51
|
Jeon BW, Hwang JU, Hwang Y, Song WY, Fu Y, Gu Y, Bao F, Cho D, Kwak JM, Yang Z, Lee Y. The Arabidopsis small G protein ROP2 is activated by light in guard cells and inhibits light-induced stomatal opening. THE PLANT CELL 2008; 20:75-87. [PMID: 18178769 PMCID: PMC2254924 DOI: 10.1105/tpc.107.054544] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/20/2007] [Accepted: 12/10/2007] [Indexed: 05/19/2023]
Abstract
ROP small G proteins function as molecular switches in diverse signaling processes. Here, we investigated signals that activate ROP2 in guard cells. In guard cells of Vicia faba expressing Arabidopsis thaliana constitutively active (CA) ROP2 fused to red fluorescent protein (RFP-CA-ROP2), fluorescence localized exclusively at the plasma membrane, whereas a dominant negative version of RFP-ROP2 (DN-ROP2) localized in the cytoplasm. In guard cells expressing green fluorescent protein-ROP2, the relative fluorescence intensity at the plasma membrane increased upon illumination, suggesting that light activates ROP2. Unlike previously reported light-activated factors, light-activated ROP2 inhibits rather than accelerates light-induced stomatal opening; stomata bordered by guard cells transformed with CA-rop2 opened less than controls upon light irradiation. When introduced into guard cells together with CA-ROP2, At RhoGDI1, which encodes a guanine nucleotide dissociation inhibitor, inhibited plasma membrane localization of CA-ROP2 and abolished the inhibitory effect of CA-ROP2 on light-induced stomatal opening, supporting the negative effect of active ROP2 on stomatal opening. Mutant rop2 Arabidopsis guard cells showed phenotypes similar to those of transformed V. faba guard cells; CA-rop2 stomata opened more slowly and to a lesser extent, and DN-rop2 stomata opened faster than wild-type stomata in response to light. Moreover, in rop2 knockout plants, stomata opened faster and to a greater extent than wild-type stomata in response to light. Thus, ROP2 is a light-activated negative factor that attenuates the extent of light-induced changes in stomatal aperture. The inhibition of light-induced stomatal opening by light-activated ROP2 suggests the existence of feedback regulatory mechanisms through which stomatal apertures may be finely controlled.
Collapse
Affiliation(s)
- Byeong Wook Jeon
- POSTECH-UZH Global Research Laboratories, Division of Molecular Life Sciences, POSTECH, Pohang 790-784, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Cryptochromes are blue light receptors that mediate various light-induced responses in plants and animals. They share sequence similarity to photolyases, flavoproteins that catalyze the repair of UV light-damaged DNA, but do not have photolyase activity. Arabidopsis cryptochromes work together with the red/far-red light receptor phytochromes to regulate various light responses, including the regulation of cell elongation and photoperiodic flowering, and are also found to act together with the blue light receptor phototropins to mediate blue light regulation of stomatal opening. The signaling mechanism of Arabidopsis cryptochromes is mediated through negative regulation of COP1 by direct CRY-COP1 interaction through CRY C-terminal domain. Arabidopsis CRY dimerized through its N-terminal domain and dimerization of CRY is required for light activation of the photoreceptor activity. Recently, significant progresses have been made in our understanding of cryptochrome functions in other dicots such as pea and tomato and lower plants including moss and fern. This review will focus on recent advances in functional and mechanism characterization of cryptochromes in plants. It is not intended to cover every aspect of the field; readers are referred to other review articles for historical perspectives and a more comprehensive understanding of this photoreceptor.
Collapse
Affiliation(s)
- Qing-Hua Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
53
|
Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Müller A, Giraudat J, Leung J. Constitutive activation of a plasma membrane H(+)-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 2007; 26:3216-26. [PMID: 17557075 PMCID: PMC1914098 DOI: 10.1038/sj.emboj.7601750] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 05/16/2007] [Indexed: 01/16/2023] Open
Abstract
Light activates proton (H(+))-ATPases in guard cells, to drive hyperpolarization of the plasma membrane to initiate stomatal opening, allowing diffusion of ambient CO(2) to photosynthetic tissues. Light to darkness transition, high CO(2) levels and the stress hormone abscisic acid (ABA) promote stomatal closing. The overall H(+)-ATPase activity is diminished by ABA treatments, but the significance of this phenomenon in relationship to stomatal closure is still debated. We report two dominant mutations in the OPEN STOMATA2 (OST2) locus of Arabidopsis that completely abolish stomatal response to ABA, but importantly, to a much lesser extent the responses to CO(2) and darkness. The OST2 gene encodes the major plasma membrane H(+)-ATPase AHA1, and both mutations cause constitutive activity of this pump, leading to necrotic lesions. H(+)-ATPases have been traditionally assumed to be general endpoints of all signaling pathways affecting membrane polarization and transport. Our results provide evidence that AHA1 is a distinct component of an ABA-directed signaling pathway, and that dynamic downregulation of this pump during drought is an essential step in membrane depolarization to initiate stomatal closure.
