51
|
Abstract
The advent of recombinant biotechnology and the recent sequencing of the human genome now allow for identification of scores of potential protein therapeutics along with the capacity to produce them in quantities and purities required for clinical application. Thus, clinical development of potential protein therapeutics has become as commonplace as development efforts of classical small molecule therapeutics. Whereas small molecule therapeutic lead candidates are identified through screens of large sets of possibilities, therapeutic protein candidates are defined by genetic information as a single composition (or a limited set of isoforms). Small molecule leads are identified through the combined assessment of desired selectivity, biodistribution and pharmacokinetic properties. In essence, these selection parameters emulate the actions of protein therapeutics that function as systemic hormones through their ability to target selective cells and tissues of the body via selective receptor interaction with minimal actions elsewhere. However, many, if not most, potential protein therapeutics do not normally circulate through the body to reach their target cell or tissue; rather, they are frequently synthesised at local sites, act at that site and are degraded without reaching appreciable systemic levels. Dose-limiting adverse events are associated with systemic administration of many of these proteins, restricting their clinical potential. This review examines current strategies to reduce these dose-limiting events by possibly focusing the delivery of potential protein therapeutics to discrete tissues and cells.
Collapse
Affiliation(s)
- Randall J Mrsny
- Welsh School of Pharmacy, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
52
|
Oehlke J, Lorenz D, Wiesner B, Bienert M. Studies on the cellular uptake of substance P and lysine-rich, KLA-derived model peptides. J Mol Recognit 2005; 18:50-9. [PMID: 15386618 DOI: 10.1002/jmr.691] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the last decade many peptides have been shown to be internalized into various cell types by different, poorly characterized mechanisms. This review focuses on uptake studies with substance P (SP) aimed at unravelling the mechanism of peptide-induced mast cell degranulation, and on the characterization of the cellular uptake of designed KLA-derived model peptides. Studies on structure-activity relationships and receptor autoradiography failed to detect specific peptide receptors for the undecapeptide SP on mast cells. In view of these findings, a direct interaction of cationic peptides with heterotrimeric G proteins without the participation of a receptor has been proposed. Such a process would require insertion into and translocation of peptides across the plasma membrane. In order to clarify whether a transport of cationic peptides into rat peritoneal mast cells is possible, transport studies were performed by confocal laser scanning microscopy (CLSM) using fluorescence-labeled Arg(3),Orn(7)-SP and its D-amino acid analog, all-D-Arg(3),Orn(7)-SP, as well as by electron microscopic autoradiography using (3)H-labelled SP and (125)I-labelled all-D-SP. The results obtained by CLSM directly showed translocation of SP peptides into pertussis toxin-treated cells. Kinetic experiments indicated that the translocation process was rapid, occurring within a few seconds. Mast cell degranulation induced by analog of magainin 2 amide, neuropeptide Y and the model peptide acetyl-KLALKLALKALKAALKLA-amide was also found to be very fast, pointing to an extensive translocation of the peptides. In order to learn more about structural requirements for the cellular uptake of peptides, the translocation behavior of a set of systematically modified KLA-based model peptides has been studied in detail. By two different protocols for determining the amount of internalized peptide, evidence was found that the structure of the peptides only marginally affects their uptake, whereas the efflux of cationic, amphipathic peptides is strikingly diminished, thus allowing their enrichment within the cells. Although the mechanism of cellular uptake, consisting of energy-dependent and -independent contributions, is not well understood, KLA-derived peptides have been shown to deliver various cargos (PNAs, peptides) into cells. The results obtained with SP- and KLA-derived peptides are discussed in the context of the current literature.
Collapse
Affiliation(s)
- Johannes Oehlke
- Institute of Molecular Pharmacology, 13125 Berlin-Buch, Germany
| | | | | | | |
Collapse
|
53
|
Overhoff M, Wünsche W, Sczakiel G. Quantitative detection of siRNA and single-stranded oligonucleotides: relationship between uptake and biological activity of siRNA. Nucleic Acids Res 2004; 32:e170. [PMID: 15576677 PMCID: PMC535697 DOI: 10.1093/nar/gnh168] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The quantitative detection of oligomeric nucleic acids including short double-stranded RNA in cells and tissues becomes increasingly important. Here, we describe a method for the detection of siRNA in extracts prepared from mammalian cells, which is based on liquid hybridization with a 32P-labelled probe followed by a nuclease protection step. The limit of detection of absolute amounts of siRNA is in the order of 10-100 amol. This methodology is suited to quantitatively follow the spontaneous uptake of siRNA by mammalian cells, i.e. without the use of carrier substances. This protocol may also be used to detect extremely low amounts of other kinds of short nucleic acids, including antisense oligonucleotides.
