational state shifts from the functional monomeric one to the infectious aggregated one. The Swi1 protein forms the [SWI+] prion and belongs to the nucleosome remodeler complex SWI/SNF controlling the expression of a significant part of the yeast genome. In this work, we performed RNA sequencing of isogenic S. cerevisiae strains grown on the media containing galactose as the sole carbon source. These strains bore the [SWI+] prion or had its structural gene SWI1 deleted. The comparative analysis showed that [SWI+] affects genome expression significantly weaker as compared to the SWI1 deletion. Moreover, in contrast to [SWI+], the SWI1 deletion causes the general inhibition of translation-related genes expression and chromosome I disomy. At the same time, the [SWI+] prion exhibits a specific pattern of modulation of the metabolic pathways and some biological processes and functions, as well as the expression of several genes. Thus, the [SWI+] prion only partially corresponds to the loss-of-function of SWI1 and demonstrates several gain-of-function traits.
Collapse
|
53
|
Sellam A, Chaillot J, Mallick J, Tebbji F, Richard Albert J, Cook MA, Tyers M. The p38/HOG stress-activated protein kinase network couples growth to division in Candida albicans. PLoS Genet 2019; 15:e1008052. [PMID: 30921326 PMCID: PMC6456229 DOI: 10.1371/journal.pgen.1008052] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/09/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Cell size is a complex trait that responds to developmental and environmental cues. Quantitative size analysis of mutant strain collections disrupted for protein kinases and transcriptional regulators in the pathogenic yeast Candida albicans uncovered 66 genes that altered cell size, few of which overlapped with known size genes in the budding yeast Saccharomyces cerevisiae. A potent size regulator specific to C. albicans was the conserved p38/HOG MAPK module that mediates the osmostress response. Basal HOG activity inhibited the SBF G1/S transcription factor complex in a stress-independent fashion to delay the G1/S transition. The HOG network also governed ribosome biogenesis through the master transcriptional regulator Sfp1. Hog1 bound to the promoters and cognate transcription factors for ribosome biogenesis regulons and interacted genetically with the SBF G1/S machinery, and thereby directly linked cell growth and division. These results illuminate the evolutionary plasticity of size control and identify the HOG module as a nexus of cell cycle and growth regulation.
Collapse
Affiliation(s)
- Adnane Sellam
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Julien Chaillot
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Jaideep Mallick
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Faiza Tebbji
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Julien Richard Albert
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A. Cook
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
54
|
Acid Stress Triggers Resistance to Acetic Acid-Induced Regulated Cell Death through Hog1 Activation Which Requires RTG2 in Yeast. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4651062. [PMID: 30931079 PMCID: PMC6410445 DOI: 10.1155/2019/4651062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/13/2018] [Indexed: 11/29/2022]
Abstract
Acid stress causes resistance to acetic acid-induced regulated cell death (AA-RCD) in budding yeast, resulting in catalase activation. In order to explore the molecular determinants of evasion of AA-RCD triggered by acid stress adaptation, we studied the involvement and the possible interplay of the master regulator of transcription high-osmolarity glycerol 1 (HOG1) and RTG2, a positive regulator of the RTG-dependent mitochondrial retrograde signaling. Viability, DNA fragmentation, and ROS accumulation have been analyzed in wild-type and mutant cells lacking HOG1 and/or RTG2. Catalase activity and transcription of CTT1 and CTA1, coding the cytosolic and peroxisomal/mitochondrial catalase, respectively, as well as Hog1 phosphorylation, were also analyzed. Our results show that HOG1 is essential for resistance to AA-RCD and its activation results in the upregulation of CTT1, but not CTA1, transcription during acid stress adaptation. RTG2 is required for Hog1-dependent CTT1 upregulation upon acid stress, despite failure of RTG pathway activation. We give evidence that Rtg2 has a cytoprotective role and can act as a general cell stress sensor independent of Rtg1/3-dependent transcription.
Collapse
|
55
|
Sri Theivakadadcham VS, Bergey BG, Rosonina E. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters. PLoS Genet 2019; 15:e1007991. [PMID: 30763307 PMCID: PMC6392331 DOI: 10.1371/journal.pgen.1007991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/27/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022] Open
Abstract
Sequence-specific transcription factors (TFs) represent one of the largest groups of proteins that is targeted for SUMO post-translational modification, in both yeast and humans. SUMO modification can have diverse effects, but recent studies showed that sumoylation reduces the interaction of multiple TFs with DNA in living cells. Whether this relates to a general role for sumoylation in TF binding site selection, however, has not been fully explored because few genome-wide studies aimed at studying such a role have been reported. To address this, we used genome-wide analysis to examine how sumoylation regulates Sko1, a yeast bZIP TF with hundreds of known binding sites. We find that Sko1 is sumoylated at Lys 567 and, although many of its targets are osmoresponse genes, the level of Sko1 sumoylation is not stress-regulated and the modification does not depend or impinge on its phosphorylation by the osmostress kinase Hog1. We show that Sko1 mutants that cannot bind DNA are not sumoylated, but attaching a heterologous DNA binding domain restores the modification, implicating DNA binding as a major determinant for Sko1 sumoylation. Genome-wide chromatin immunoprecipitation (ChIP-seq) analysis shows that a sumoylation-deficient Sko1 mutant displays increased occupancy levels at its numerous binding sites, which inhibits the recruitment of the Hog1 kinase to some induced osmostress genes. This strongly supports a general role for sumoylation in reducing the association of TFs with chromatin. Extending this result, remarkably, sumoylation-deficient Sko1 binds numerous additional promoters that are not normally regulated by Sko1 but contain sequences that resemble the Sko1 binding motif. Our study points to an important role for sumoylation in modulating the interaction of a DNA-bound TF with chromatin to increase the specificity of TF-DNA interactions.
Collapse
Affiliation(s)
| | | | - Emanuel Rosonina
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
56
|
Synergy of Hir1, Ssn6, and Snf2 global regulators is the functional determinant of a Mac1 transcriptional switch in S. cerevisiae copper homeostasis. Curr Genet 2019; 65:799-816. [DOI: 10.1007/s00294-019-00935-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
|
57
|
Sanz AB, García R, Rodríguez-Peña JM, Nombela C, Arroyo J. Slt2 MAPK association with chromatin is required for transcriptional activation of Rlm1 dependent genes upon cell wall stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1029-1039. [DOI: 10.1016/j.bbagrm.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/25/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022]
|
58
|
Watcharawipas A, Watanabe D, Takagi H. Sodium Acetate Responses in Saccharomyces cerevisiae and the Ubiquitin Ligase Rsp5. Front Microbiol 2018; 9:2495. [PMID: 30459728 PMCID: PMC6232821 DOI: 10.3389/fmicb.2018.02495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Recent studies have revealed the feasibility of sodium acetate as a potentially novel inhibitor/stressor relevant to the fermentation from neutralized lignocellulosic hydrolysates. This mini-review focuses on the toxicity of sodium acetate, which is composed of both sodium and acetate ions, and on the involved cellular responses that it elicits, particularly via the high-osmolarity glycerol (HOG) pathway, the Rim101 pathway, the P-type ATPase sodium pumps Ena1/2/5, and the ubiquitin ligase Rsp5 with its adaptors. Increased understanding of cellular responses to sodium acetate would improve our understanding of how cells respond not only to different stimuli but also to composite stresses induced by multiple components (e.g., sodium and acetate) simultaneously. Moreover, unraveling the characteristics of specific stresses under industrially related conditions and the cellular responses evoked by these stresses would be a key factor in the industrial yeast strain engineering toward the increased productivity of not only bioethanol but also advanced biofuels and valuable chemicals that will be in demand in the coming era of bio-based industry.