Collapse
Affiliation(s)
- Sylvain Merlot
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
| | - Nathalie Leonhardt
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Francesca Fenzi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
| | - Christiane Valon
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
| | - Miguel Costa
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Laurie Piette
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Alain Vavasseur
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Bernard Genty
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Karine Boivin
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
| | | | - Jérôme Giraudat
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
| | - Jeffrey Leung
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
- CNRS Science de la Vie, Institut des Sciences du Végétal, UPR 2355, 1 Avenue de la Terrasse Bat. 23, Gif-sur-Yvette, 91190, France. Tel.: +33 1 69 82 38 12; Fax: +33 1 69 82 36 95; E-mail:
| |
Collapse
|
54
|
Nejad AR, van Meeteren U. The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity. JOURNAL OF EXPERIMENTAL BOTANY 2007. [PMID: 17175553 DOI: 10.1111/j.1399-3054.2005.00567.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, the role of abscisic acid (ABA) in altered stomatal responses of Tradescantia virginiana leaves grown at high relative air humidity (RH) was investigated. A lower ABA concentration was found in leaves grown at high RH compared with leaves grown at moderate RH. As a result of a daily application of 20 microM ABA to leaves for 3 weeks during growth at high RH, the stomata of ABA-treated leaves grown at high RH showed the same behaviour as did the stomata of leaves grown at moderate RH. For example, they closed rapidly when exposed to desiccation. Providing a high RH around a single leaf of a plant during growth at moderate RH changed the stomatal responses of this leaf. The stomata in this leaf grown at high RH did not close completely in response to desiccation in contrast to the stomata of the other leaves from the same plant. The ABA concentration on a fresh weight basis, though not on a dry weight basis, of this leaf was significantly lower than that of the others. Moreover, less closure of stomata was found in the older leaves of plants grown at high RH in response to desiccation compared with younger leaves. This was correlated with a lower ABA concentration in these leaves on a fresh weight basis, though not on a dry weight basis. Stomata of leaves grown at moderate RH closed in response to short-term application of ABA or sodium nitroprusside (SNP), while for leaves grown at high RH there was a clear difference in stomatal responses between the leaf margins and main-vein areas. The stomatal aperture in response to short-term application of ABA or SNP at the leaf margins of leaves grown at high RH remained significantly wider than in the main-vein areas. It was concluded that: (i) a long-term low ABA concentration in well-watered plants during growth at high RH could be a reason for less or no stomatal closure under conditions of drought stress; and (ii) the long-term ABA concentration on a fresh weight basis rather than on a dry weight basis is likely to be responsible for structural or physiological changes in stomata during leaf growth.
Collapse
Affiliation(s)
- Abdolhossein Rezaei Nejad
- Horticultural Production Chains Group, Plant Sciences, Wageningen University, Marijkeweg 22, 6709 PG, Wageningen, The Netherlands.
| | | |
Collapse
|
55
|
Song Y, Kang Y, Liu H, Zhao X, Wang P, An G, Zhou Y, Miao C, Song C. Identification and primary genetic analysis of Arabidopsis stomatal mutants in response to multiple stresses. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2173-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
56
|
Powles JE, Buckley TN, Nicotra AB, Farquhar GD. Dynamics of stomatal water relations following leaf excision. PLANT, CELL & ENVIRONMENT 2006; 29:981-92. [PMID: 17087480 DOI: 10.1111/j.1365-3040.2005.01491.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We examined the stomatal response to leaf excision in an evergreen woody shrub, Photinia x fraseri, using a novel combination of gas exchange, traditional water relations and modelling. Plants were kept outdoors in mild winter conditions (average daily temperature range: -1 to 12 degrees C) before being transferred to a glasshouse (temperature range: 20-30 degrees C) and allowed to acclimate for different periods before experiments. 'Glasshouse plants' were acclimated for at least 9 d, and 'outdoor plants' were acclimated for fewer than 3 d before laboratory gas exchange experiments. The transient stomatal opening response to leaf excision was roughly twice as long in outdoor plants as in glasshouse plants. To elucidate the reason for this difference, we inferred variables of stomatal water relations (epidermal and guard cell turgor pressures and guard cell osmotic pressure: Pe, Pg and pi g, respectively) from stomatal conductance (gs) and bulk leaf water potential (psi l), using a hydromechanical model of gs. psi l was calculated from cumulative post-excision transpirational water loss using empirical relationships between psi l and relative water content obtained on similar leaves. Inferred Pg and Pe both declined immediately after leaf excision. Inferred pi g also declined after a lag period. The kinetics of pi g adjustment after the lag were similar in outdoors and glasshouse plants, but the lag period was much longer in outdoor plants. This suggests that the longer transient opening response in outdoor plants resulted from slower induction, not slower execution, of guard cell osmoregulation. We discuss the implications of our results for the mechanism of short-term stomatal responses to hydraulic perturbations, for dynamic modelling of gs and for leaf water status regulation.
