51
|
Mullinger KJ, Mayhew SD, Bagshaw AP, Bowtell R, Francis ST. Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG-BOLD-CBF study in humans. Neuroimage 2014; 94:263-274. [PMID: 24632092 DOI: 10.1016/j.neuroimage.2014.02.029] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022] Open
Abstract
Unambiguous interpretation of changes in the BOLD signal is challenging because of the complex neurovascular coupling that translates changes in neuronal activity into the subsequent haemodynamic response. In particular, the neurophysiological origin of the negative BOLD response (NBR) remains incompletely understood. Here, we simultaneously recorded BOLD, EEG and cerebral blood flow (CBF) responses to 10 s blocks of unilateral median nerve stimulation (MNS) in order to interrogate the NBR. Both negative BOLD and negative CBF responses to MNS were observed in the same region of the ipsilateral primary sensorimotor cortex (S1/M1) and calculations showed that MNS induced a decrease in the cerebral metabolic rate of oxygen consumption (CMRO2) in this NBR region. The ∆CMRO2/∆CBF coupling ratio (n) was found to be significantly larger in this ipsilateral S1/M1 region (n=0.91±0.04, M=10.45%) than in the contralateral S1/M1 (n=0.65±0.03, M=10.45%) region that exhibited a positive BOLD response (PBR) and positive CBF response, and a consequent increase in CMRO2 during MNS. The fMRI response amplitude in ipsilateral S1/M1 was negatively correlated with both the power of the 8-13 Hz EEG mu oscillation and somatosensory evoked potential amplitude. Blocks in which the largest magnitude of negative BOLD and CBF responses occurred therefore showed greatest mu power, an electrophysiological index of cortical inhibition, and largest somatosensory evoked potentials. Taken together, our results suggest that a neuronal mechanism underlies the NBR, but that the NBR may originate from a different neurovascular coupling mechanism to the PBR, suggesting that caution should be taken in assuming the NBR simply represents the neurophysiological inverse of the PBR.
Collapse
Affiliation(s)
- K J Mullinger
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK; Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, UK.
| | - S D Mayhew
- Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, UK
| | - A P Bagshaw
- Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, UK
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - S T Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
52
|
Heetkamp J, Hortobágyi T, Zijdewind I. Increased bilateral interactions in middle-aged subjects. Front Aging Neurosci 2014; 6:5. [PMID: 24478699 PMCID: PMC3901301 DOI: 10.3389/fnagi.2014.00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/10/2014] [Indexed: 11/13/2022] Open
Abstract
A hallmark of the age-related neural reorganization is that old versus young adults execute typical motor tasks by a more diffuse neural activation pattern including stronger ipsilateral activation during unilateral tasks. Whether such changes in neural activation are present already at middle age and affect bimanual interactions is unknown. We compared the amount of associated activity, i.e., muscle activity and force produced by the non-task hand and motor evoked potentials (MEPs) produced by magnetic brain stimulation between young (mean 24 years, n = 10) and middle-aged (mean 50 years, n = 10) subjects during brief unilateral (seven levels of % maximal voluntary contractions, MVCs) and bilateral contractions (4 × 7 levels of % MVC combinations), and during a 120-s-long MVC of sustained unilateral index finger abduction. During the force production, the excitability of the ipsilateral (iM1) or contralateral primary motor cortex (cM1) was assessed. The associated activity in the "resting" hand was ~2-fold higher in middle-aged (28% of MVC) versus young adults (11% of MVC) during brief unilateral MVCs. After controlling for the background muscle activity, MEPs in iM1 were similar in the two groups during brief unilateral contractions. Only at low (bilateral) forces, MEPs evoked in cM1 were 30% higher in the middle-aged versus young adults. At the start of the sustained contraction, the associated activity was higher in the middle-aged versus young subjects and increased progressively in both groups (30 versus 15% MVC at 120 s, respectively). MEPs were greater at the start of the sustained contraction in middle-aged subjects but increased further during the contraction only in young adults. Under these experimental conditions, the data provide evidence for the reorganization of neural control of unilateral force production as early as age 50. Future studies will determine if the altered neural control of such inter-manual interactions are of functional significance.
Collapse
Affiliation(s)
- Jolien Heetkamp
- Department of Neuroscience, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , UK
| | - Inge Zijdewind
- Department of Neuroscience, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
53
|
Tazoe T, Komiyama T. Interlimb neural interactions in the corticospinal pathways. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
54
|
Derosière G, Alexandre F, Bourdillon N, Mandrick K, Ward T, Perrey S. Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation. Neuroimage 2014; 85 Pt 1:471-7. [DOI: 10.1016/j.neuroimage.2013.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022] Open
|
55
|
Lauber B, Lundbye-Jensen J, Keller M, Gollhofer A, Taube W, Leukel C. Cross-limb interference during motor learning. PLoS One 2013; 8:e81038. [PMID: 24312523 PMCID: PMC3849090 DOI: 10.1371/journal.pone.0081038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we investigate if this interference effect can also be observed in the limb contralateral to the trained one. Therefore, five different groups practiced a ballistic finger flexion task followed by an interfering visuomotor accuracy task with the same limb. Performance in the ballistic task was tested before the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb. Importantly, the interference effect in the untrained limb was dependent on the level of skill acquisition in the interfering motor task. These behavioural results of the untrained limb were accompanied by training specific changes in corticospinal excitability, which increased for the hemisphere ipsilateral to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might be particularly relevant for rehabilitation.