Collapse
Affiliation(s)
- Akaraphol Watcharawipas
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Daisuke Watanabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
59
|
Nguyen PV, Hlaváček O, Maršíková J, Váchová L, Palková Z. Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet 2018; 14:e1007495. [PMID: 29965985 PMCID: PMC6044549 DOI: 10.1371/journal.pgen.1007495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/13/2018] [Accepted: 06/16/2018] [Indexed: 12/26/2022] Open
Abstract
Yeast biofilms are complex multicellular structures, in which the cells are well protected against drugs and other treatments and thus highly resistant to antifungal therapies. Colony biofilms represent an ideal system for studying molecular mechanisms and regulations involved in development and internal organization of biofilm structure as well as those that are involved in fungal domestication. We have identified here antagonistic functional interactions between transcriptional regulators Cyc8p and Tup1p that modulate the life-style of natural S. cerevisiae strains between biofilm and domesticated mode. Herein, strains with different levels of Cyc8p and Tup1p regulators were constructed, analyzed for processes involved in colony biofilm development and used in the identification of modes of regulation of Flo11p, a key adhesin in biofilm formation. Our data show that Tup1p and Cyc8p regulate biofilm formation in the opposite manner, being positive and negative regulators of colony complexity, cell-cell interaction and adhesion to surfaces. Notably, in-depth analysis of regulation of expression of Flo11p adhesin revealed that Cyc8p itself is the key repressor of FLO11 expression, whereas Tup1p counteracts Cyc8p's repressive function and, in addition, counters Flo11p degradation by an extracellular protease. Interestingly, the opposing actions of Tup1p and Cyc8p concern processes crucial to the biofilm mode of yeast multicellularity, whereas other multicellular processes such as cell flocculation are co-repressed by both regulators. This study provides insight into the mechanisms regulating complexity of the biofilm lifestyle of yeast grown on semisolid surfaces.
Collapse
Affiliation(s)
- Phu Van Nguyen
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Otakar Hlaváček
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Maršíková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
- * E-mail:
| |
Collapse
|
60
|
Maqani N, Fine RD, Shahid M, Li M, Enriquez-Hesles E, Smith JS. Spontaneous mutations in CYC8 and MIG1 suppress the short chronological lifespan of budding yeast lacking SNF1/AMPK. MICROBIAL CELL 2018; 5:233-248. [PMID: 29796388 PMCID: PMC5961917 DOI: 10.15698/mic2018.05.630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronologically aging yeast cells are prone to adaptive regrowth, whereby mutants with a survival advantage spontaneously appear and re-enter the cell cycle in stationary phase cultures. Adaptive regrowth is especially noticeable with short-lived strains, including those defective for SNF1, the homolog of mammalian AMP-activated protein kinase (AMPK). SNF1 becomes active in response to multiple environmental stresses that occur in chronologically aging cells, including glucose depletion and oxidative stress. SNF1 is also required for the extension of chronological lifespan (CLS) by caloric restriction (CR) as defined as limiting glucose at the time of culture inoculation. To identify specific downstream SNF1 targets responsible for CLS extension during CR, we screened for adaptive regrowth mutants that restore chronological longevity to a short-lived snf1∆ parental strain. Whole genome sequencing of the adapted mutants revealed missense mutations in TPR motifs 9 and 10 of the transcriptional co-repressor Cyc8 that specifically mediate repression through the transcriptional repressor Mig1. Another mutation occurred in MIG1 itself, thus implicating the activation of Mig1-repressed genes as a key function of SNF1 in maintaining CLS. Consistent with this conclusion, the cyc8 TPR mutations partially restored growth on alternative carbon sources and significantly extended CLS compared to the snf1∆ parent. Furthermore, cyc8 TPR mutations reactivated multiple Mig1-repressed genes, including the transcription factor gene CAT8, which is responsible for activating genes of the glyoxylate and gluconeogenesis pathways. Deleting CAT8 completely blocked CLS extension by the cyc8 TPR mutations on CLS, identifying these pathways as key Snf1-regulated CLS determinants.
Collapse
Affiliation(s)
- Nazif Maqani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Ryan D Fine
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mehreen Shahid
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908.,Department of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China
| | - Elisa Enriquez-Hesles
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
61
|
Alkafeef SS, Yu C, Huang L, Liu H. Wor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans. PLoS Genet 2018; 14:e1007176. [PMID: 29337983 PMCID: PMC5786334 DOI: 10.1371/journal.pgen.1007176] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/26/2018] [Accepted: 12/29/2017] [Indexed: 12/17/2022] Open
Abstract
The pathogenic fungus Candida albicans can undergo phenotypic switching between two heritable states: white and opaque. This phenotypic plasticity facilitates its colonization in distinct host niches. The master regulator WOR1 is exclusively expressed in opaque phase cells. Positive feedback regulation by Wor1 on the WOR1 promoter is essential for opaque formation, however the underlying mechanism of how Wor1 functions is not clear. Here, we use tandem affinity purification coupled with mass spectrometry to identify Wor1-interacting proteins. Tup1 and its associated complex proteins are found as the major factors associated with Wor1. Tup1 occupies the same regions of the WOR1 promoter as Wor1 preferentially in opaque cells. Loss of Tup1 is sufficient to induce the opaque phase, even in the absence of Wor1. This is the first such report of a bypass of Wor1 in opaque formation. These genetic analyses suggest that Tup1 is a key repressor of the opaque state, and Wor1 functions via alleviating Tup1 repression at the WOR1 promoter. Opaque cells convert to white en masse at 37°C. We show that this conversion occurs only in the presence of glycolytic carbon sources. The opaque state is stabilized when cells are cultured on non-glycolytic carbon sources, even in a MTLa/α background. We further show that temperature and carbon source affect opaque stability by altering the levels of Wor1 and Tup1 at the WOR1 promoter. We propose that Wor1 and Tup1 form the core regulatory circuit controlling the opaque transcriptional program. This model provides molecular insights on how C. albicans adapts to different host signals to undergo phenotypic switching for colonization in distinct host niches.
Collapse
Affiliation(s)
- Selma S. Alkafeef
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| |
Collapse
|
62
|
Yamaguchi Y, Katsuki Y, Tanaka S, Kawaguchi R, Denda H, Ikeda T, Funato K, Tani M. Protective role of the HOG pathway against the growth defect caused by impaired biosynthesis of complex sphingolipids in yeast Saccharomyces cerevisiae. Mol Microbiol 2017; 107:363-386. [PMID: 29215176 DOI: 10.1111/mmi.13886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2017] [Indexed: 02/06/2023]
Abstract
Complex sphingolipids play critical roles in various cellular events in the yeast Saccharomyces cerevisiae. To identify genes that are related to the growth defect caused by disruption of complex sphingolipid biosynthesis, we screened for suppressor mutations and multicopy suppressor genes that confer resistance against repression of AUR1 encoding inositol phosphorylceramide synthase. From the results of this screening, we found that the activation of high-osmolarity glycerol (HOG) pathway is involved in suppression of growth defect caused by impaired biosynthesis of complex sphingolipids. Furthermore, it was found that transcriptional regulation via Msn2, Msn4 and Sko1 is involved in the suppressive effect of the HOG pathway. Lack of the HOG pathway did not enhance the reductions in complex sphingolipid levels or the increase in ceramide level caused by the AUR1 repression, implying that the suppressive effect of the HOG pathway on the growth defect is not attributed to restoration of impaired biosynthesis of complex sphingolipids. On the contrary, the HOG pathway and Msn2/4-mediated transcriptional activation was involved in suppression of aberrant reactive oxygen species accumulation caused by the AUR1 repression. These results indicated that the HOG pathway plays pivotal roles in maintaining cell growth under impaired biosynthesis of complex sphingolipids.