Collapse
Affiliation(s)
- Julia E Powles
- Environmental Biology Group and Cooperative Research Centre for Greenhouse Accounting, Research School of Biological Sciences, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601 Australia
| | | | | | | |
Collapse
|
57
|
Abstract
Recent work shows that transcription factors are necessary for stomatal movements in plants. Different members of the plant-specific R2R3-MYB transcription factor family are required for mediating stomatal opening in response to light and stomatal closure in response to darkness.
Collapse
Affiliation(s)
- Julie Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
58
|
Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:113-22. [PMID: 16367958 DOI: 10.1111/j.1365-313x.2005.02615.x] [Citation(s) in RCA: 581] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are key signalling molecules produced in response to various stimuli and involved in a diverse range of plant signal transduction processes. Nitric oxide and H(2)O(2) have been identified as essential components of the complex signalling network inducing stomatal closure in response to the phytohormone abscisic acid (ABA). A close inter-relationship exists between ABA and the spatial and temporal production and action of both NO and H(2)O(2) in guard cells. This study shows that, in Arabidopsis thaliana guard cells, ABA-mediated NO generation is in fact dependent on ABA-induced H(2)O(2) production. Stomatal closure induced by H(2)O(2) is inhibited by the removal of NO with NO scavenger, and both ABA and H(2)O(2) stimulate guard cell NO synthesis. Conversely, NO-induced stomatal closure does not require H(2)O(2) synthesis nor does NO treatment induce H(2)O(2) production in guard cells. Tungstate inhibition of the NO-generating enzyme nitrate reductase (NR) attenuates NO production in response to nitrite in vitro and in response to H(2)O(2) and ABA in vivo. Genetic data demonstrate that NR is the major source of NO in guard cells in response to ABA-mediated H(2)O(2) synthesis. In the NR double mutant nia1, nia2 both ABA and H(2)O(2) fail to induce NO production or stomatal closure, but in the nitric oxide synthase deficient Atnos1 mutant, responses to H(2)O(2) are not impaired. Importantly, we show that in the NADPH oxidase deficient double mutant atrbohD/F, NO synthesis and stomatal closure to ABA are severely reduced, indicating that endogenous H(2)O(2) production induced by ABA is required for NO synthesis. In summary, our physiological and genetic data demonstrate a strong inter-relationship between ABA, endogenous H(2)O(2) and NO-induced stomatal closure.
Collapse
Affiliation(s)
- Jo Bright
- Centre for Research in Plant Science, Genomics Research Institute, University of the West of England, UWE, Bristol, Frenchay Campus, Coldharbour Lane, UK
| | | | | | | | | |
Collapse
|
59
|
Abstract
It is clear that stomata play a critical role in regulating water loss from terrestrial vegetation. What is not clear is how this regulation is achieved. Stomata appear to respond to perturbations of many aspects of the soil-plant-atmosphere hydraulic continuum, but there is little agreement regarding the mechanism (or mechanisms) by which stomata sense such perturbations. This review discusses feedback and feedforward mechanisms by which hydraulic perturbations are putatively transduced into stomatal movements, in relation to generic empirical features of those responses. It is argued that a metabolically mediated feedback response of stomatal guard cells to the water status in their immediate vicinity ('hydro-active local feedback') remains the best explanation for many well-known features of hydraulically related stomatal behaviour, such as transient 'wrong-way' responses and the equivalence of hydraulic supply and demand as stomatal effectors. Furthermore, many curious phenomena that appear inconsistent with feedback, such as 'apparent feedforward' humidity responses and 'isohydric' behaviour (water potential homeostasis), are in fact expected to emerge from the juxtaposition of hydro-active local feedback and the well-known hysteretic and threshold-like effect of water potential on xylem hydraulic resistance.