Collapse
Affiliation(s)
- Marita Overhoff
- Universität zu Lübeck, Institut für Molekulare Medizin, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | |
Collapse
|
54
|
Gregersen BA, Lopez X, York DM. Hybrid QM/MM study of thio effects in transphosphorylation reactions: the role of solvation. J Am Chem Soc 2004; 126:7504-13. [PMID: 15198597 DOI: 10.1021/ja031815l] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transphosphorylation thio effects in solution are studied using hybrid QM/MM calculations with a d-orbital semiempirical Hamiltonian. Activated dynamics simulations were performed for a 3' ribose-phosphate model in an explicit 20 A sphere of TIP3P water surrounded by a solvent boundary potential, and free energy analysis was performed using the weighted histogram analysis method. Single thio-substitutions at all of the phosphoryl oxygen positions and a double thio-substitution at the nonbridging positions were considered. The reaction free energy profiles are compared with available experimental data, and the role of solvation on the barrier heights and reaction coordinate is discussed. These results provide an important step in the characterization of thio effects in reactions of biological phosphates that may aid in the interpretation of kinetic data and ultimately help to unravel the catalytic mechanisms of ribozymes.
Collapse
Affiliation(s)
- Brent A Gregersen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | | | | |
Collapse
|
55
|
Hussain M, Shchepinov M, Sohail M, Benter IF, Hollins AJ, Southern EM, Akhtar S. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides. J Control Release 2004; 99:139-55. [PMID: 15342187 DOI: 10.1016/j.jconrel.2004.06.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 06/22/2004] [Indexed: 01/25/2023]
Abstract
The optimal design of hybridisation-competent antisense oligonucleotides (ODNs) coupled with an efficient delivery system appear to be important prerequisites for the successful use of antisense reagents for gene silencing. We selected an antisense ODN complementary to an accessible region of the epidermal growth factor receptor (EGFR) mRNA with the aid of an antisense oligonucleotide scanning array. The scanning array comprised 2684 antisense ODN sequences targeting the first 120 nts in the coding region of EGFR mRNA. The array-designed antisense ODN was covalently conjugated to a novel anionic dendrimer using a pentaerythritol-based phosphoroamidite synthon via automated DNA synthesis and the ability of this conjugate to effectively deliver and down-regulate EGFR expression in cancer cells was evaluated. Each dendrimeric structure had nine ODN molecules covalently linked to a common centre at their 3' termini. This dendrimer conjugate was markedly more stable to serum nucleases compared to the free ODNs and the cellular uptake of ODN-dendrimer conjugates was up to 100-fold greater as compared to mannitol, a marker for fluid phase endocytosis, and up to 4-fold greater than naked ODN in cancer cells. ODN-dendrimer uptake was energy-dependent and mediated, at least in part, via binding to cell surface proteins; a process that was inhibited by self-competition and by competition with free ODN, salmon sperm DNA, heparin and dextran sulphate. Fluorescent microscopy studies showed a combination of punctate and more diffuse cytosolic distribution pattern for fluorescently labelled ODN-dendrimer conjugate in A431 cells implying internalization by endocytosis followed by release and sequestration of the conjugate into the cytosol. Little or no conjugate appeared to be present in the nuclei of A431 cells. In vitro RNase H-mediated cleavage assays confirmed that covalently conjugated antisense ODNs in the dendrimer conjugate were able to hybridize and cleave the array-defined hybridisation target site within the EGFR mRNA without the need for ODN dissociation from the conjugate. In cell culture, ODN-dendrimer conjugates were effective in inhibiting cancer cell growth that correlated with a marked knockdown in EGFR protein expression. These data highlight a novel anionic dendrimer delivery system for gene silencing oligonucleotides that improved their biological stability, cellular delivery and antisense activity in cultured cancer cells.