Collapse
Affiliation(s)
- Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- * E-mail:
| | - Jesper Lundbye-Jensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Martin Keller
- Department of Medicine, Movement and Sports Science, University of Fribourg, Fribourg, Switzerland
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Wolfgang Taube
- Department of Medicine, Movement and Sports Science, University of Fribourg, Fribourg, Switzerland
| | - Christian Leukel
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- Department of Medicine, Movement and Sports Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
56
|
Cortical reorganization after hand immobilization: the beta qEEG spectral coherence evidences. PLoS One 2013. [PMID: 24278213 DOI: 10.1371/journal.pone.0079912.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence that hand immobilization is associated with various changes in the brain. Indeed, beta band coherence is strongly related to motor act and sensitive stimuli. In this study we investigate the electrophysiological and cortical changes that occur when subjects are submitted to hand immobilization. We hypothesized that beta coherence oscillations act as a mechanism underlying inter- and intra-hemispheric changes. As a methodology for our study fifteen healthy individuals between the ages of 20 and 30 years were subjected to a right index finger task before and after hand immobilization while their brain activity pattern was recorded using quantitative electroencephalography. This analysis revealed that hand immobilization caused changes in frontal, central and parietal areas of the brain. The main findings showed a lower beta-2 band in frontal regions and greater cortical activity in central and parietal areas. In summary, the coherence increased in the frontal, central and parietal cortex, due to hand immobilization and it adjusted the brains functioning, which had been disrupted by the procedure. Moreover, the brain adaptation upon hand immobilization of the subjects involved inter- and intra-hemispheric changes.
Collapse
|
57
|
Fortuna M, Teixeira S, Machado S, Velasques B, Bittencourt J, Peressutti C, Budde H, Cagy M, Nardi AE, Piedade R, Ribeiro P, Arias-Carrión O. Cortical reorganization after hand immobilization: the beta qEEG spectral coherence evidences. PLoS One 2013; 8:e79912. [PMID: 24278213 PMCID: PMC3838376 DOI: 10.1371/journal.pone.0079912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/06/2013] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that hand immobilization is associated with various changes in the brain. Indeed, beta band coherence is strongly related to motor act and sensitive stimuli. In this study we investigate the electrophysiological and cortical changes that occur when subjects are submitted to hand immobilization. We hypothesized that beta coherence oscillations act as a mechanism underlying inter- and intra-hemispheric changes. As a methodology for our study fifteen healthy individuals between the ages of 20 and 30 years were subjected to a right index finger task before and after hand immobilization while their brain activity pattern was recorded using quantitative electroencephalography. This analysis revealed that hand immobilization caused changes in frontal, central and parietal areas of the brain. The main findings showed a lower beta-2 band in frontal regions and greater cortical activity in central and parietal areas. In summary, the coherence increased in the frontal, central and parietal cortex, due to hand immobilization and it adjusted the brains functioning, which had been disrupted by the procedure. Moreover, the brain adaptation upon hand immobilization of the subjects involved inter- and intra-hemispheric changes.