Collapse
Affiliation(s)
- Yutaro Yamaguchi
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-3905, Japan
| | - Yuka Katsuki
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-3905, Japan
| | - Seiya Tanaka
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-3905, Japan
| | - Ryotaro Kawaguchi
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-3905, Japan
| | - Hiroto Denda
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
| | - Takuma Ikeda
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-3905, Japan
| |
Collapse
|
63
|
Silva A, Cavero S, Begley V, Solé C, Böttcher R, Chávez S, Posas F, de Nadal E. Regulation of transcription elongation in response to osmostress. PLoS Genet 2017; 13:e1007090. [PMID: 29155810 PMCID: PMC5720810 DOI: 10.1371/journal.pgen.1007090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/07/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Cells trigger massive changes in gene expression upon environmental fluctuations. The Hog1 stress-activated protein kinase (SAPK) is an important regulator of the transcriptional activation program that maximizes cell fitness when yeast cells are exposed to osmostress. Besides being associated with transcription factors bound at target promoters to stimulate transcriptional initiation, activated Hog1 behaves as a transcriptional elongation factor that is selective for stress-responsive genes. Here, we provide insights into how this signaling kinase functions in transcription elongation. Hog1 phosphorylates the Spt4 elongation factor at Thr42 and Ser43 and such phosphorylations are essential for the overall transcriptional response upon osmostress. The phosphorylation of Spt4 by Hog1 regulates RNA polymerase II processivity at stress-responsive genes, which is critical for cell survival under high osmostress conditions. Thus, the direct regulation of Spt4 upon environmental insults serves to stimulate RNA Pol II elongation efficiency.
Collapse
Affiliation(s)
- Andrea Silva
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Santiago Cavero
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Victoria Begley
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Carme Solé
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - René Böttcher
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| |
Collapse
|
64
|
Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion 2017; 10:182-206. [PMID: 27248002 DOI: 10.1080/19336896.2016.1181253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia.,c All-Russia Research Institute for Agricultural Microbiology , St. Petersburg , Russia
| | - Kirill S Antonets
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Stanislav A Bondarev
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Sergey G Inge-Vechtomov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Irina L Derkatch
- d Department of Neuroscience , College of Physicians and Surgeons of Columbia University, Columbia University , New York , NY , USA
| |
Collapse
|
65
|
Watcharawipas A, Watanabe D, Takagi H. Enhanced sodium acetate tolerance in Saccharomyces cerevisiae by the Thr255Ala mutation of the ubiquitin ligase Rsp5. FEMS Yeast Res 2017; 17:4587736. [DOI: 10.1093/femsyr/fox083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022] Open
|
66
|
Adamczyk M, Szatkowska R. Low RNA Polymerase III activity results in up regulation of HXT2 glucose transporter independently of glucose signaling and despite changing environment. PLoS One 2017; 12:e0185516. [PMID: 28961268 PMCID: PMC5621690 DOI: 10.1371/journal.pone.0185516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/14/2017] [Indexed: 01/13/2023] Open
Abstract
Background Saccharomyces cerevisiae responds to glucose availability in the environment, inducing the expression of the low-affinity transporters and high-affinity transporters in a concentration dependent manner. This cellular decision making is controlled through finely tuned communication between multiple glucose sensing pathways including the Snf1-Mig1, Snf3/Rgt2-Rgt1 (SRR) and cAMP-PKA pathways. Results We demonstrate the first evidence that RNA Polymerase III (RNAP III) activity affects the expression of the glucose transporter HXT2 (RNA Polymerase II dependent—RNAP II) at the level of transcription. Down-regulation of RNAP III activity in an rpc128-1007 mutant results in a significant increase in HXT2 mRNA, which is considered to respond only to low extracellular glucose concentrations. HXT2 expression is induced in the mutant regardless of the growth conditions either at high glucose concentration or in the presence of a non-fermentable carbon source such as glycerol. Using chromatin immunoprecipitation (ChIP), we found an increased association of Rgt1 and Tup1 transcription factors with the highly activated HXT2 promoter in the rpc128-1007 strain. Furthermore, by measuring cellular abundance of Mth1 corepressor, we found that in rpc128-1007, HXT2 gene expression was independent from Snf3/Rgt2-Rgt1 (SRR) signaling. The Snf1 protein kinase complex, which needs to be active for the release from glucose repression, also did not appear perturbed in the mutated strain. Conclusions/Significance These findings suggest that the general activity of RNAP III can indirectly affect the RNAP II transcriptional machinery on the HXT2 promoter when cellular perception transduced via the major signaling pathways, broadly recognized as on/off switch essential to either positive or negative HXT gene regulation, remain entirely intact. Further, Rgt1/Ssn6-Tup1 complex, which has a dual function in gene transcription as a repressor-activator complex, contributes to HXT2 transcriptional activation.
Collapse
Affiliation(s)
- Malgorzata Adamczyk
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- * E-mail:
| | - Roza Szatkowska
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
67
|
Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress. Curr Genet 2017. [DOI: 10.1007/s00294-017-0724-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
68
|
Epigenetic Transcriptional Memory of GAL Genes Depends on Growth in Glucose and the Tup1 Transcription Factor in Saccharomyces cerevisiae. Genetics 2017; 206:1895-1907. [PMID: 28607146 DOI: 10.1534/genetics.117.201632] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023] Open
Abstract
Previously expressed inducible genes can remain poised for faster reactivation for multiple cell divisions, a conserved phenomenon called epigenetic transcriptional memory. The GAL genes in Saccharomyces cerevisiae show faster reactivation for up to seven generations after being repressed. During memory, previously produced Gal1 protein enhances the rate of reactivation of GAL1, GAL10, GAL2, and GAL7 These genes also interact with the nuclear pore complex (NPC) and localize to the nuclear periphery both when active and during memory. Peripheral localization of GAL1 during memory requires the Gal1 protein, a memory-specific cis-acting element in the promoter, and the NPC protein Nup100 However, unlike other examples of transcriptional memory, the interaction with NPC is not required for faster GAL gene reactivation. Rather, downstream of Gal1, the Tup1 transcription factor and growth in glucose promote GAL transcriptional memory. Cells only show signs of memory and only benefit from memory when growing in glucose. Tup1 promotes memory-specific chromatin changes at the GAL1 promoter: incorporation of histone variant H2A.Z and dimethylation of histone H3, lysine 4. Tup1 and H2A.Z function downstream of Gal1 to promote binding of a preinitiation form of RNA Polymerase II at the GAL1 promoter, poising the gene for faster reactivation. This mechanism allows cells to integrate a previous experience (growth in galactose, reflected by Gal1 levels) with current conditions (growth in glucose, potentially through Tup1 function) to overcome repression and to poise critical GAL genes for future reactivation.
Collapse
|
69
|
CO 2 sensing in fungi: at the heart of metabolic signaling. Curr Genet 2017; 63:965-972. [PMID: 28493119 DOI: 10.1007/s00294-017-0700-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
Adaptation to the changing environmental CO2 levels is essential for all living cells. In particular, microorganisms colonizing and infecting the human body are exposed to highly variable concentrations, ranging from atmospheric 0.04 to 5% and more in blood and specific host niches. Carbonic anhydrases are highly conserved metalloenzymes that enable fixation of CO2 by its conversion into bicarbonate. This process is not only crucial to ensure the supply of adequate carbon amounts for cellular metabolism, but also contributes to several signaling processes in fungi, including morphology and communication. The fungal specific carbonic anhydrase gene NCE103 is transcribed in response to CO2 availability. As recently shown, this regulation relies on the ATF/CREB transcription factor Cst6 and the AGC family protein kinase Sch9. Here, we review the regulatory mechanisms which control NCE103 expression in the model organism Saccharomyces cerevisiae and the pathogenic yeasts Candida albicans and Candida glabrata and discuss which additional factors might contribute in this novel CO2 sensing cascade.
Collapse
|
70
|
Romanov N, Hollenstein DM, Janschitz M, Ammerer G, Anrather D, Reiter W. Identifying protein kinase-specific effectors of the osmostress response in yeast. Sci Signal 2017; 10:10/469/eaag2435. [PMID: 28270554 DOI: 10.1126/scisignal.aag2435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The budding yeast Saccharomyces cerevisiae reacts to increased external osmolarity by modifying many cellular processes. Adaptive signaling relies primarily on the high-osmolarity glycerol (HOG) pathway, which is closely related to the mammalian p38 mitogen-activated protein kinase (MAPK) pathway in core architecture. To identify target proteins of the MAPK Hog1, we designed a mass spectrometry-based high-throughput experiment to measure the impact of Hog1 activation or inhibition on the Scerevisiae phosphoproteome. In addition, we analyzed how deletion of RCK2, which encodes a known effector protein kinase target of Hog1, modulated osmotic stress-induced phosphorylation. Our results not only provide an overview of the diversity of cellular functions that are directly and indirectly affected by the activity of the HOG pathway but also enabled an assessment of the Hog1-independent events that occur under osmotic stress conditions. We extended the number of putative Hog1 direct targets by analyzing the modulation of motifs consisting of serine or threonine followed by a proline (S/T-P motif) and subsequently validated these with an in vivo interaction assay. Rck2 appears to act as a central hub for many Hog1-mediated secondary phosphorylation events. This study clarifies many of the direct and indirect effects of HOG signaling and its stress-adaptive functions.