Collapse
Affiliation(s)
- Majad Hussain
- Centre for Genome-based Therapeutics, Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3XF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
56
|
Omidi Y, Hollins AJ, Benboubetra M, Drayton R, Benter IF, Akhtar S. Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J Drug Target 2004; 11:311-23. [PMID: 14668052 DOI: 10.1080/10611860310001636908] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Of the non-viral vectors, cationic lipid (CL) formulations are the most widely studied for the delivery of genes, antisense oligonucleotides and gene silencing nucleic acids such as small interfering RNAs. However, little is known about the impact of these delivery systems on global gene expression in target cells. In an attempt to study the geno-compatibility of CL formulations in target cells, we have used microarrays to examine the effect of Lipofectin and Oligofectamine on the gene expression profiles of human A431 epithelial cells. Using the manufacturer's recommended CL concentrations routinely used for gene delivery, cDNA microarray expression profiling revealed marked changes in the expression of several genes for both Lipofectin- and Oligofectamine-treated cells. Data from the 200 spot arrays housing 160 different genes indicated that Lipofectin or Oligofectamine treatment of A431 cells resulted in more than 2-fold altered expression of 10 and 27 genes, respectively. The downstream functional consequences of CL-induced gene expression alterations led to an increased tendency of cells to enter early apoptosis as assessed by annexin V-FITC flow cytometry analyses. This effect was greater for Oligofectamine than Lipofectin. Observed gene expression changes were not sufficient to induce any significant DNA damage as assessed by single cell gel electrophoresis (COMET) assay. These data highlight the fact that inadvertent gene expression changes can be induced by the delivery formulation alone and that these may, ultimately, have important safety implications for the use of these non-viral vectors in gene-based therapies. Also, the induced non-target gene changes should be taken into consideration in gene therapy or gene silencing experiments using CL formulations where they may potentially mask or interfere with the desired genotype and/or phenotype end-points.
Collapse
Affiliation(s)
- Yadollah Omidi
- Centre for Genome-based Therapeutics, Cardiff University, The Welsh School of Pharmacy, Redwood Building, King Edward VII Avenue, CF10 3XF Cardiff, UK
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
With the advent of functional genomics and the shift of interest towards sequence-based therapeutics, the past decades have witnessed intense research efforts on nucleic acid-mediated gene regulation technologies. Today, RNA interference is emerging as a groundbreaking discovery, holding promise for development of genetic modulators of unprecedented potency. Twenty-five years after the discovery of antisense RNA and ribozymes, gene control therapeutics are still facing developmental difficulties, with only one US FDA-approved antisense drug currently available in the clinic. Limited predictability of target site selection models is recognized as one major stumbling block that is shared by all of the so-called complementary technologies, slowing the progress towards a commercial product. Currently employed in vitro systems for target site selection include RNAse H-based mapping, antisense oligonucleotide microarrays, and functional screening approaches using libraries of catalysts with randomized target-binding arms to identify optimal ribozyme/DNAzyme cleavage sites. Individually, each strategy has its drawbacks from a drug development perspective. Utilization of message-modulating sequences as therapeutic agents requires that their action on a given target transcript meets criteria of potency and selectivity in the natural physiological environment. In addition to sequence-dependent characteristics, other factors will influence annealing reactions and duplex stability, as well as nucleic acid-mediated catalysis. Parallel consideration of physiological selection systems thus appears essential for screening for nucleic acid compounds proposed for therapeutic applications. Cellular message-targeting studies face issues relating to efficient nucleic acid delivery and appropriate analysis of response. For reliability and simplicity, prokaryotic systems can provide a rapid and cost-effective means of studying message targeting under pseudo-cellular conditions, but such approaches also have limitations. To streamline nucleic acid drug discovery, we propose a multi-model strategy integrating high-throughput-adapted bacterial screening, followed by reporter-based and/or natural cellular models and potentially also in vitro assays for characterization of the most promising candidate sequences, before final in vivo testing.