Collapse
Affiliation(s)
- Marina Fortuna
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Silmar Teixeira
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
- Laboratory of Physical Therapy, Veiga de Almeida University, Rio de Janeiro, Brazil
- Physical Therapy Department, Piquet Carneiro Policlinic, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Sérgio Machado
- Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Translational Medicine (INCT-TM), Rio de Janeiro, Brazil
- Quiropraxia Program of the Faculty of Health Sciences, Central University, Santiago, Chile
- Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program – Salgado de Oliveira University, Niterói, Brazil
- Institute of Phylosophy, Federal University of Uberlândia (IFILO/UFU), Rio de Janeiro, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Juliana Bittencourt
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Caroline Peressutti
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Henning Budde
- Medical School Hamburg, University of applied science and Medical University. Hamburg, Germany
| | - Mauricio Cagy
- Division of Epidemiology and Biostatistic, Institute of Health Community, Federal Fluminense University (UFF), Rio de Janeiro, Brazil
| | - Antonio E. Nardi
- Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Piedade
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- School of Physical Education, Bioscience Department (EEFD/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Oscar Arias-Carrión
- Movement Disorders and Transcranial Magnetic Stimulation Unit, Hospital General Dr. Manuel Gea González, México D.F., México
- Neurology department, Hospital General Ajusco Medio, México D.F., México
- * E-mail:
| |
Collapse
|
58
|
Ibey RJ, Staines WR. Corticomotor excitability changes seen in the resting forearm during contralateral rhythmical movement and force manipulations: a TMS study. Behav Brain Res 2013; 257:265-74. [PMID: 24070855 DOI: 10.1016/j.bbr.2013.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to examine changes in corticomotor excitability to a resting wrist extensor muscle during contralateral rhythmical isotonic and static isometric wrist contractions (flexion/extension) at different loads and positions, using transcranial magnetic stimulation (TMS). TMS-induced motor-evoked potentials (MEPs) were recorded from the relaxed right extensor carpi radialis (ECR) and flexor carpi radialis (FCR) respectively, while the left arm underwent unimanual manipulations. Rhythmical isotonic (0.5 Hz) flexion and extension movements of the left wrist under 3 load conditions (no, low and high force) and a frequency matched passive movement condition were collected, along with isometric flexion/extension contractions in each position (low and high force). TMS was delivered at eight positions (4 in the flexion phase and 4 in the extension phase) during the continuous movement conditions and each of these positions was sampled with isometric contraction. The potentials evoked by TMS in right ECR were potentiated when the left ECR was engaged, independent of position within that phase of contraction or contraction type (isotonic and isometric). Motor cortical excitability of the resting right ECR increased as load demands increased to the left wrist. Passive rhythmical movement did not influence excitability to the resting ECR implying that voluntary motor drive is required. Our findings indicated that the increase in corticomotor drive during both rhythmic isotonic and static isometric contractions of the opposite limb is likely mediated by interhemispheric interactions between cortical motor areas. Improving our understanding of these cortical networks can be useful in future methods to enhance neuroplasticity through neurorehabilitation methods.
Collapse
Affiliation(s)
- R J Ibey
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| | | |
Collapse
|
59
|
Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci 2013; 7:397. [PMID: 23908616 PMCID: PMC3725409 DOI: 10.3389/fnhum.2013.00397] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/07/2013] [Indexed: 12/24/2022] Open
Abstract
Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the “cross activation” variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, “bilateral access” models entail that motor engrams formed during unilateral practice, may subsequently be utilized bilaterally—that is, by the neural circuitry that constitutes the control centers for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesize and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context.
Collapse
Affiliation(s)
- Kathy L Ruddy
- School of Psychology, Queen's University Belfast Belfast, UK ; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland
| | | |
Collapse
|
60
|
Xun Chen, Chen He, Wang ZJ, McKeown MJ. An IC-PLS Framework for Group Corticomuscular Coupling Analysis. IEEE Trans Biomed Eng 2013; 60:2022-33. [DOI: 10.1109/tbme.2013.2248059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
61
|
Amann M, Venturelli M, Ives SJ, McDaniel J, Layec G, Rossman MJ, Richardson RS. Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol (1985) 2013; 115:355-64. [PMID: 23722705 DOI: 10.1152/japplphysiol.00049.2013] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study sought to determine whether afferent feedback associated with peripheral muscle fatigue inhibits central motor drive (CMD) and thereby limits endurance exercise performance. On two separate days, eight men performed constant-load, single-leg knee extensor exercise to exhaustion (85% of peak power) with each leg (Leg1 and Leg2). On another day, the performance test was repeated with one leg (Leg1) and consecutively (within 10 s) with the other/contralateral leg (Leg2-post). Exercise-induced quadriceps fatigue was assessed by reductions in potentiated quadriceps twitch-force from pre- to postexercise (ΔQtw,pot) in response to supramaximal magnetic femoral nerve stimulation. The output from spinal motoneurons, estimated from quadriceps electromyography (iEMG), was used to reflect changes in CMD. Rating of perceived exertion (RPE) was recorded during exercise. Time to exhaustion (∼9.3 min) and exercise-induced ΔQtw,pot (∼51%) were similar in Leg1 and Leg2 (P > 0.5). In the consecutive leg trial, endurance performance of the first leg was similar to that observed during the initial trial (∼9.3 min; P = 0.8); however, time to exhaustion of the consecutively exercising contralateral leg (Leg2-post) was shorter than the initial Leg2 trial (4.7 ± 0.6 vs. 9.2 ± 0.4 min; P < 0.01). Additionally, ΔQtw,pot following Leg2-post was less than Leg2 (33 ± 3 vs 52 ± 3%; P < 0.01). Although the slope of iEMG was similar during Leg2 and Leg2-post, end-exercise iEMG following Leg2-post was 26% lower compared with Leg2 (P < 0.05). Despite a similar rate of rise, RPE was consistently ∼28% higher throughout Leg2-post vs. Leg2 (P < 0.05). In conclusion, this study provides evidence that peripheral fatigue and associated afferent feedback limits the development of peripheral fatigue and compromises endurance exercise performance by inhibiting CMD.