Collapse
Affiliation(s)
- Natalie Romanov
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - David Maria Hollenstein
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Marion Janschitz
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Gustav Ammerer
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Wolfgang Reiter
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
71
|
Kliewe F, Engelhardt M, Aref R, Schüller HJ. Promoter recruitment of corepressors Sin3 and Cyc8 by activator proteins of the yeast Saccharomyces cerevisiae. Curr Genet 2017; 63:739-750. [PMID: 28175933 DOI: 10.1007/s00294-017-0677-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 02/02/2023]
Abstract
It is generally assumed that pathway-specific transcriptional activators recruit pleiotropic coactivators (such as chromatin-modifying complexes or general transcription factors), while specific repressors contact pleiotropic corepressors creating an inaccessible chromatin by the action of histone deacetylases. We have previously shown that the negative regulator Opi1 of yeast phospholipid biosynthesis inhibits transcription by recruiting corepressors Sin3 and Cyc8 in the presence of precursor molecules inositol and choline. To get access to its target genes, Opi1 physically contacts and counteracts DNA-bound activator Ino2. By using chromatin immunoprecipitation, we show that Sin3 and Cyc8 can be detected at Opi1 target promoters INO1 and CHO2 under repressing and derepressing conditions and that corepressor binding is effective even in the absence of Opi1, while Ino2 is absolutely required. Thus, corepressors may be recruited not only by repressors but also by activators such as Ino2. Indeed, we could demonstrate direct interaction of Ino2 with Sin3 and Cyc8. The Opi1 repressor interaction domain within Ino2 is also able to contact Sin3 and Cyc8. Recruitment of corepressors by an activator is not a regulatory exception as we could show that activators Pho4 and Hac1 also contain domains being able to interact with Sin3 and Cyc8.
Collapse
Affiliation(s)
- Felix Kliewe
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487, Greifswald, Germany
| | - Maike Engelhardt
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487, Greifswald, Germany
| | - Rasha Aref
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487, Greifswald, Germany.
| |
Collapse
|
72
|
Osorio-Concepción M, Cristóbal-Mondragón GR, Gutiérrez-Medina B, Casas-Flores S. Histone Deacetylase HDA-2 Regulates Trichoderma atroviride Growth, Conidiation, Blue Light Perception, and Oxidative Stress Responses. Appl Environ Microbiol 2017; 83:e02922-16. [PMID: 27864177 PMCID: PMC5244289 DOI: 10.1128/aem.02922-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/13/2016] [Indexed: 01/14/2023] Open
Abstract
Fungal blue-light photoreceptors have been proposed as integrators of light and oxidative stress. However, additional elements participating in the integrative pathway remain to be identified. In Trichoderma atroviride, the blue-light regulator (BLR) proteins BLR-1 and -2 are known to regulate gene transcription, mycelial growth, and asexual development upon illumination, and recent global transcriptional analysis revealed that the histone deacetylase-encoding gene hda-2 is induced by light. Here, by assessing responses to stimuli in wild-type and Δhda-2 backgrounds, we evaluate the role of HDA-2 in the regulation of genes responsive to light and oxidative stress. Δhda-2 strains present reduced growth, misregulation of the con-1 gene, and absence of conidia in response to light and mechanical injury. We found that the expression of hda-2 is BLR-1 dependent and HDA-2 in turn is essential for the transcription of early and late light-responsive genes that include blr-1, indicating a regulatory feedback loop. When subjected to reactive oxygen species (ROS), Δhda-2 mutants display high sensitivity whereas Δblr strains exhibit the opposite phenotype. Consistently, in the presence of ROS, ROS-related genes show high transcription levels in wild-type and Δblr strains but misregulation in Δhda-2 mutants. Finally, chromatin immunoprecipitations of histone H3 acetylated at Lys9/Lys14 on cat-3 and gst-1 promoters display low accumulation of H3K9K14ac in Δblr and Δhda-2 strains, suggesting indirect regulation of ROS-related genes by HDA-2. Our results point to a mutual dependence between HDA-2 and BLR proteins and reveal the role of these proteins in an intricate gene regulation landscape in response to blue light and ROS. IMPORTANCE Trichoderma atroviride is a free-living fungus commonly found in soil or colonizing plant roots and is widely used as an agent in biocontrol as it parasitizes other fungi, stimulates plant growth, and induces the plant defense system. To survive in various environments, fungi constantly sense and respond to potentially threatening external factors, such as light. In particular, UV light can damage biomolecules by producing free-radical reactions, in most cases involving reactive oxygen species (ROS). In T. atroviride, conidiation is essential for its survival, which is induced by light and mechanical injury. Notably, conidia are typically used as the inoculum in the field during biocontrol. Therefore, understanding the linkages between responses to light and exposure to ROS in T. atroviride is of major basic and practical relevance. Here, the histone deacetylase-encoding gene hda-2 is induced by light and ROS, and its product regulates growth, conidiation, blue light perception, and oxidative stress responses.
Collapse
|
73
|
Córdova P, Alcaíno J, Bravo N, Barahona S, Sepúlveda D, Fernández-Lobato M, Baeza M, Cifuentes V. Regulation of carotenogenesis in the red yeast Xanthophyllomyces dendrorhous: the role of the transcriptional co-repressor complex Cyc8-Tup1 involved in catabolic repression. Microb Cell Fact 2016; 15:193. [PMID: 27842591 PMCID: PMC5109733 DOI: 10.1186/s12934-016-0597-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/10/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The yeast Xanthophyllomyces dendrorhous produces carotenoids of commercial interest, including astaxanthin and β-carotene. Although carotenogenesis in this yeast and the expression profiles of the genes controlling this pathway are known, the mechanisms regulating this process remain poorly understood. Several studies have demonstrated that glucose represses carotenogenesis in X. dendrorhous, suggesting that this pathway could be regulated by catabolic repression. Catabolic repression is a highly conserved regulatory mechanism in eukaryotes and has been widely studied in Saccharomyces cerevisiae. Glucose-dependent repression is mainly observed at the transcriptional level and depends on the DNA-binding regulator Mig1, which recruits the co-repressor complex Cyc8-Tup1, which then represses the expression of target genes. In this work, we studied the regulation of carotenogenesis by catabolic repression in X. dendrorhous, focusing on the role of the co-repressor complex Cyc8-Tup1. RESULTS The X. dendrorhous CYC8 and TUP1 genes were identified, and their functions were demonstrated by heterologous complementation in S. cerevisiae. In addition, cyc8 - and tup1 - mutant strains of X. dendrorhous were obtained, and both mutations were shown to prevent the glucose-dependent repression of carotenogenesis in X. dendrorhous, increasing the carotenoid production in both mutant strains. Furthermore, the effects of glucose on the transcript levels of genes involved in carotenogenesis differed between the mutant strains and wild-type X. dendrorhous, particularly for genes involved in the synthesis of carotenoid precursors, such as HMGR, idi and FPS. Additionally, transcriptomic analyses showed that cyc8 - and tup1 - mutations affected the expression of over 250 genes in X. dendrorhous. CONCLUSIONS The CYC8 and TUP1 genes are functional in X. dendrorhous, and their gene products are involved in catabolic repression and carotenogenesis regulation. This study presents the first report involving the participation of Cyc8 and Tup1 in carotenogenesis regulation in yeast.