Collapse
Affiliation(s)
- Isabelle Gautherot
- Virology Platform, Industrialization and Process Development, AVENTIS PASTEUR, Marcy l'Etoile, France.
| | | |
Collapse
|
58
|
Petch AK, Sohail M, Hughes MD, Benter I, Darling J, Southern EM, Akhtar S. Messenger RNA expression profiling of genes involved in epidermal growth factor receptor signalling in human cancer cells treated with scanning array-designed antisense oligonucleotides. Biochem Pharmacol 2003; 66:819-30. [PMID: 12948863 DOI: 10.1016/s0006-2952(03)00407-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Scanning oligodeoxynucleotide (ODN) arrays appear promising in vitro tools for the prediction of effective antisense reagents but their usefulness has not yet been reported in mammalian systems. In this study, we have evaluated the use of scanning ODN arrays to predict efficacious antisense ODNs targeting the human epidermal growth factor receptor (EGFR) mRNA in a human epidermoid cancer cell line and in primary human glioma cells. Hybridisation accessibility profile of the first 120nt in the coding region of the human EGFR mRNA was determined by hybridising a radiolabelled EGFR transcript to a scanning array of 2684 antisense sequences ranging from monomers to 27-mers. Two ODNs, AS1 and AS2, complementary to accessible sequences within the EGFR mRNA, were designed and their ability to hybridise to EGFR mRNA was further confirmed by in vitro RNase H-mediated cleavage assays. Phosphorothioate-modified 21-mer AS1 and AS2 ODNs inhibited the growth of an established human A431 cancer cell line as well as primary glioma cells from human subjects when delivered as cationic lipoplexes. In contrast, scrambled controls and AS3-an antisense ODN complementary to an inaccessible site in EGFR mRNA-were inactive. Western blots showed that AS1 ODN exhibited a dose-dependent inhibition of EGFR protein expression in A431 cells in the nanomolar range. Microarray-based gene expression profiling studies of A431 cells treated with the 21-mer phosphorothioate AS1 ODN demonstrated successful inhibition of downstream signalling molecules further confirming the effective inhibition of EGFR expression in human cancer cells by antisense ODNs designed by scanning ODN array technology.
Collapse
Affiliation(s)
- Amelia K Petch
- Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Antisense offers a precise and specific means of knocking down expression of a target gene, and is a major focus of research in neuroscience and other areas. It has application as a tool in gene function and target validation studies and is emerging as a therapeutic technology in its own right. It has become increasingly obvious, however, that there are a number of hurdles to overcome before antisense can be used effectively in the CNS, most notably finding suitable nucleic acid chemistries and an effective delivery vehicle to transport antisense oligonucleotides (AS-ODNs) across the blood-brain barrier (BBB) to their site of action. Despite these problems, a number of potential applications of AS-ODNs in CNS therapeutics have been validated in vitro and, in some cases, in vivo. Here the authors outline available nucleic acid chemistries and review progress in the development of non-invasive delivery vehicles that may be applicable to CNS therapeutics. Further to this, they discuss a number of experimental applications of AS-ODNs to CNS research and speculate on the development of antisense techniques to treat CNS disease.
Collapse
Affiliation(s)
- Jenny Godfray
- ExpressOn BioSystems Ltd, The Logan Building, Roslin BioCentre, Roslin, Midlothian EH25 9TT, Scotland.
| | | |
Collapse
|
60
|
Kurreck J. Antisense technologies. Improvement through novel chemical modifications. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1628-44. [PMID: 12694176 DOI: 10.1046/j.1432-1033.2003.03555.x] [Citation(s) in RCA: 722] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antisense agents are valuable tools to inhibit the expression of a target gene in a sequence-specific manner, and may be used for functional genomics, target validation and therapeutic purposes. Three types of anti-mRNA strategies can be distinguished. Firstly, the use of single stranded antisense-oligonucleotides; secondly, the triggering of RNA cleavage through catalytically active oligonucleotides referred to as ribozymes; and thirdly, RNA interference induced by small interfering RNA molecules. Despite the seemingly simple idea to reduce translation by oligonucleotides complementary to an mRNA, several problems have to be overcome for successful application. Accessible sites of the target RNA for oligonucleotide binding have to be identified, antisense agents have to be protected against nucleolytic attack, and their cellular uptake and correct intracellular localization have to be achieved. Major disadvantages of commonly used phosphorothioate DNA oligonucleotides are their low affinity towards target RNA molecules and their toxic side-effects. Some of these problems have been solved in 'second generation' nucleotides with alkyl modifications at the 2' position of the ribose. In recent years valuable progress has been achieved through the development of novel chemically modified nucleotides with improved properties such as enhanced serum stability, higher target affinity and low toxicity. In addition, RNA-cleaving ribozymes and deoxyribozymes, and the use of 21-mer double-stranded RNA molecules for RNA interference applications in mammalian cells offer highly efficient strategies to suppress the expression of a specific gene.