Collapse
Affiliation(s)
- Thomas N Buckley
- Environmental Biology Group & Cooperative Research Centre for Greenhouse Accounting, Research School of Biological Sciences, The Australian National University, Canberra City, ACT.
| |
Collapse
|
60
|
Liang YK, Dubos C, Dodd IC, Holroyd GH, Hetherington AM, Campbell MM. AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 2005; 15:1201-6. [PMID: 16005292 DOI: 10.1016/j.cub.2005.06.041] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 05/13/2005] [Accepted: 06/01/2005] [Indexed: 11/17/2022]
Abstract
Stomata, dynamic pores found on the surfaces of plant leaves, control water loss from the plant and regulate the uptake of CO(2) for photosynthesis. Stomatal aperture is controlled by the two guard cells that surround the stomatal pore. When the two guard cells are fully turgid, the pore gapes open, whereas turgor loss results in stomatal closure. In order to set the most appropriate stomatal aperture for the prevailing environmental conditions, guard cells respond to multiple internal and external signals. Although much is known about guard-cell signaling pathways, rather little is known about how changes in gene expression are involved in the control of stomatal aperture. We show here that AtMYB61 (At1g09540), a gene encoding a member of the Arabidopsis thaliana R2R3-MYB family of transcription factors, is specifically expressed in guard cells in a manner consistent with involvement in the control of stomatal aperture. Gain-of-function and loss-of-function mutant analyses reveal that AtMYB61 expression is both sufficient and necessary to bring about reductions in stomatal aperture with consequent effects on gas exchange. Taken together, our data provide evidence that AtMYB61 encodes the first transcription factor implicated in the closure of stomata.
Collapse
Affiliation(s)
- Yun-Kuan Liang
- Biology Department, Lancaster Environment Centre, University of Lancaster, Lancaster LA1 4YQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
61
|
Mao J, Zhang YC, Sang Y, Li QH, Yang HQ. From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A 2005; 102:12270-5. [PMID: 16093319 PMCID: PMC1189306 DOI: 10.1073/pnas.0501011102] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptochromes (CRY) are blue light photoreceptors that mediate various light-induced responses in plants and animals. Arabidopsis CRY (CRY1 and CRY2) functions through negatively regulating constitutive photomorphogenic (COP) 1, a repressor of photomorphogenesis. Water evaporation and photosynthesis are regulated by the stomatal pores in plants, which are closed in darkness but open in response to blue light. There is evidence only for the phototropin blue light receptors (PHOT1 and PHOT2) in mediating blue light regulation of stomatal opening. Here, we report a previously uncharacterized role for Arabidopsis CRY and COP1 in the regulation of stomatal opening. Stomata of the cry1 cry2 double mutant showed reduced blue light response, whereas those of the CRY1-overexpressing plants showed hypersensitive response to blue light. In addition, stomata of the phot1 phot2 double mutant responded to blue light, but those of the cry1 cry2 phot1 phot2 quadruple mutant hardly responded. Strikingly, stomata of the cop1 mutant were constitutively open in darkness and stomata of the cry1 cry2 cop1 and phot1 phot2 cop1 triple mutants were open as wide as those of the cop1 single mutant under blue light. These results indicate that CRY functions additively with PHOT in mediating blue light-induced stomatal opening and that COP1 is a repressor of stomatal opening and likely acts downstream of CRY and PHOT signaling pathways.
Collapse
Affiliation(s)
- Jian Mao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
62
|
Levchenko V, Konrad KR, Dietrich P, Roelfsema MRG, Hedrich R. Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci U S A 2005; 102:4203-8. [PMID: 15753314 PMCID: PMC554796 DOI: 10.1073/pnas.0500146102] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phytohormone abscisic acid (ABA) reports on the water status of the plant and induces stomatal closure. Guard cell anion channels play a central role in this response, because they mediate anion efflux, and in turn, cause a depolarization-induced K+ release. We recorded early steps in ABA signaling, introducing multibarreled microelectrodes in guard cells of intact plants. Upon external ABA treatment, anion channels transiently activated after a lag phase of approximately 2 min. As expected for a cytosolic ABA receptor, iontophoretic ABA loading into the cytoplasm initiated a rise in anion current without delay. These ABA responses could be elicited repetitively at resting and at largely depolarized potentials (e.g., 0 mV), ruling out signal transduction by means of hyperpolarization-activated calcium channels. Likewise, ABA stimulation did not induce a rise in the cytosolic free-calcium concentration. However, the presence of approximately 100 nM background Ca2+ was required for anion channel function, because the action of ABA on anion channels was repressed after loading of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate. The chain of events appears very direct, because none of the tested putative ABA-signaling intermediates (inositol 1,4,5 trisphosphate, inositol hexakisphosphate, nicotinic acid adenine dinucleotide phosphate, and cyclic ADP-ribose), could mimic ABA as anion channel activator. In patch-clamp experiments, cytosolic ABA also evoked anion current transients carried by R- and S-type anion channels. The response was dose-dependent with half-maximum activation at 2.6 microM ABA. Our studies point to an ABA pathway initiated by ABA binding to a cytosolic receptor that within seconds activates anion channels, and in turn, leads to depolarization of the plasma membrane.