Collapse
Affiliation(s)
- Pamela Córdova
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Natalia Bravo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma Madrid, Campus de Cantoblanco, calle Nicolás Cabrera No 1, Cantoblanco, 28049 Madrid, Spain
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| |
Collapse
|
74
|
Hot1 factor recruits co-activator Sub1 and elongation complex Spt4/5 to osmostress genes. Biochem J 2016; 473:3065-79. [DOI: 10.1042/bcj20160463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/01/2016] [Indexed: 11/17/2022]
Abstract
Hyperosmotic stress response involves the adaptative mechanisms needed for cell survival. Under high osmolarity conditions, many stress response genes are activated by several unrelated transcription factors that are controlled by the Hog1 kinase. Osmostress transcription factor Hot1 regulates the expression of several genes involved in glycerol biosynthesis, and the presence of this transcription factor in their promoters is essential for RNApol II recruitment. The physical association between Hog1 and Hot1 activates this transcription factor and directs the RNA polymerase II localization at these promoters. We, herein, demonstrate that physical and genetic interactions exist between Hot1 and several proteins involved in transcriptional and posttranscriptional processes: for example, transcription co-activator Sub1 and elongation complex Spt4/5. The results presented in this work demonstrate that Hot1 enrichment is not detected through the coding regions of its target genes and rule out a direct role in transcription elongation. Instead, other data presented herein indicate a key function of the Hot1 transcription factor in the recruitment of these proteins to the promoter or the 5′-coding region of the genes under its control.
Collapse
|
75
|
Jöhnk B, Bayram Ö, Abelmann A, Heinekamp T, Mattern DJ, Brakhage AA, Jacobsen ID, Valerius O, Braus GH. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus. PLoS Pathog 2016; 12:e1005899. [PMID: 27649508 PMCID: PMC5029927 DOI: 10.1371/journal.ppat.1005899] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/26/2016] [Indexed: 01/27/2023] Open
Abstract
F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 is phosphorylated and F-box mediated interaction with SkpA preferentially happens in smaller subpopulations in the cytoplasm. The F-box of Fbx15 is required for an appropriate oxidative stress response, which results in rapid dephosphorylation of Fbx15 and a shift of the cellular interaction with SkpA to the nucleus. Fbx15 binds SsnF/Ssn6 as part of the RcoA/Tup1-SsnF/Ssn6 co-repressor and is required for its correct nuclear localization. Dephosphorylated Fbx15 prevents SsnF/Ssn6 nuclear localization and results in the derepression of gliotoxin gene expression. fbx15 deletion mutants are unable to infect immunocompromised mice in a model for invasive aspergillosis. Fbx15 has a novel dual molecular function by controlling transcriptional repression and being part of SCF E3 ubiquitin ligases, which is essential for stress response, gliotoxin production and virulence in the opportunistic human pathogen A. fumigatus. The opportunistic human fungal pathogen Aspergillus fumigatus is the most prevalent cause for severe fungal infections in immunocompromised hosts. A major virulence factor of A. fumigatus is its ability to rapidly adapt to host conditions during infection. The rapid response to environmental changes underlies a well-balanced system of production and degradation of proteins. The degradation of specific target proteins is mediated by ubiquitin-protein ligases (E3), which mark their target proteins with ubiquitin for proteasomal degradation. Multisubunit SCF Cullin1 Ring ligases (CRL) are E3 ligases where the F-box subunit functions as a substrate-specificity determining adaptor. A comprehensive control of protein production includes global co-repressors as the conserved Ssn6(SsnF)-Tup1(RcoA) complex, which reduces transcription on multiple levels. We have identified a novel connection between protein degradation and synthesis through an F-box protein. Fbx15 can be incorporated into SCF E3 ubiquitin ligases and controls upon stress the nuclear localization of the SsnF. Fbx15 plays a critical role for A. fumigatus adaptation and is essential for virulence in a murine infection model. Fbx15 is a fungal-specific protein and therefore a potential target for future drug development.
Collapse
Affiliation(s)
- Bastian Jöhnk
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Özgür Bayram
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, County Kildare, Ireland
| | - Anja Abelmann
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
- * E-mail:
| |
Collapse
|
76
|
Sanz AB, García R, Rodríguez-Peña JM, Nombela C, Arroyo J. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2. Nucleic Acids Res 2016; 44:7159-72. [PMID: 27112564 PMCID: PMC5009723 DOI: 10.1093/nar/gkw324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022] Open
Abstract
The transcriptional response of Saccharomyces cerevisiae to cell wall stress is mainly mediated by the cell wall integrity (CWI) pathway through the MAPK Slt2 and the transcription factor Rlm1. Once activated, Rlm1 interacts with the chromatin remodeling SWI/SNF complex which locally alters nucleosome positioning at the target promoters. Here we show that the SAGA complex plays along with the SWI/SNF complex an important role for eliciting both early induction and sustained gene expression upon stress. Gcn5 co-regulates together with Swi3 the majority of the CWI transcriptional program, except for a group of genes which are only dependent on the SWI/SNF complex. SAGA subunits are recruited to the promoter of CWI-responsive genes in a Slt2, Rlm1 and SWI/SNF-dependent manner. However, Gcn5 mediates acetylation and nucleosome eviction only at the promoters of the SAGA-dependent genes. This process is not essential for pre-initiation transcriptional complex assembly but rather increase the extent of the remodeling mediated by SWI/SNF. As a consequence, H3 eviction and Rlm1 recruitment is completely blocked in a swi3Δ gcn5Δ double mutant. Therefore, SAGA complex, through its histone acetylase activity, cooperates with the SWI/SNF complex for the mandatory nucleosome displacement required for full gene expression through the CWI pathway.
Collapse
Affiliation(s)
- Ana Belén Sanz
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - José Manuel Rodríguez-Peña
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| |
Collapse
|
77
|
Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae. mBio 2016; 7:mBio.00559-16. [PMID: 27143390 PMCID: PMC4959655 DOI: 10.1128/mbio.00559-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p at high resolution. Cst6p binds to the promoter regions of 59 genes with various biological functions when cells are grown on ethanol but hardly binds to the promoter at any gene when cells are grown on glucose. The retarded growth of the CST6 deletion mutant on ethanol is attributed to the markedly decreased expression of NCE103, encoding a carbonic anhydrase, which is a direct target of Cst6p. The target genes of Cst6p have a large overlap with those of stress-responsive transcription factors, such as Sko1p and Skn7p. In addition, a CST6 deletion mutant growing on ethanol shows hypersensitivity to oxidative stress and ethanol stress, assigning Cst6p as a new member of the stress-responsive transcriptional regulatory network. These results show that mapping of genome-wide binding sites can provide new insights into the function of transcription factors and highlight the highly connected and condition-dependent nature of the transcriptional regulatory network in S. cerevisiae. Transcription factors regulate the activity of various biological processes through binding to specific DNA sequences. Therefore, the determination of binding positions is important for the understanding of the regulatory effects of transcription factors. In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to regulate several biological processes, while its genome-wide targets remain unknown. Here, we mapped the genome-wide binding sites of Cst6p at high resolution. We show that the binding of Cst6p to its target promoters is condition dependent and explain the mechanism for the retarded growth of the CST6 deletion mutant on ethanol. Furthermore, we demonstrate that Cst6p is a new member of a stress-responsive transcriptional regulatory network. These results provide deeper understanding of the function of the dynamic transcriptional regulatory network in S. cerevisiae.
Collapse
|
78
|
Hagiwara D, Sakamoto K, Abe K, Gomi K. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era. Biosci Biotechnol Biochem 2016; 80:1667-80. [PMID: 27007956 DOI: 10.1080/09168451.2016.1162085] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aspergillus species are among the most important filamentous fungi in terms of industrial use and because of their pathogenic or toxin-producing features. The genomes of several Aspergillus species have become publicly available in this decade, and genomic analyses have contributed to an integrated understanding of fungal biology. Stress responses and adaptation mechanisms have been intensively investigated using the accessible genome infrastructure. Mitogen-activated protein kinase (MAPK) cascades have been highlighted as being fundamentally important in fungal adaptation to a wide range of stress conditions. Reverse genetics analyses have uncovered the roles of MAPK pathways in osmotic stress, cell wall stress, development, secondary metabolite production, and conidia stress resistance. This review summarizes the current knowledge on the stress biology of Aspergillus species, illuminating what we have learned from the genomic data in this "post-genomic era."