Collapse
Affiliation(s)
- Jens Kurreck
- Institut für Chemie-Biochemie, Freie Universität Berlin, Germany.
| |
Collapse
|
61
|
von der Thüsen JH, Kuiper J, van Berkel TJC, Biessen EAL. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003; 55:133-66. [PMID: 12615956 DOI: 10.1124/pr.55.1.5] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukins are considered to be key players in the chronic vascular inflammatory response that is typical of atherosclerosis. Thus, the expression of proinflammatory interleukins and their receptors has been demonstrated in atheromatous tissue, and the serum levels of several of these cytokines have been found to be positively correlated with (coronary) arterial disease and its sequelae. In vitro studies have confirmed the involvement of various interleukins in pro-atherogenic processes, such as the up-regulation of adhesion molecules on endothelial cells, the activation of macrophages, and smooth muscle cell proliferation. Furthermore, studies in mice deficient or transgenic for specific interleukins have demonstrated that, whereas some interleukins are indeed intrinsically pro-atherogenic, others may have anti-atherogenic qualities. As the roles of individual interleukins in atherosclerosis are being uncovered, novel anti-atherogenic therapies, aimed at the modulation of interleukin function, are being explored. Several approaches have produced promising results in this respect, including the transfer of anti-inflammatory interleukins and the administration of decoys and antibodies directed against proinflammatory interleukins. The chronic nature of the disease and the generally pleiotropic effects of interleukins, however, will demand high specificity of action and/or effective targeting to prevent the emergence of adverse side effects with such treatments. This may prove to be the real challenge for the development of interleukin-based anti-atherosclerotic therapies, once the mediators and their targets have been delineated.
Collapse
Affiliation(s)
- Jan H von der Thüsen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
62
|
Aigner A, Fischer D, Merdan T, Brus C, Kissel T, Czubayko F. Delivery of unmodified bioactive ribozymes by an RNA-stabilizing polyethylenimine (LMW-PEI) efficiently down-regulates gene expression. Gene Ther 2002; 9:1700-7. [PMID: 12457284 DOI: 10.1038/sj.gt.3301839] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Accepted: 06/25/2002] [Indexed: 01/11/2023]
Abstract
The sequence-specific cleavage of RNA molecules through ribozyme targeting is particularly attractive since it allows the effective abrogation of protein expression. So far, however, use of enzymatically active RNA molecules (ribozymes) has, without chemical modification, been severely hampered by ribozyme instability and poor cellular uptake. In this paper, we present a method for protection and cellular delivery of ribozymes by complexation with a low molecular weight polyethylenimine (LMW-PEI). We show that LMW-PEI almost completely stabilizes ribozymes or any RNA against degradation in vitro. Upon their highly efficient cellular uptake, non-toxic LMW-PEI-complexed ribozymes display intracellular bioactivity already at low concentrations as demonstrated by down-regulation of two different genes in different cell lines. In vivo, LMW-PEI-complexed ribozymes were stabilized after intraperitoneal (i.p.) injections, showed prolonged circulation time and intact ribozymes were detected in the subcutaneous (s.c.) tumor mass 60 min after the injection. In addition, i.p. injections of LMW-PEI-complexed ribozymes targeted against the growth factor pleiotrophin (PTN) resulted in marked reduction of s.c. human melanoma tumor growth and of intratumoral PTN levels in a mouse xenograft model. Thus, this paper describes a novel method for exogenous delivery of any bioactive RNA ribozyme in vitro and in vivo without chemical modification.