Collapse
Affiliation(s)
- Victor Levchenko
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, D97082 Würzburg, Germany
| | | | | | | | | |
Collapse
|
63
|
Abstract
In this review we concentrate on guard cell metabolism and CO2 sensing. Although a matter of some controversy, it is generally accepted that the Calvin cycle plays a minor role in stomatal movements. Recent data emphasise the importance of guard cell starch degradation and of carbon import from the guard cell apoplast in promoting and maintaining stomatal opening. Chloroplast maltose and glucose transporters appear to be crucial to the export of carbon from both guard and mesophyll cells. The way guard cells sense CO2 remains an unresolved question. However, a better understanding of the cellular events downstream from CO2 sensing is emerging. We now recognise that there are common as well as unique steps in abscisic acid (ABA) and CO2 signalling pathways. For example, while ABA and CO2 both trigger increases in cytoplasmic free calcium, unlike ABA, CO2 does not promote a cytoplasmic pH change. Future advances in this area are likely to result from the increased use of techniques and resources, such as, reverse genetics, novel mutants, confocal imaging, and microarray analyses of the guard cell transcriptome.
Collapse
Affiliation(s)
- Alain Vavasseur
- CEA/Cadarache-DSV-DEVM, Laboratoire des Echanges Membranaires et Signalisation, UMR 6191 CNRS-CEA-Aix-Marseille II. 13108 St Paul Lez-Durance Cedex, France.
| | | |
Collapse
|
64
|
Bartels D, Sunkar R. Drought and Salt Tolerance in Plants. CRITICAL REVIEWS IN PLANT SCIENCES 2005. [PMID: 0 DOI: 10.1080/07352680590910410] [Citation(s) in RCA: 1058] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
65
|
Wang Y, Holroyd G, Hetherington AM, Ng CKY. Seeing 'cool' and 'hot'--infrared thermography as a tool for non-invasive, high-throughput screening of Arabidopsis guard cell signalling mutants. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1187-1193. [PMID: 15073209 DOI: 10.1093/jxb/erh135] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The use of Arabidopsis mutants defective in abscisic acid (ABA) perception has been instrumental in the understanding of stomatal function, in particular, ABA signalling in guard cells. The considerable attention devoted to ABA signalling in guard cells is due in part to (1) the fundamental role of ABA in drought stress and (2) the use of a screening protocol based on the sensitivity of seed germination to ABA. Such a screen has facilitated the isolation of ABA signalling mutants with genetic lesions that exert pleiotropic effects at the whole plant level. As such, there is a requirement for new approaches to complement the seed germination screen. The recent advances made in the use of infrared thermography as a non-invasive, high-throughput tool are reviewed here and the versatility of this technique for screening Arabidopsis defective in stomatal regulation is highlighted.