Collapse
Affiliation(s)
- Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA.
| | | | | | | | | | | | | |
Collapse
|
62
|
Mapping interhemispheric connectivity using functional MRI after transcranial magnetic stimulation on the human auditory cortex. Neuroimage 2013; 79:162-71. [PMID: 23631993 DOI: 10.1016/j.neuroimage.2013.04.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/12/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022] Open
Abstract
Interhemispheric interactions can be important in transcranial magnetic stimulation (TMS) studies investigating motor or cognitive brain functions, but their role in predicting the outcome of TMS is not clear. Previously, we showed that individual differences in interhemispheric functional connectivity of auditory cortices influenced the behavioral effect of repetitive TMS (rTMS) applied over auditory cortex in a melody discrimination task. Here, functional magnetic resonance imaging (fMRI) scanning with the same task was carried out before and after rTMS applied over auditory cortex to determine how rTMS affects both behavior and neural function. After rTMS applied over the right auditory cortex, we found mean increases in activation in the contralateral auditory cortex. The degree and direction of modulation of the fMRI response were correlated with behavior: the higher the contralateral increase after stimulation, the faster the response times, whereas individuals with reduced contralateral activity showed no behavioral facilitation. We also found that higher interhemispheric connectivity between auditory cortices before TMS was associated with faster response times. This study shows directly the role of functional connectivity in the auditory network on TMS-induced modulation, which could explain its often variable effects on behavior. Combined TMS and fMRI is particularly useful to promote plastic reorganization in the auditory network and has implications for research on auditory-related disorders.
Collapse
|
63
|
Inter-limb transfer of ballistic motor skill following non-dominant limb training in young and older adults. Exp Brain Res 2013; 227:19-29. [PMID: 23535836 DOI: 10.1007/s00221-013-3481-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
We recently reported considerably less inter-limb transfer in older, compared to young, adults following dominant (right) hand motor training (Hinder et al. in J Appl Physiol 110:166-175, 2011). This occurred despite the fact that both age groups exhibited similar performance improvements in the trained limb. However, asymmetries can exist with respect to the degree of transfer observed in some tasks, depending upon which limb undertakes the training. Accordingly, here we investigated inter-limb transfer following left hand ballistic motor training in young (n = 15; mean age 21.2 years) and older (n = 15; mean age 70.3 years) right handers. Following motor training that required participants to maximally abduct the left index finger, both groups exhibited significant performance improvements in the trained left hand. Moreover, the extent of inter-limb transfer was substantial and indistinguishable between the two age groups. Transcranial magnetic stimulation revealed that both age groups exhibited bilateral increases in cortical excitability following unilateral training, indicating that unilateral training affects both the trained and untrained hemisphere. However, only for young adults was the extent of the performance gain in the trained hand able to predict the degree of transfer. These findings suggest that different mechanisms may mediate inter-limb transfer of ballistic motor tasks for older and young adults. Because such tasks evoke similar neural responses to those observed following strength training (Selvanayagam et al. in J Appl Physiol 111:367-375, 2011; Carroll et al. in Acta Physiol 202:119-140, 2011), our findings have important implications for rehabilitation paradigms following stroke or limb immobilisation due to injury.
Collapse
|
64
|
Change in the ipsilateral motor cortex excitability is independent from a muscle contraction phase during unilateral repetitive isometric contractions. PLoS One 2013; 8:e55083. [PMID: 23383063 PMCID: PMC3561368 DOI: 10.1371/journal.pone.0055083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to investigate the difference in a muscle contraction phase dependence between ipsilateral (ipsi)- and contralateral (contra)-primary motor cortex (M1) excitability during repetitive isometric contractions of unilateral index finger abduction using a transcranial magnetic stimulation (TMS) technique. Ten healthy right-handed subjects participated in this study. We instructed them to perform repetitive isometric contractions of the left index finger abduction following auditory cues at 1 Hz. The force outputs were set at 10, 30, and 50% of maximal voluntary contraction (MVC). Motor evoked potentials (MEP) were obtained from the right and left first dorsal interosseous muscles (FDI). To examine the muscle contraction phase dependence, TMS of ipsi-M1 or contra-M1 was triggered at eight different intervals (0, 20, 40, 60, 80, 100, 300, or 500 ms) after electromyogram (EMG) onset when each interval had reached the setup triggering level. Furthermore, to demonstrate the relationships between the integrated EMG (iEMG) in the active left FDI and the ipsi-M1 excitability, we assessed the correlation between the iEMG in the left FDI for the 100 ms preceding TMS onset and the MEP amplitude in the resting/active FDI for each force output condition. Although contra-M1 excitability was significantly changed after the EMG onset that depends on the muscle contraction phase, the modulation of ipsi-M1 excitability did not differ in response to any muscle contraction phase at the 10% of MVC condition. Also, we found that contra-M1 excitability was significantly correlated with iEMG in all force output conditions, but ipsi-M1 excitability was not at force output levels of below 30% of MVC. Consequently, the modulation of ipsi-M1 excitability was independent from the contraction phase of unilateral repetitive isometric contractions at least low force output.