Collapse
Affiliation(s)
- A Aigner
- Department of Pharmacology and Toxicology, Philipps-University Marburg, Germany
| | | | | | | | | | | |
Collapse
|
63
|
Liang L, Liu DP, Liang CC. Optimizing the delivery systems of chimeric RNA.DNA oligonucleotides. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5753-8. [PMID: 12444962 DOI: 10.1046/j.1432-1033.2002.03299.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Special oligonucleotides for targeted gene correction have attracted increasing attention recently, one of which is the chimeric RNA.DNA oligonucleotide (RDO) system. RDOs for targeted gene correction were first designed in 1996, and are typically 68 nucleotides in length including continuous RNA and DNA sequences (RNA is 2'-O-methyl-modified). They have a 25 bp double stranded region homologous to the targeted gene, two hairpin ends of T loop and a 5 bp GC clamp, that give the molecule much greater stability [Fig. 1]. One mismatch site in the middle of the double-stranded region is designed for targeted gene therapy. RDOs have been used recently for targeted gene correction of point mutations both in vitro and in vivo, but many problems must be solved before clinical application. One of the solutions is to optimize the delivery vectors for RDOs. To date, few RDO delivery systems have been used. Therefore, new vectors should be tried for RDO transfer, such as the use of nanoparticles. Additionally, different kinds of modifications should be applied to RDO carrier systems to increase the total correction efficiency in vivo. Only with the development of delivery systems can RDOs be used for gene therapy, and successfully applied to functional genomics.
Collapse
Affiliation(s)
- Li Liang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | | | | |
Collapse
|
64
|
Stetsenko DA, Malakhov AD, Gait MJ. Total stepwise solid-phase synthesis of oligonucleotide-(3'-->N)-peptide conjugates. Org Lett 2002; 4:3259-62. [PMID: 12227763 DOI: 10.1021/ol026502u] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[structure: see text] An efficient total stepwise solid-phase synthesis of oligonucleotide-(3'-->N)-peptide conjugates is described that makes use of either a controlled pore glass support or macroporous polystyrene beads. Extending our previous homoserine linker approach, we prepared a range of conjugates containing one of four different cell or nuclear penetration peptides together with oligonucleotides containing 2'-deoxynucleoside or 2'-O-methylribonucleoside phosphodiesters, or gapmers containing 2'-deoxyphosphorothioates. The route also allows incorporation of a fluorescent label within the conjugate for cell uptake studies.
Collapse
Affiliation(s)
- Dmitry A Stetsenko
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
65
|
Dapas B, Perissin L, Pucillo C, Quadrifoglio F, Scaggiante B. Increase in therapeutic index of doxorubicin and vinblastine by aptameric oligonucleotide in human T lymphoblastic drug-sensitive and multidrug-resistant cells. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:247-255. [PMID: 12238813 DOI: 10.1089/108729002320351566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aptameric GT oligomers are a new class of potential anticancer molecules that inhibit the growth of human cancer cell lines by binding to specific nuclear proteins. We demonstrated that an aptameric GT oligonucleotide increased the therapeutic index of doxorubicin and vinblastine in T lymphoblastic drug-sensitive and multidrug-resistant (MDR) cells. The doxorubicin ID50 decreased 6.5-fold by coadministration of 1 microM GT to CCRF-CEM cells and by 24-fold by coadministration of 0.75 microM GT to CEM-VLB300 cells. In CEM-VLB300 cells, the vinblastine ID50 decreased 11-fold by coadministration of 0.5 microM GT. Control CT sequence did not potentiate the drugs in either CCRF-CEM or CEM-VLB300 cells. The ability of GT to bind to specific nuclear proteins in cancer cells related to the increase in the therapeutic index of doxorubicin and vinblastine. No cooperation was detected by the administration of GT oligomer together with doxorubicin to rat differentiated thyroid FRTL-5 cells and to normal human lymphocytes. These cells did not show binding of GT to the specific nuclear proteins, and they were not sensitive to the cytotoxic action of the GT sequence. Drug potentiation by GT not involving normal human lymphocytes might be exploited to develop a more selective treatment of drug-sensitive and MDR tumors.