Collapse
Affiliation(s)
- Yibing Wang
- Department of Biological Sciences, Institute of Environmental and Natural Sciences, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | | | | | | |
Collapse
|
66
|
Ng CKY, Kinoshita T, Pandey S, Shimazaki KI, Assmann SM. Abscisic acid induces rapid subnuclear reorganization in guard cells. PLANT PHYSIOLOGY 2004; 134:1327-31. [PMID: 15084726 PMCID: PMC419809 DOI: 10.1104/pp.103.034728] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 11/04/2003] [Accepted: 12/24/2003] [Indexed: 05/17/2023]
Affiliation(s)
- Carl K-Y Ng
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | |
Collapse
|
67
|
Zonia L, Munnik T. Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. PLANT PHYSIOLOGY 2004; 134:813-23. [PMID: 14739344 PMCID: PMC344556 DOI: 10.1104/pp.103.029454] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 08/21/2003] [Accepted: 11/15/2003] [Indexed: 05/18/2023]
Abstract
Pollen tube cell volume changes rapidly in response to perturbation of the extracellular osmotic potential. This report shows that specific phospholipid signals are differentially stimulated or attenuated during osmotic perturbations. Hypo-osmotic stress induces rapid increases in phosphatidic acid (PA). This response occurs starting at the addition of 25% (v/v) water to the pollen tube cultures and peaks at 100% (v/v) water. Increased levels of PA were detected within 30 s and reached maximum by 15 to 30 min after treatment. The pollen tube apical region undergoes a 46% increase in cell volume after addition of 100% water (v/v), and there is an average 7-fold increase in PA. This PA increase appears to be generated by phospholipase D because concurrent transphosphatidylation of n-butanol results in an average 8-fold increase in phosphatidylbutanol. Hypo-osmotic stress also induces an average 2-fold decrease in phosphatidylinositol phosphate; however, there are no detectable changes in the levels of phosphatidylinositol bisphosphates. In contrast, salt-induced hyperosmotic stress from 50 to 400 mm NaCl inhibits phospholipase D activity, reduces the levels of PA, and induces increases in the levels of phosphatidylinositol bisphosphate isomers. The pollen tube apical region undergoes a 41% decrease in cell volume at 400 mm NaCl, and there is an average 2-fold increase in phosphatidylinositol 3,5-bisphosphate and 1.4-fold increase in phosphatidylinositol 4,5-bisphosphate. The phosphatidylinositol 3,5-bisphosphate increase is detected within 30 s and reaches maximum by 15 to 30 min after treatment. In summary, these results demonstrate that hypo-osmotic versus hyperosmotic perturbation and the resultant cell swelling or shrinking differentially activate specific phospholipid signaling pathways in tobacco (Nicotiana tabacum) pollen tubes.
Collapse
Affiliation(s)
- Laura Zonia
- Institute of Experimental Botany, Na Pernikarce 15, 160 00 Prague 6, Czech Republic.
| | | |
Collapse
|
68
|
Harper JF, Breton G, Harmon A. Decoding Ca(2+) signals through plant protein kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2004; 55:263-88. [PMID: 15377221 DOI: 10.1146/annurev.arplant.55.031903.141627] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants harbor four families of kinases that have been implicated in Ca(2+) signaling (CDPKs, CRKs, CCaMKs, and SnRK3s). Although each family appears to respond to Ca(2+) via different mechanisms, they all utilize Ca(2+) sensors that bind Ca(2+) through multiple EF-hands. The CDPK (Ca(2+)-dependent protein kinase) family is represented by the most genes, with 12 subfamilies comprised of 34 isoforms in Arabidopsis and 27 in rice. Some of the calcium-regulated kinases also show potential for regulation by lipid signals and kinase cascades. Thus, Ca(2+)-regulated kinases provide potential nodes of cross-talk for multiple signaling pathways that integrate Ca(2+) signals into all aspects of plant growth and development.
Collapse
Affiliation(s)
- Jeffrey F Harper
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
69
|
Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 2003; 423:651-4. [PMID: 12789341 DOI: 10.1038/nature01643] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 04/07/2003] [Indexed: 11/09/2022]
Abstract
In animals, the sphingolipid metabolite sphingosine-1-phosphate (S1P) functions as both an intracellular messenger and an extracellular ligand for G-protein-coupled receptors of the S1P receptor family, regulating diverse biological processes ranging from cell proliferation to apoptosis. Recently, it was discovered in plants that S1P is a signalling molecule involved in abscisic acid (ABA) regulation of guard cell turgor. Here we report that the enzyme responsible for S1P production, sphingosine kinase (SphK), is activated by ABA in Arabidopsis thaliana, and is involved in both ABA inhibition of stomatal opening and promotion of stomatal closure. Consistent with this observation, inhibition of SphK attenuates ABA regulation of guard cell inward K(+) channels and slow anion channels, which are involved in the regulation of stomatal pore size. Surprisingly, S1P regulates stomatal apertures and guard cell ion channel activities in wild-type plants, but not in knockout lines of the sole prototypical heterotrimeric G-protein alpha-subunit gene, GPA1 (refs 5, 6, 7-8). Our results implicate heterotrimeric G proteins as downstream elements in the S1P signalling pathway that mediates ABA regulation of stomatal function, and suggest that the interplay between S1P and heterotrimeric G proteins represents an evolutionarily conserved signalling mechanism.