Collapse
|
65
|
Interhemispheric control of unilateral movement. Neural Plast 2012; 2012:627816. [PMID: 23304559 PMCID: PMC3523159 DOI: 10.1155/2012/627816] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/04/2012] [Indexed: 11/25/2022] Open
Abstract
To perform strictly unilateral movements, the brain relies on a large cortical and subcortical network. This network enables healthy adults to perform complex unimanual motor tasks without the activation of contralateral muscles. However, mirror movements (involuntary movements in ipsilateral muscles that can accompany intended movement) can be seen in healthy individuals if a task is complex or fatiguing, in childhood, and with increasing age. Lateralization of movement depends on complex interhemispheric communication between cortical (i.e., dorsal premotor cortex, supplementary motor area) and subcortical (i.e., basal ganglia) areas, probably coursing through the corpus callosum (CC). Here, we will focus on transcallosal interhemispheric inhibition (IHI), which facilitates complex unilateral movements and appears to play an important role in handedness, pathological conditions such as Parkinson's disease, and stroke recovery.
Collapse
|
66
|
WU STEVEW, GILBERT DONALDL, SHAHANA NASRIN, HUDDLESTON DAVIDA, MOSTOFSKY STEWARTH. Transcranial magnetic stimulation measures in attention-deficit/hyperactivity disorder. Pediatr Neurol 2012; 47:177-85. [PMID: 22883282 PMCID: PMC3418513 DOI: 10.1016/j.pediatrneurol.2012.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Children affected by attention-deficit/hyperactivity disorder demonstrate diminished intrahemispheric inhibition (short interval cortical inhibition), as measured by transcranial magnetic stimulation. This study determined whether interhemispheric inhibition (ipsilateral silent period latency) correlates with clinical behavioral rating and motor control deficits of affected children. In 114 right-handed children (aged 8-12 years; age/sex-matched; 50 affected, 64 controls), we performed comprehensive assessments of behavior, motor skills, and cognition. Transcranial magnetic stimulation reliably elicited ipsilateral silent periods in 54 children (23 affected); all were on average older than those with unobtainable measures. Mean ipsilateral silent period latency was 5 milliseconds longer in the affected group (P = 0.007). Longer latencies correlated with more severe behavioral symptom scores (r = 0.38, P = 0.007), particularly hyperactivity (r = 0.39, P = 0.006), and with worse motor ratings on the Physical and Neurological Examination for Soft Signs (r = 0.27, P = 0.05). Longer latency also correlated with short interval cortical inhibition (r = 0.36, P = 0.008). Longer ipsilateral silent period latencies suggest interhemispheric inhibitory signaling is slower in affected children. The deficit in this inhibitory measure may underlie developmental, behavioral, and motor impairments in children with attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- STEVE W WU
- Division of Neurology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - DONALD L GILBERT
- Division of Neurology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - NASRIN SHAHANA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - DAVID A HUDDLESTON
- Division of Neurology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - STEWART H MOSTOFSKY
- Departments of Neurology and Psychiatry, Laboratory for Neurocognitive and Imaging Research, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
67
|
Goodwill AM, Pearce AJ, Kidgell DJ. Corticomotor plasticity following unilateral strength training. Muscle Nerve 2012; 46:384-93. [DOI: 10.1002/mus.23316] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
68
|
Support of the concept of interhemispheric rivalry by two consecutive strokes occurring in both hemispheres: a case study. J Neurol 2012; 259:2484-5. [PMID: 22669355 DOI: 10.1007/s00415-012-6560-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
69
|
van Wijk BCM, Beek PJ, Daffertshofer A. Differential modulations of ipsilateral and contralateral beta (de)synchronization during unimanual force production. Eur J Neurosci 2012; 36:2088-97. [PMID: 22583034 DOI: 10.1111/j.1460-9568.2012.08122.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unilateral movement is usually accompanied by ipsilateral activity in the primary motor cortex (M1). It is still largely unclear whether this activity reflects interhemispheric 'cross-talk' of contralateral M1 that facilitates movement, or results from processes that inhibit motor output. We investigated the role of beta power in ipsilateral M1 during unimanual force production. Significant ipsilateral beta desynchronization occurred during continuous dynamic but not during static force production. Moreover, event-related time-frequency analysis revealed bilateral desynchronization patterns, whereas post-movement synchronization was confined to the contralateral hemisphere. Our findings indicate that ipsilateral activation is not merely the result of interhemispheric cross-talk but involves additional processes. Given observations of differential blood oxygen level-dependent responses in ipsilateral and contralateral M1, and the correlation between beta desynchronization and the firing rate of pyramidal tract neurons in contralateral M1 during movement, we speculate that beta desynchronization in contra- and ipsilateral M1 arises from distinct neural activation patterns.