Collapse
Affiliation(s)
- Barbara Dapas
- Department of Biomedical Sciences and Technologies, University of Udine, Italy
| | | | | | | | | |
Collapse
|
66
|
Akhtar S, Dunnion D, Poyner D, Ackroyd J, Bibby M, Double J. Sequence and chemistry requirements for a novel aptameric oligonucleotide inhibitor of EGF receptor tyrosine kinase activity. Biochem Pharmacol 2002; 63:2187-95. [PMID: 12110378 DOI: 10.1016/s0006-2952(02)00985-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously identified a phosphorothioate oligonucleotide (PS-ODN) that inhibited epidermal growth factor receptor tyrosine kinase (TK) activity both in cell fractions and in intact A431 cells. Since ODN-based TK inhibitors may have anti-cancer applications and may also help understand the non-antisense mediated effects of PS-ODNs, we have further studied the sequence and chemistry requirements of the parent PS-ODN (sequence: 5'-GGA GGG TCG CAT CGC-3') as a sequence-dependent TK inhibitor. Sequence deletion and substitution studies revealed that the 5'-terminal GGA GGG hexamer sequence in the parent compound was essential for anti-TK activity in A431 cells. Site-specific substitution of any G with a T in this 5'-terminal motif within the parent compound caused a significant loss in anti-TK activity. The fully PS-modified hexameric motif alone exhibited equipotent activity as the parent 15-mer whereas phosphodiester (PO) or 2'-O-methyl-modified versions of this motif had significantly reduced anti-TK activity. Further, T substitutions within the two 5'-terminal G residues of the hexameric PS-ODN to produce a sequence, TTA GGG, representing the telomeric repeats in human chromosomes, also did not exhibit a significant anti-TK activity. Multiple repeats of the active hexameric motif in PS-ODNs resulted in more potent inhibitors of TK activity than the parent ODN. These results suggested that PS-ODNs, but not PO or 2'-O-methyl modified ODNs, containing the GGA GGG motif can exert potent anti-TK activity which may be desirable in some anti-tumor applications. Additionally, the presence of this previously unidentified motif in antisense PS-ODN constructs may contribute to their biological effects in vitro and in vivo and should be accounted for in the design of the PS-modified antisense ODNs.
Collapse
Affiliation(s)
- Saghir Akhtar
- Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
67
|
Nedbal W, Teichmann B. Advantages of antisense drugs for the treatment of oral diseases. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:183-91. [PMID: 12162701 DOI: 10.1089/108729002760220789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For almost two decades, antisense oligonucleotides (AS-ON) have been used successfully to suppress and regulate gene expression in vitro and in vivo. They are, meanwhile, well established to serve as molecular tools for several biologic applications, from the study of single gene functions up to complex target gene validations. Based on an at least theoretically simple mode of action, the sequence-specific inhibition of mRNA functions after complex formation by Watson-Crick base pairing and presumably enzymatic degradation of the target mRNA, they obviously carry a high therapeutic potential for the treatment of human diseases. In recent years, a remarkable number of clinical trials have been initiated and performed to evaluate the therapeutic usefulness of antisense technology. However, after the successful development of the first antisense-based drug Vitravene (Isis Pharmaceutical Inc., Carlsbad, CA) in 1998, no second product has appeared on the market to date. Here, we describe substantial advantages for the development of antisense-based drugs against less severe oral diseases that represent novel but highly promising application fields of the technology.
Collapse
Affiliation(s)
- Wolfgang Nedbal
- A3D GmbH-Antisense Design & Drug Development, Heidelberg, Germany.
| | | |
Collapse
|
68
|
Abstract
Optimal experimental conditions for the delivery of phosphodiester or phosphorothioate antisense oligonucleotides (P-ASO/S-ASO) to PC12 cells were determined. Fluorescently labeled P-ASO or S-ASO were transfected to PC12 cells and the uptake of antisense, free or entrapped in liposomes, was monitored by confocal and fluorescent microscopy. Efficient delivery of fluorescently labeled ASO with low rates of cell death was obtained when PC12 cells were transfected with liposomes in Opti-MEM medium supplemented with sera, compared with control experiments where nonliposomal ASO were transfected to PC12 cells in sera-free media. Compared with P-ASO, the application of S-ASO for antisense studies in PC12 cells is more suitable due to the lower concentration required for an efficient antisense uptake and its higher intracellular stability.
Collapse
Affiliation(s)
- Rosalinda Acosta
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | | | | | |
Collapse
|
69
|
Abstract
We report herein a set of deoxyribozyme-based logic gates capable of generating any Boolean function. We construct basic NOT and AND gates, followed by the more complex XOR gate. These gates were constructed through a modular design that combines molecular beacon stem-loops with hammerhead-type deoxyribozymes. Importantly, as the gates have oligonucleotides as both inputs and output, they open the possibility of communication between various computation elements in solution. The operation of these gates is conveniently connected to a fluorescent readout.