Collapse
Affiliation(s)
- Sylvie Coursol
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania 16802-5301, USA
| | | | | | | | | | | |
Collapse
|
70
|
Cross CE, Valacchi G, Schock B, Wilson M, Weber S, Eiserich J, van der Vliet A. Environmental oxidant pollutant effects on biologic systems: a focus on micronutrient antioxidant-oxidant interactions. Am J Respir Crit Care Med 2002; 166:S44-50. [PMID: 12471088 DOI: 10.1164/rccm.2206015] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oxidative atmospheric pollutants represent a significant source of stress to both terrestrial plants and animals. The biosurfaces of plants and surface-living organisms are directly exposed to these pollutant stresses. These surfaces, including respiratory tract surfaces, contain integrated antioxidant systems that would be expected to provide a primary defense against environmental threats caused by atmospheric reactive oxygen species. When the biosurface antioxidant defenses are overwhelmed, oxidative stress to the cellular components of the exposed biosurfaces can be expected, inducing inflammatory, adaptive, injurious, and reparative processes. Studies of mutants and/or transformed plants and insects, with specific alterations in key components of antioxidant defense systems, offer opportunities to dissect the complex systems that maintain surface defenses against environmental oxidants. In this article, we use a comparative approach to consider interactions of atmospheric oxidant pollutants with selected biosystems, with focus on O3 as the pollutant; plants, flies, skin, and lungs as the exposed biosystems; and nonenzymatic micronutrient antioxidants as significant contributors to overall antioxidant defense strategies of these varied biosystems. Parallelisms among several living organisms, with regard to their protective strategies against environmental atmospheric oxidants, are presented.
Collapse
Affiliation(s)
- Carroll E Cross
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Lung Biology and Medicine, University of California School of Medicine, Davis, California 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
71
|
Lu C, Han MH, Guevara-Garcia A, Fedoroff NV. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci U S A 2002; 99:15812-7. [PMID: 12434021 PMCID: PMC137798 DOI: 10.1073/pnas.242607499] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abscisic acid (ABA) mediates plant responses to environmental stress, particularly to water status. During germination, the embryo emerges from dormancy as the ABA concentration declines. Exposure to exogenous ABA during germination arrests development rapidly, but reversibly, enabling seedlings to withstand early water stress without loss of viability. Postgermination proteolytic degradation of the essential ABI5 transcription factor is interrupted by perception of an increase in ABA concentration, leading to ABI5 accumulation and reactivation of embryonic genes. Making use of the ABA-hypersensitive hyl1 mutant of Arabidopsis, we show that the ABA signal is transmitted to the transcriptional apparatus through mitogen-activated protein kinase signaling.
Collapse
Affiliation(s)
- C Lu
- Delaware Biotechnology Institute, 15 Innovation Way, Newark 19711, USA
| | | | | | | |
Collapse
|
72
|
Li J, Kinoshita T, Pandey S, Ng CKY, Gygi SP, Shimazaki KI, Assmann SM. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 2002; 418:793-7. [PMID: 12181571 DOI: 10.1038/nature00936] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases are involved in stress signalling in both plant and animal systems. The hormone abscisic acid mediates the responses of plants to stresses such as drought, salinity and cold. Abscisic-acid-activated protein kinase (AAPK -- found in guard cells, which control stomatal pores -- has been shown to regulate plasma membrane ion channels. Here we show that AAPK-interacting protein 1 (AKIP1), with sequence homology to heterogeneous nuclear RNA-binding protein A/B, is a substrate of AAPK. AAPK-dependent phosphorylation is required for the interaction of AKIP1 with messenger RNA that encodes dehydrin, a protein implicated in cell protection under stress conditions. AAPK and AKIP1 are present in the guard-cell nucleus, and in vivo treatment of such cells with abscisic acid enhances the partitioning of AKIP1 into subnuclear foci which are reminiscent of nuclear speckles. These results show that phosphorylation-regulated RNA target discrimination by heterogeneous nuclear RNA-binding proteins may be a general phenomenon in eukaryotes, and implicate a plant hormone in the regulation of protein dynamics during rapid subnuclear reorganization.
Collapse
Affiliation(s)
- Jiaxu Li
- Biology Department, The Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
73
|
Fedoroff NV. Cross-talk in abscisic acid signaling. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re10. [PMID: 12107340 DOI: 10.1126/stke.2002.140.re10] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
"Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.