Collapse
Affiliation(s)
- Daisuke Hagiwara
- a Medical Mycology Research Center , Chiba University , Chiba , Japan
| | | | - Keietsu Abe
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
79
|
Oeser ML, Amen T, Nadel CM, Bradley AI, Reed BJ, Jones RD, Gopalan J, Kaganovich D, Gardner RG. Dynamic Sumoylation of a Conserved Transcription Corepressor Prevents Persistent Inclusion Formation during Hyperosmotic Stress. PLoS Genet 2016; 12:e1005809. [PMID: 26800527 PMCID: PMC4723248 DOI: 10.1371/journal.pgen.1005809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022] Open
Abstract
Cells are often exposed to physical or chemical stresses that can damage the structures of essential biomolecules. Stress-induced cellular damage can become deleterious if not managed appropriately. Rapid and adaptive responses to stresses are therefore crucial for cell survival. In eukaryotic cells, different stresses trigger post-translational modification of proteins with the small ubiquitin-like modifier SUMO. However, the specific regulatory roles of sumoylation in each stress response are not well understood. Here, we examined the sumoylation events that occur in budding yeast after exposure to hyperosmotic stress. We discovered by proteomic and biochemical analyses that hyperosmotic stress incurs the rapid and transient sumoylation of Cyc8 and Tup1, which together form a conserved transcription corepressor complex that regulates hundreds of genes. Gene expression and cell biological analyses revealed that sumoylation of each protein directs distinct outcomes. In particular, we discovered that Cyc8 sumoylation prevents the persistence of hyperosmotic stress-induced Cyc8-Tup1 inclusions, which involves a glutamine-rich prion domain in Cyc8. We propose that sumoylation protects against persistent inclusion formation during hyperosmotic stress, allowing optimal transcriptional function of the Cyc8-Tup1 complex. Cells have evolved complex stress responses to cope with environmental challenges that could otherwise inflict severe damage on the molecules essential for life. Stress responses must ameliorate the immediate damage caused by stress exposure and also adjust metabolic capacity, gene expression output, and other cellular functions to protect against further damage that could be incurred by prolonged exposure to stress. Posttranslational protein modifications are a major means by which cells respond to changing environmental conditions. These modifications can alter the function, localization, and molecular interactions of their target proteins. In addition, evidence is emerging that some posttranslational modifications may also change the physical characteristics of target proteins. In this study, we present evidence that during hyperosmotic stress, a condition known to induce protein misfolding, cells rapidly but transiently use the small ubiquitin-modifier SUMO to protect against persistent inclusion formation of a conserved transcriptional repressor complex. We propose that this rapid protective action via posttranslational modification enables optimal gene regulation during the cellular response to hyperosmotic stress.
Collapse
Affiliation(s)
- Michelle L. Oeser
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Triana Amen
- Alexander Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Cory M. Nadel
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Amanda I. Bradley
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Benjamin J. Reed
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Ramon D. Jones
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Janani Gopalan
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Daniel Kaganovich
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard G. Gardner
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
80
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
81
|
Tanaka N, Mukai Y. Yeast Cyc8p and Tup1p proteins function as coactivators for transcription of Stp1/2p-dependent amino acid transporter genes. Biochem Biophys Res Commun 2015; 468:32-8. [DOI: 10.1016/j.bbrc.2015.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|
82
|
Baccarini L, Martínez-Montañés F, Rossi S, Proft M, Portela P. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1329-39. [DOI: 10.1016/j.bbagrm.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
83
|
Gutin J, Sadeh A, Rahat A, Aharoni A, Friedman N. Condition-specific genetic interaction maps reveal crosstalk between the cAMP/PKA and the HOG MAPK pathways in the activation of the general stress response. Mol Syst Biol 2015; 11:829. [PMID: 26446933 PMCID: PMC4631200 DOI: 10.15252/msb.20156451] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cells must quickly respond and efficiently adapt to environmental changes. The yeast Saccharomyces cerevisiae has multiple pathways that respond to specific environmental insults, as well as a generic stress response program. The later is regulated by two transcription factors, Msn2 and Msn4, that integrate information from upstream pathways to produce fast, tunable, and robust response to different environmental changes. To understand this integration, we employed a systematic approach to genetically dissect the contribution of various cellular pathways to Msn2/4 regulation under a range of stress and growth conditions. We established a high-throughput liquid handling and automated flow cytometry system and measured GFP levels in 68 single-knockout and 1,566 double-knockout strains that carry an HSP12-GFP allele as a reporter for Msn2/4 activity. Based on the expression of this Msn2/4 reporter in five different conditions, we identified numerous genetic and epistatic interactions between different components in the network upstream to Msn2/4. Our analysis gains new insights into the functional specialization of the RAS paralogs in the repression of stress response and identifies a three-way crosstalk between the Mediator complex, the HOG MAPK pathway, and the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Jenia Gutin
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Amit Sadeh
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Ayelet Rahat
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Amir Aharoni
- Department of Life Science, National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Nir Friedman
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| |
Collapse
|
84
|
Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast. Mol Cell Biol 2015; 35:3669-83. [PMID: 26283730 DOI: 10.1128/mcb.00729-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022] Open
Abstract
Cells respond to environmental stimuli by fine-tuned regulation of gene expression. Here we investigated the dose-dependent modulation of gene expression at high temporal resolution in response to nutrient and stress signals in yeast. The GAL1 activity in cell populations is modulated in a well-defined range of galactose concentrations, correlating with a dynamic change of histone remodeling and RNA polymerase II (RNAPII) association. This behavior is the result of a heterogeneous induction delay caused by decreasing inducer concentrations across the population. Chromatin remodeling appears to be the basis for the dynamic GAL1 expression, because mutants with impaired histone dynamics show severely truncated dose-response profiles. In contrast, the GRE2 promoter operates like a rapid off/on switch in response to increasing osmotic stress, with almost constant expression rates and exclusively temporal regulation of histone remodeling and RNAPII occupancy. The Gal3 inducer and the Hog1 mitogen-activated protein (MAP) kinase seem to determine the different dose-response strategies at the two promoters. Accordingly, GAL1 becomes highly sensitive and dose independent if previously stimulated because of residual Gal3 levels, whereas GRE2 expression diminishes upon repeated stimulation due to acquired stress resistance. Our analysis reveals important differences in the way dynamic signals create dose-sensitive gene expression outputs.
Collapse
|
85
|
Jacob S, Foster AJ, Yemelin A, Thines E. High osmolarity glycerol (HOG) signalling in Magnaporthe oryzae: Identification of MoYPD1 and its role in osmoregulation, fungicide action, and pathogenicity. Fungal Biol 2015; 119:580-94. [DOI: 10.1016/j.funbio.2015.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
|
86
|
de Nadal E, Posas F. Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J 2015; 282:3275-85. [PMID: 25996081 PMCID: PMC4744689 DOI: 10.1111/febs.13323] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 01/18/2023]
Abstract
Adaptation is essential for maximizing cell survival and for cell fitness in response to sudden changes in the environment. Several aspects of cell physiology change during adaptation. Major changes in gene expression are associated with cell exposure to environmental changes, and several aspects of mRNA biogenesis appear to be targeted by signaling pathways upon stress. Exhaustive reviews have been written regarding adaptation to stress and regulation of gene expression. In this review, using osmostress in yeast as a prototypical case study, we highlight those aspects of regulation of gene induction that are general to various environmental stresses as well as mechanistic aspects that are potentially conserved from yeast to mammals.