Collapse
Affiliation(s)
- B C M van Wijk
- Research Institute MOVE, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
70
|
Kurth F, Mayer EA, Toga AW, Thompson PM, Luders E. The right inhibition? Callosal correlates of hand performance in healthy children and adolescents callosal correlates of hand performance. Hum Brain Mapp 2012; 34:2259-65. [PMID: 22438280 DOI: 10.1002/hbm.22060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/30/2012] [Indexed: 11/06/2022] Open
Abstract
Numerous studies suggest that interhemispheric inhibition-relayed via the corpus callosum-plays an important role in unilateral hand motions. Interestingly, transcallosal inhibition appears to be indicative of a strong laterality effect, where generally the dominant hemisphere exerts inhibition on the nondominant one. These effects have been largely identified through functional studies in adult populations, but links between motor performance and callosal structure (especially during sensitive periods of neurodevelopment) remain largely unknown. We therefore investigated correlations between Purdue Pegboard performance (a test of motor function) and local callosal thickness in 170 right-handed children and adolescents (mean age: 11.5 ± 3.4 years; range, 6-17 years). Better task performance with the right (dominant) hand was associated with greater callosal thickness in isthmus and posterior midbody. Task performance using both hands yielded smaller and less significant correlations in the same regions, while task performance using the left (nondominant) hand showed no significant correlations with callosal thickness. There were no significant interactions with age and sex. These links between motor performance and callosal structure may constitute the neural correlate of interhemispheric inhibition, which is thought to be necessary for fast and complex unilateral motions and to be biased towards the dominant hand.
Collapse
Affiliation(s)
- Florian Kurth
- Department of Medicine, Center for Neurobiology of Stress, School of Medicine, University of California-Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
71
|
Master S, Tremblay F. Task-related enhancement in corticomotor excitability during haptic sensing with the contra- or ipsilateral hand in young and senior adults. BMC Neurosci 2012; 13:27. [PMID: 22416786 PMCID: PMC3325869 DOI: 10.1186/1471-2202-13-27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/14/2012] [Indexed: 11/16/2022] Open
Abstract
Background Haptic sensing with the fingers represents a unique class of manipulative actions, engaging motor, somatosensory and associative areas of the cortex while requiring only minimal forces and relatively simple movement patterns. Using transcranial magnetic stimulation (TMS), we investigated task-related changes in motor evoked potential (MEP) amplitude associated with unimanual haptic sensing in two related experiments. In Experiment I, we contrasted changes in the excitability of the hemisphere controlling the task hand in young and old adults under two trial conditions, i.e. when participants either touched a fine grating (smooth trials) or touched a coarse grating to detect its groove orientation (grating trials). In Experiment II, the same contrast between tasks was performed but with TMS applied over the hemisphere controlling the resting hand, while also addressing hemispheric (right vs. left) and age differences. Results In Experiment I, a main effect of trial type on MEP amplitude was detected (p = 0.001), MEPs in the task hand being ~50% larger during grating than smooth trials. No interaction with age was detected. Similar results were found for Experiment II, trial type having a large effect on MEP amplitude in the resting hand (p < 0.001) owing to selective increase in MEP size (~2.6 times greater) for grating trials. No interactions with age or side (right vs. left) were detected. Conclusions Collectively, these results indicate that adding a haptic component to a simple unilateral finger action can elicit robust corticomotor facilitation not only in the working hemisphere but also in the opposite hemisphere. The fact that this facilitation seems well preserved with age, when task difficulty is adjusted, has some potential clinical implications.
Collapse
Affiliation(s)
- Sabah Master
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
72
|
Ohtsuka H, Sasada S, Nakajima T, Futatsubashi G, Shimizu E, Komiyama T. Tuning of the excitability of transcortical cutaneous reflex pathways during mirror-like activity. Exp Brain Res 2011; 216:135-44. [PMID: 22076404 DOI: 10.1007/s00221-011-2917-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 10/20/2011] [Indexed: 11/25/2022]
Abstract
Voluntary contraction of a muscle generates electromyographic (EMG) activity in the homologous muscle on the opposite side (mirror-like activity), not only in pathological states and in infants but also in healthy adults. Few studies have examined whether the cutaneous reflexes during the preparatory period of a reaction time task are affected by mirror-like activity. In the present study, we investigated the modulation of the cutaneous reflexes in the left first interosseous (FDI) muscle in 9 healthy subjects while they performed a quick abduction of the right index finger during a reaction time task. Cutaneous reflexes were elicited by applying non-noxious electrical stimulation to the left index finger. We found that mirror-like activity occurred in the left FDI at approximately the onset of EMG activity in the right FDI. The excitatory E2 component was selectively increased at ~75 ms after the "Go" signal, which corresponded to the onset of mirror-like activity. The inhibitory I2 (~90 ms) component was tuned consistently into excitation after the "Go" signal. These findings suggest that long latency reflexes, possibly transcortical cutaneous reflexes, are finely tuned in relation to mirror-like activity.