Collapse
Affiliation(s)
- Nina V Fedoroff
- Biotechnology Institute, Life Sciences Consortium, and Biology Department, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
74
|
|
75
|
Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:601-9. [PMID: 12047634 DOI: 10.1046/j.1365-313x.2002.01322.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In response to drought, plants synthesise the hormone abscisic acid (ABA), which triggers closure of the stomatal pores. This process is vital for plants to conserve water by reducing transpirational water loss. Moreover, recent studies have demonstrated the advantages of the Arabidopsis stomatal guard cell for combining genetic, molecular and biophysical approaches to characterise ABA action. However, genetic dissection of stomatal regulation has been limited by the difficulty of identifying a reliable phenotype for mutant screening. Leaf temperature can be used as an indicator to detect mutants with altered stomatal control, since transpiration causes leaf cooling. In this study, we optimised experimental conditions under which individual Arabidopsis plants with altered stomatal responses to drought can be identified by infrared thermography. These conditions were then used to perform a pilot screen for mutants that displayed a reduced ability to close their stomata and hence appeared colder than the wild type. Some of the mutants recovered were deficient in ABA accumulation, and corresponded to alleles of the ABA biosynthesis loci ABA1, ABA2 and ABA3. Interestingly, two of these novel aba2 alleles were able to intragenically complement the aba2-1 mutation. The remaining mutants showed reduced ABA responsiveness in guard cells. In addition to the previously known abi1-1 mutation, we isolated mutations at two novel loci designated as OST1 (OPEN STOMATA 1) and OST2. Remarkably, ost1 and ost2 represent, to our knowledge, the first Arabidopsis mutations altering ABA responsiveness in stomata and not in seeds.
Collapse
Affiliation(s)
- Sylvain Merlot
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique UPR2355, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Cheng SH, Willmann MR, Chen HC, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. PLANT PHYSIOLOGY 2002; 129:469-85. [PMID: 12068094 PMCID: PMC1540234 DOI: 10.1104/pp.005645] [Citation(s) in RCA: 503] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In plants, numerous Ca(2+)-stimulated protein kinase activities occur through calcium-dependent protein kinases (CDPKs). These novel calcium sensors are likely to be crucial mediators of responses to diverse endogenous and environmental cues. However, the precise biological function(s) of most CDPKs remains elusive. The Arabidopsis genome is predicted to encode 34 different CDPKs. In this Update, we analyze the Arabidopsis CDPK gene family and review the expression, regulation, and possible functions of plant CDPKs. By combining emerging cellular and genomic technologies with genetic and biochemical approaches, the characterization of Arabidopsis CDPKs provides a valuable opportunity to understand the plant calcium-signaling network.
Collapse
Affiliation(s)
- Shu-Hua Cheng
- Department of Genetics, Harvard Medical School, MA 02114, USA
| | | | | | | |
Collapse
|
77
|
Affiliation(s)
- Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Andrew J Baker
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
78
|
Pandey S, Wang XQ, Coursol SA, Assmann SM. Preparation and applications of Arabidopsis thaliana guard cell protoplasts. THE NEW PHYTOLOGIST 2002; 153:517-526. [PMID: 33863229 DOI: 10.1046/j.0028-646x.2001.00329.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Guard cells play an important role in the physiology and development of plants. The genetic resources available for Arabidopsis thaliana make it the most favorable plant species for the study of guard cell processes, but it is not easy to isolate highly purified preparations of large numbers of guard cells from this species. Here, we describe methods for isolation of both guard cell and mesophyll cell protoplasts from A. thaliana and their use in the study of unique biochemical and cellular properties of these cell types. • Protocols developed for large- and small-scale preparation of guard cell protoplasts and mesophyll cell protoplasts are described, followed by specific examples of their use in electrophysiological, biochemical and molecular approaches such as patch clamping, enzyme assays, and reverse-transcription polymerase chain reaction. • The protocols described yield millions of highly purified, viable guard cell protoplasts and mesophyll cell protoplasts from A. thaliana. These protoplasts have been used successfully in the study of ion channel properties, assay of ABA activation in phospholipase D activity and comparisons of gene and protein expression levels. • These techniques make it possible to elucidate electrophysiological, biochemical and molecular genetic pathways of guard cell function.
Collapse
Affiliation(s)
- Sona Pandey
- Biology Department, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, USA, 16803
| | - Xi-Qing Wang
- Biology Department, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, USA, 16803
| | - Sylvie A Coursol
- Biology Department, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, USA, 16803
| | - Sarah M Assmann
- Biology Department, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, USA, 16803
| |
Collapse
|