Collapse
Affiliation(s)
- Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
87
|
Gomar-Alba M, Morcillo-Parra MÁ, Olmo MLD. Response of yeast cells to high glucose involves molecular and physiological differences when compared to other osmostress conditions. FEMS Yeast Res 2015; 15:fov039. [PMID: 26048894 DOI: 10.1093/femsyr/fov039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 01/01/2023] Open
Abstract
Yeast cells can be affected by several causes of osmotic stress, such as high salt, sorbitol or glucose concentrations. The last condition is particularly interesting during natural processes where this microorganism participates. Response to osmostress requires the HOG (High Osmolarity Glycerol) pathway and several transcription factors, including Hot1, which plays a key role in high glucose concentrations. In this work, we describe how the yeast response to osmotic stress shows differences in accordance with the stress agent responsible for it. Compared with other conditions, under high glucose stress, delocalization of MAPK (Mitogen-Activated Protein Kinase) Hog1 is slower, induction of HOT1 expression is higher and Msn2/4 transcription factors are involved to a lesser extent. The transcriptomic analyses carried out with samples incubated for 30 min in the presence of high glucose or sorbitol reveal the presence of two functional categories with a differential expression between these conditions: glycogen biosynthesis and mobilization, and membrane-anchored proteins. We present data to demonstrate that the cells treated with 20% (w/v) (1.11 M) glucose contain higher chitin levels and are more sensitive to calcofluor white and ethanol.
Collapse
Affiliation(s)
- Mercè Gomar-Alba
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr Moliner 50, E-46100 Burjassot (Valencia, Spain)
| | - Ma Ángeles Morcillo-Parra
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr Moliner 50, E-46100 Burjassot (Valencia, Spain)
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr Moliner 50, E-46100 Burjassot (Valencia, Spain)
| |
Collapse
|
88
|
Bai C, Tesker M, Engelberg D. The yeast Hot1 transcription factor is critical for activating a single target gene, STL1. Mol Biol Cell 2015; 26:2357-74. [PMID: 25904326 PMCID: PMC4462951 DOI: 10.1091/mbc.e14-12-1626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/15/2015] [Indexed: 11/24/2022] Open
Abstract
An active variant of the MAPK Hog1 is used to identify its target genes. The promoter of one target, STL1, possesses a Hog1-responsive element (HoRE) that binds the transcription factor Hot1. HoRE is not found in other promoters, and the STL1 mRNA is the only one abolished in hot1Δ cells. Hot1 may be essential for transcription of one gene. Transcription factors are commonly activated by signal transduction cascades and induce expression of many genes. They therefore play critical roles in determining the cell's fate. The yeast Hog1 MAP kinase pathway is believed to control the transcription of hundreds of genes via several transcription factors. To identify the bona fide target genes of Hog1, we inducibly expressed the spontaneously active variant Hog1D170A+F318L in cells lacking the Hog1 activator Pbs2. This system allowed monitoring the effects of Hog1 by itself. Expression of Hog1D170A+F318L in pbs2∆ cells imposed induction of just 105 and suppression of only 26 transcripts by at least twofold. We looked for the Hog1-responsive element within the promoter of the most highly induced gene, STL1 (88-fold). A novel Hog1 responsive element (HoRE) was identified and shown to be the direct target of the transcription factor Hot1. Unexpectedly, we could not find this HoRE in any other yeast promoter. In addition, the only gene whose expression was abolished in hot1∆ cells was STL1. Thus Hot1 is essential for transcription of just one gene, STL1. Hot1 may represent a class of transcription factors that are essential for transcription of a very few genes or even just one.
Collapse
Affiliation(s)
- Chen Bai
- CREATE-NUS-HUJ Cellular and Molecular Mechanisms of Inflammation Programme, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Masha Tesker
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Engelberg
- CREATE-NUS-HUJ Cellular and Molecular Mechanisms of Inflammation Programme, National University of Singapore, Singapore 138602 Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
89
|
Ng CH, Akhter A, Yurko N, Burgener JM, Rosonina E, Manley JL. Sumoylation controls the timing of Tup1-mediated transcriptional deactivation. Nat Commun 2015; 6:6610. [PMID: 25766875 PMCID: PMC4360881 DOI: 10.1038/ncomms7610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/11/2015] [Indexed: 02/08/2023] Open
Abstract
The small ubiquitin-like modifier (SUMO) is implicated in various cellular activities, including transcriptional regulation. We previously showed that the yeast activator Gcn4 becomes sumoylated during activation, facilitating its eventual promoter eviction and transcriptional shut off. Here we show that the corepressor Tup1 is sumoylated, at two specific lysines, under various stress conditions. Mutation of these sites has no effect on Tup1 recruitment or RNAP II promoter occupancy immediately following induction. However, Tup1 levels subsequently decrease, while RNAP II and transcription increase in Tup1 mutant cells. Consistent with this, a Tup1 mutant displaying increased sumoylation led to reduced transcription. We also show that coordinated sumoylation of Gcn4 and Tup1 enhances Gcn4 promoter eviction, and that multiple Tup1-interacting proteins become sumoylated after stress. Together, our studies provide evidence that coordinated sumoylation of Gcn4, Tup1, and likely other factors, dampens activated transcription by stabilizing Tup1 binding and stimulating Gcn4 and RNAP II removal.
Collapse
Affiliation(s)
- Chong Han Ng
- 1] Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, 1117 Fairchild Center, New York, New York 10027, USA [2] Faculty of Information Science &Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Bukit Beruang, Melaka, Malaysia
| | - Akhi Akhter
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Nathan Yurko
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, 1117 Fairchild Center, New York, New York 10027, USA
| | - Justin M Burgener
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Emanuel Rosonina
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - James L Manley
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, 1117 Fairchild Center, New York, New York 10027, USA
| |
Collapse
|
90
|
Control of Plasma Membrane Permeability by ABC Transporters. EUKARYOTIC CELL 2015; 14:442-53. [PMID: 25724885 DOI: 10.1128/ec.00021-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette transporters Pdr5 and Yor1 from Saccharomyces cerevisiae control the asymmetric distribution of phospholipids across the plasma membrane as well as serving as ATP-dependent drug efflux pumps. Mutant strains lacking these transporter proteins were found to exhibit very different resistance phenotypes to two inhibitors of sphingolipid biosynthesis that act either late (aureobasidin A [AbA]) or early (myriocin [Myr]) in the pathway leading to production of these important plasma membrane lipids. These pdr5Δ yor1 strains were highly AbA resistant but extremely sensitive to Myr. We provide evidence that these phenotypic changes are likely due to modulation of the plasma membrane flippase complexes, Dnf1/Lem3 and Dnf2/Lem3. Flippases act to move phospholipids from the outer to the inner leaflet of the plasma membrane. Genetic analyses indicate that lem3Δ mutant strains are highly AbA sensitive and Myr resistant. These phenotypes are fully epistatic to those seen in pdr5Δ yor1 strains. Direct analysis of AbA-induced signaling demonstrated that loss of Pdr5 and Yor1 inhibited the AbA-triggered phosphorylation of the AGC kinase Ypk1 and its substrate Orm1. Microarray experiments found that a pdr5Δ yor1 strain induced a Pdr1-dependent induction of the entire Pdr regulon. Our data support the view that Pdr5/Yor1 negatively regulate flippase function and activity of the nuclear Pdr1 transcription factor. Together, these data argue that the interaction of the ABC transporters Pdr5 and Yor1 with the Lem3-dependent flippases regulates permeability of AbA via control of plasma membrane protein function as seen for the high-affinity tryptophan permease Tat2.
Collapse
|
91
|
Kanshin E, Bergeron-Sandoval LP, Isik S, Thibault P, Michnick S. A Cell-Signaling Network Temporally Resolves Specific versus Promiscuous Phosphorylation. Cell Rep 2015; 10:1202-14. [DOI: 10.1016/j.celrep.2015.01.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 01/13/2023] Open
|
92
|
Solé C, Nadal-Ribelles M, de Nadal E, Posas F. A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet 2014; 61:299-308. [PMID: 25262381 PMCID: PMC4500851 DOI: 10.1007/s00294-014-0453-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022]
Abstract
Eukaryotic cells have developed sophisticated systems to constantly monitor changes in the extracellular environment and to orchestrate a proper cellular response. To maximize survival, cells delay cell-cycle progression in response to environmental changes. In response to extracellular insults, stress-activated protein kinases (SAPKs) modulate cell-cycle progression and gene expression. In yeast, osmostress induces activation of the p38-related SAPK Hog1, which plays a key role in reprogramming gene expression upon osmostress. Genomic analysis has revealed the existence of a large number of long non-coding RNAs (lncRNAs) with different functions in a variety of organisms, including yeast. Upon osmostress, hundreds of lncRNAs are induced by the SAPK p38/Hog1. One gene that expresses Hog1-dependent lncRNA in an antisense orientation is the CDC28 gene, which encodes CDK1 kinase that controls the cell cycle in yeast. Cdc28 lncRNA mediates the induction of CDC28 expression and this increase in the level of Cdc28 results in more efficient re-entry of the cells into the cell cycle after stress. Thus, the control of lncRNA expression as a new mechanism for the regulation of cell-cycle progression opens new avenues to understand how stress adaptation can be accomplished in response to changing environments.