Collapse
Affiliation(s)
- Hiroyuki Ohtsuka
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuouku, Chiba 260-8670, Japan
| | | | | | | | | | | |
Collapse
|
73
|
Hortobágyi T, Richardson SP, Lomarev M, Shamim E, Meunier S, Russman H, Dang N, Hallett M. Interhemispheric plasticity in humans. Med Sci Sports Exerc 2011; 43:1188-99. [PMID: 21200340 DOI: 10.1249/mss.0b013e31820a94b8] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Chronic unimanual motor practice increases the motor output not only in the trained but also in the nonexercised homologous muscle in the opposite limb. We examined the hypothesis that adaptations in motor cortical excitability of the nontrained primary motor cortex (iM1) and in interhemispheric inhibition from the trained to the nontrained M1 mediate this interlimb cross education. METHODS Healthy, young volunteers (n=12) performed 1000 submaximal voluntary contractions (MVC) of the right first dorsal interosseus (FDI) at 80% MVC during 20 sessions. RESULTS Trained FDI's MVC increased 49.9%, and the untrained FDI's MVC increased 28.1%. Although corticospinal excitability in iM1, measured with transcranial magnetic stimulation (TMS) before and after every fifth session, increased 6% at rest, these changes, as those in intracortical inhibition and facilitation, did not correlate with cross education. When weak and strong TMS of iM1 were delivered on a background of a weak and strong muscle contraction, respectively, of the right FDI, excitability of iM1 increased dramatically after 20 sessions. Interhemispheric inhibition decreased 8.9% acutely within sessions and 30.9% chronically during 20 sessions and these chronic reductions progressively became more strongly associated with cross education. There were no changes in force or TMS measures in the trained group's left abductor minimi digiti and there were no changes in the nonexercising control group (n=8). CONCLUSIONS The findings provide the first evidence for plasticity of interhemispheric connections to mediate cross education produced by a simple motor task.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Department of Exercise and Sport Science, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Yun GJ, Chun MH, Park JY, Kim BR. The synergic effects of mirror therapy and neuromuscular electrical stimulation for hand function in stroke patients. Ann Rehabil Med 2011; 35:316-21. [PMID: 22506139 PMCID: PMC3309215 DOI: 10.5535/arm.2011.35.3.316] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/02/2010] [Indexed: 12/03/2022] Open
Abstract
Objective To investigate the synergic effects of mirror therapy and neuromuscular electrical stimulation (NMES) for hand function in stroke patients. Method Sixty patients with hemiparesis after stroke were included (41 males and 19 females, average age 63.3 years). Twenty patients had NMES applied and simultaneously underwent mirror therapy. Twenty patients had NMES applied only, and twenty patients underwent mirror therapy only. Each treatment was done five days per week, 30 minutes per day, for three weeks. NMES was applied on the surface of the extensor digitorum communis and extensor pollicis brevis for open-hand motion. Muscle tone, Fugl-Meyer assessment, and power of wrist and hand were evaluated before and after treatment. Results There were significant improvements in the Fugl-Meyer assessment score in the wrist, hand and coordination, as well as power of wrist and hand in all groups after treatment. The mirror and NMES group showed significant improvements in the Fugl-Meyer scores of hand, wrist, coordination and power of hand extension compared to the other groups. However, the power of hand flexion, wrist flexion, and wrist extension showed no significant differences among the three groups. Muscle tone also showed no significant differences in the three groups. Conclusion Our results showed that there is a synergic effect of mirror therapy and NMES on hand function. Therefore, a hand rehabilitation strategy combined with NMES and mirror therapy may be more helpful for improving hand function in stroke patients than NMES or mirror therapy only.