Collapse
Affiliation(s)
- Milan N Stojanovic
- Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine, Columbia University, New York 10032, USA.
| | | | | |
Collapse
|
70
|
Hussain M, Beale G, Hughes M, Akhtar S. Co-delivery of an antisense oligonucleotide and 5-fluorouracil using sustained release poly (lactide-co-glycolide) microsphere formulations for potential combination therapy in cancer. Int J Pharm 2002; 234:129-38. [PMID: 11839444 DOI: 10.1016/s0378-5173(01)00950-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antisense oligonucleotides (AODNs) can selectively inhibit oncogene expression by Watson-Crick hybridisation to target mRNA and are being increasingly considered for use in combination with conventional drugs for potential anticancer therapy. Combination therapy of AODNs and cytotoxic agents using biodegradable polymeric delivery systems potentially offers several advantages including site-specific or organ-directed targeting, protection from digesting enzymes, and improved pharmacokinetics/pharmacodynamics resulting from sustained delivery of the entrapped drugs. Using a model AODN targeting the epidermal growth factor receptor (that is over-expressed in several cancers including breast and brain cancer) and the commonly used cytotoxic agent, 5-fluorouracil (5-FU), we have examined the use of poly (lactide-co-glycolide) (P(LA-GA)) microsphere formulations for co-delivery of these agents. Both agents were either co-entrapped in a single microsphere formulation or individually entrapped in two separate microsphere formulations and release profiles determined in vitro. Using a double emulsion method for preparing the P(LA-GA) microspheres suitable entrapment and sustained release over 35 days was observed in both types of formulation. Release of AODN and 5-FU from all formulations appeared to be biphasic. However, the release rates of the two agents were significantly slower when co-entrapped as a single microsphere formulation compared to those obtained with the separate formulations. Electrophoretic mobility shift assays suggested that this might be, in part, due to an interaction of 5-FU with the oligodeoxynucleotide (ODN). Further, our data suggest that by mixing individual formulations of 5-FU and ODNs at different mass ratios allowed greater flexibility in achieving the desired release profile as well as avoiding potential drug-drug interactions. Thus, co-administration of individual P(LA-GA) microsphere formulations of AODNs and 5-FU, at appropriate mass ratios, appears worthy of further investigation for the potential co-delivery of these anti-cancer agents in vivo.
Collapse
Affiliation(s)
- Majad Hussain
- Aston Centre for Gene-based Therapeutics (ACGT) Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | | | | | | |
Collapse
|
71
|
Affiliation(s)
- V V. Demidov
- Center for Advanced Biotechnology, Boston University, 36 Cummington St., Fl. 2nd, 02215, Tel.: +1-617-353-8490; fax: +1-617-353-8501, Boston, MA, USA
| |
Collapse
|
72
|
Fletcher TM. Telomerase - strategies to exploit an important chemotherapeutic target. Expert Opin Ther Targets 2001; 5:363-378. [PMID: 12540271 DOI: 10.1517/14728222.5.3.363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Telomeres, unique protein-DNA complexes located at the chromosome ends, have important functions involving both DNA protection and cellular signalling. Telomere structure is very dynamic yet tightly controlled. One important factor is the presence of telomerase, a telomere-specific DNA polymerase activated in a majority of cancer cells. Cancer and normal cell telomeres may have dissimilar structures due to variances in telomere length, telomerase activity and levels of telomere binding proteins. In designing compounds to strictly target cancer cells, these distinctions should be investigated. Much of the recent focus has been on the development of highly effective telomerase inhibitors. Another novel group of small molecules target telomere DNA, thereby disrupting both telomerase activity and telomere structure. This class of compounds should have an immediate impact on cell growth and viability. Since many molecular characteristics of telomeres are unknown, small molecules should also be useful in probing differences in telomere dynamics unique to cancer cells.
Collapse
Affiliation(s)
- Terace M Fletcher
- National Institutes of Health, National Cancer Institute, Division of Basic Sciences, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD 20892-5055, USA.
| |
Collapse
|