Collapse
Affiliation(s)
- Carme Solé
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Mariona Nadal-Ribelles
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Francesc Posas
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
93
|
Engelberg D, Perlman R, Levitzki A. Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell Signal 2014; 26:2865-78. [PMID: 25218923 DOI: 10.1016/j.cellsig.2014.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that lipid signaling is less developed in yeast than in higher eukaryotes. Finally, feedback regulatory mechanisms seem to be at least as important and powerful as the pathways themselves. In the final chapter of this essay we dare to imagine the essence of our next review on signaling in yeast, to be published on the 50th anniversary of Cellular Signalling in 2039.
Collapse
Affiliation(s)
- David Engelberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; CREATE-NUS-HUJ, Cellular & Molecular Mechanisms of Inflammation Programme, National University of Singapore, 1 CREATE Way, Innovation Wing, #03-09, Singapore 138602, Singapore.
| | - Riki Perlman
- Hematology Division, Hadassah Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Alexander Levitzki
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
94
|
Hyun BR, McElwee JL, Soloway PD. Single molecule and single cell epigenomics. Methods 2014; 72:41-50. [PMID: 25204781 DOI: 10.1016/j.ymeth.2014.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/19/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023] Open
Abstract
Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells.
Collapse
Affiliation(s)
- Byung-Ryool Hyun
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - John L McElwee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Paul D Soloway
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
95
|
Sumoylation and transcription regulation at nuclear pores. Chromosoma 2014; 124:45-56. [PMID: 25171917 PMCID: PMC4339684 DOI: 10.1007/s00412-014-0481-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/22/2023]
Abstract
Increasing evidence indicates that besides promoters, enhancers, and epigenetic modifications, nuclear organization is another parameter contributing to optimal control of gene expression. Although differences between species exist, the influence of gene positioning on expression seems to be a conserved feature from yeast to Drosophila and mammals. The nuclear periphery is one of the nuclear compartments implicated in gene regulation. It consists of the nuclear envelope (NE) and the nuclear pore complexes (NPC), which have distinct roles in the control of gene expression. The NPC has recently been shown to tether proteins involved in the sumoylation pathway. Here, we will focus on the importance of gene positioning and NPC-linked sumoylation/desumoylation in transcription regulation. We will mainly discuss observations made in the yeast Saccharomyces cerevisiae model system and highlight potential parallels in metazoan species.
Collapse
|
96
|
Fleming AB, Beggs S, Church M, Tsukihashi Y, Pennings S. The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1242-55. [PMID: 25106892 PMCID: PMC4316177 DOI: 10.1016/j.bbagrm.2014.07.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/02/2022]
Abstract
We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8–Tup1 complex. We have examined Cyc8–Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8–Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around − 700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8–Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi–Snf occupies the site vacated by Cyc8–Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8–Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi–Snf binding and prevent transcription. Cyc8–Tup1 repression activity is enriched at chromosome subtelomeric regions. The subtelomeric FLO1 gene is subject to chromatin-mediated repression by Cyc8–Tup1. Cyc8–Tup1 promotes long-range nucleosome positioning and histone deacetylation. Hda1p and Rpd3p cooperate with Cyc8–Tup1 to facilitate this repressive chromatin. Swi–Snf directs extensive nucleosome remodelling when Cyc8–Tup1 is absent.
Collapse
Affiliation(s)
- Alastair B Fleming
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland; School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| | - Suzanne Beggs
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Michael Church
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | | | - Sari Pennings
- School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK; Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
97
|
Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii. Int J Food Microbiol 2014; 185:140-57. [DOI: 10.1016/j.ijfoodmicro.2014.05.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/18/2014] [Accepted: 05/04/2014] [Indexed: 11/21/2022]
|
98
|
Song R, Liu P, Acar M. Network-dosage compensation topologies as recurrent network motifs in natural gene networks. BMC SYSTEMS BIOLOGY 2014; 8:69. [PMID: 24929807 PMCID: PMC4071340 DOI: 10.1186/1752-0509-8-69] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/09/2014] [Indexed: 11/14/2022]
Abstract
Background Global noise in gene expression and chromosome duplication during cell-cycle progression cause inevitable fluctuations in the effective number of copies of gene networks in cells. These indirect and direct alterations of network copy numbers have the potential to change the output or activity of a gene network. For networks whose specific activity levels are crucial for optimally maintaining cellular functions, cells need to implement mechanisms to robustly compensate the effects of network dosage fluctuations. Results Here, we determine the necessary conditions for generalized N-component gene networks to be network-dosage compensated and show that the compensation mechanism can robustly operate over large ranges of gene expression levels. Furthermore, we show that the conditions that are necessary for network-dosage compensation are also sufficient. Finally, using genome-wide protein-DNA and protein-protein interaction data, we search the yeast genome for the abundance of specific dosage-compensation motifs and show that a substantial percentage of the natural networks identified contain at least one dosage-compensation motif. Conclusions Our results strengthen the hypothesis that the special network topologies that are necessary for network-dosage compensation may be recurrent network motifs in eukaryotic genomes and therefore may be an important design principle in gene network assembly in cells.
Collapse
Affiliation(s)
| | | | - Murat Acar
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, P,O, Box 27391, New Haven, CT 06511, USA.
| |
Collapse
|
99
|
The role of Candida albicans SPT20 in filamentation, biofilm formation and pathogenesis. PLoS One 2014; 9:e94468. [PMID: 24732310 PMCID: PMC3986095 DOI: 10.1371/journal.pone.0094468] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/16/2014] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is a ubiquitous fungus, which can cause very serious and sometimes life-threatening infections in susceptible patients. We used Caenorhabditis elegans as a model host to screen a library of C. albicans mutants for decreased virulence and identified SPT20 as important for virulence. The transcription co-activator SPT20 was identified originally as a suppressor of Ty and solo δ insertion mutations, which can cause transcription defects in Saccharomyces cerevisiae. It is resistant to the toxicity caused by overexpression of GAL4-VP16. We constructed a C. albicans spt20Δ/Δ mutant and found the spt20Δ/Δ strain was significantly less virulent than the wild-type strain SC5314 in C. elegans (p < 0.0001), Galleria mellonella (p < 0.01) and mice (p < 0.001). Morphologically, spt20Δ/Δ mutant cells demonstrated a “snow-flake” shape and clustered together; prolonged culture times resulted in increased size of the cluster. The clustered morphology was associated with defects in nuclei distribution, as the nuclei were not observed in many cellular compartments. In addition, the C. albicans spt20Δ/Δ mutant resulted in defects in hyphae and biofilm formation (compared to the wild-type strain, p < 0.05), and sensitivity to cell wall and osmotic stressors, and to antifungal agents. Thus our study demonstrated a role of C. albicans SPT20 in overall morphology and distribution of nuclear material, which may cause the defects in filamentation and biofilm formation directly when this gene is deleted.
Collapse
|
100
|
Kemmeren P, Sameith K, van de Pasch L, Benschop J, Lenstra T, Margaritis T, O’Duibhir E, Apweiler E, van Wageningen S, Ko C, van Heesch S, Kashani M, Ampatziadis-Michailidis G, Brok M, Brabers N, Miles A, Bouwmeester D, van Hooff S, van Bakel H, Sluiters E, Bakker L, Snel B, Lijnzaad P, van Leenen D, Groot Koerkamp M, Holstege F. Large-Scale Genetic Perturbations Reveal Regulatory Networks and an Abundance of Gene-Specific Repressors. Cell 2014; 157:740-52. [DOI: 10.1016/j.cell.2014.02.054] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/30/2013] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
|