Zolessi FR, Arruti C. Sustained phosphorylation of MARCKS in differentiating neurogenic regions during chick embryo development.
BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001;
130:257-67. [PMID:
11675128 DOI:
10.1016/s0165-3806(01)00251-6]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MARCKS, a substrate for several kinases, has critical functions in morphogenetic processes involved in the development of the nervous system. We previously described the purification of MARCKS from chick embryo brain, using a monoclonal antibody (mAb 3C3), raised against embryonic neural retina. Here we show that mAb 3C3 is an antibody sensitive to phosphorylation state. We used it to explore the appearance and developmental progression of phospho-MARCKS (ph-MARCKS) during initial stages of neurogenesis in retina and spinal cord, and compared its distribution with total MARCKS. Before the onset of neural differentiation, MARCKS protein was already accumulated in neural and non-neural embryonic tissues, while ph-MARCKS immunoreactivity was weak, although ubiquitous too. A sudden increase of ph-MARCKS, paralleling a total MARCKS augmentation, was particularly noticeable in the earliest differentiating neurons in the neural retina. Ganglion cells displayed a high ph-MARCKS signal in the soma, as well as in the growing axon. A short time thereafter, a similar increase of ph-MARCKS was present across the entire width of the neural retina, where the differentiation of other neurons and photoreceptors occurs. The increase of ph-MARCKS in cells took place before the detection of the transcription factor Islet-1/2, an early neuronal differentiation molecular marker, in cells of the same region. Analogous phenomena were observed in cervical regions of the spinal cord, where motor neurons were differentiating. Neurogenic regions in the spinal cord contained higher amounts of ph-MARCKS than the floor plate. Taken together, these results strongly suggest that the appearance and relatively long-lasting presence of ph-MARCKS polypeptides are related to specific signaling pathways active during neurogenesis.
Collapse