Collapse
Affiliation(s)
- Gi Jeong Yun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | |
Collapse
|
75
|
Congenital mirror movements: a clue to understanding bimanual motor control. J Neurol 2011; 258:1911-9. [DOI: 10.1007/s00415-011-6107-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
|
76
|
Abstract
In the human brain, homologous regions of the primary motor cortices (M1s) are connected through transcallosal fibers. Interhemispheric communication between the two M1s plays a major role in the control of unimanual hand movements, and the strength of this connection seems to be dependent on arm activity. For instance, a lesion in the M1 can induce an increase in the excitability of the intact M1 and an abnormal high inhibitory influence onto the damaged M1. This can be attributable to either the disuse of the affected limb or the overuse of the unaffected one. Here, to directly investigate cortical modifications induced by an abnormal asymmetric use of the two limbs, we studied both the excitability of the two M1s and transcallosal interaction between them in healthy subjects whose right hand was immobilized for 10 h. The left "not-immobilized" arm was completely free to move in one group of participants (G1) and limited in the other one (G2). We found that the non-use reduced the excitability of the left M1 and decreased the inhibitory influence onto the right hemisphere in the two groups. However, an increase in the excitability of right M1 and a deeper inhibitory interaction onto the left hemisphere were evident only in G1. Thus, modifications in the right M1 were not directly produced by the non-use but would depend on the overuse of the "not-immobilized" arm. Our findings suggest that the balance between the two M1s is strongly use dependent.
Collapse
|
77
|
van den Berg FE, Swinnen SP, Wenderoth N. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization. PLoS One 2011; 6:e17742. [PMID: 21408031 PMCID: PMC3052419 DOI: 10.1371/journal.pone.0017742] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/11/2011] [Indexed: 12/31/2022] Open
Abstract
Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1ipsi) to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS) to investigate whether representations of the wrist flexor (FCR) and extensor (ECR) in M1ipsi would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1ipsi facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1ipsi only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1ipsi than in the right. In experiment 2, we tested whether the modulations of M1ipsi facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI). We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1ipsi. We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.
Collapse
Affiliation(s)
- Femke E. van den Berg
- Motor Control Laboratory, Research Centre for Motor Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephan P. Swinnen
- Motor Control Laboratory, Research Centre for Motor Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nicole Wenderoth
- Motor Control Laboratory, Research Centre for Motor Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
78
|
Howatson G, Taylor MB, Rider P, Motawar BR, McNally MP, Solnik S, DeVita P, Hortobágyi T. Ipsilateral motor cortical responses to TMS during lengthening and shortening of the contralateral wrist flexors. Eur J Neurosci 2011; 33:978-90. [PMID: 21219480 DOI: 10.1111/j.1460-9568.2010.07567.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unilateral lengthening contractions provide a greater stimulus for neuromuscular adaptation than shortening contractions in the active and non-active contralateral homologous muscle, although little is known of the potential mechanism. Here we examined the possibility that corticospinal and spinal excitability vary in a contraction-specific manner in the relaxed right flexor carpi radialis (FCR) when humans perform unilateral lengthening and shortening contractions of the left wrist flexors at the same absolute force. Corticospinal excitability in the relaxed right FCR increased more during lengthening than shortening at 80% and 100% of maximum voluntary contraction (MVC). Short-interval intracortical inhibition diminished during shortening contractions, and it became nearly abolished during lengthening. Intracortical facilitation lessened during shortening but increased during lengthening. Interhemispheric inhibition to the 'non-active' motor cortex diminished during shortening, and became nearly abolished during lengthening at 90% MVC. The amplitude of the Hoffman reflex in the relaxed right FCR decreased during and remained depressed for 20 s after lengthening and shortening of the left wrist flexors. We discuss the possibility that instead of the increased afferent input, differences in the descending motor command and activation of brain areas that link function of the motor cortices during muscle lengthening vs. shortening may cause the contraction-specific modulation of ipsilateral motor cortical output. In conclusion, ipsilateral motor cortex responses to transcranial magnetic stimulation are contraction-specific; unilateral lengthening and shortening contractions reduced contralateral spinal excitability, but uniquely modulated ipsilateral corticospinal excitability and the networks involved in intracortical and interhemispheric connections, which may have clinical implications.
Collapse
Affiliation(s)
- Glyn Howatson
- Department of Sport and Exercise Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Teixeira S, Velasques B, Machado S, Paes F, Cunha M, Budde H, Anghinah R, Basile LFH, Cagy M, Piedade R, Ribeiro P. Gamma band oscillations in parietooccipital areas during performance of a sensorimotor integration task: a qEEG coherence study. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:304-9. [PMID: 21625755 DOI: 10.1590/s0004-282x2011000300007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/11/2010] [Indexed: 11/21/2022]
Abstract
This study aimed to elucidate cortical mechanisms involved in anticipatory actions when 23 healthy right-handed subjects had to catch a free falling object through quantitative electroencephalogram (qEEG). For this reason, we used coherence that represents a measurement of linear covariation between two signals in the frequency domain. In addition, we investigated gamma-band (30-100 Hz) activity that is related to cognitive and somatosensory processes. We hypothesized that gamma coherence will be increase in both parietal and occipital areas during moment after ball drop, due to their involvement in manipulation of objects, visuospatial processing, visual perception, stimuli identification and attention processes. We confirmed our hypothesis, an increase in gamma coherence on P3-P4 (t= -2.15; p=0.033) and PZ-OZ (t= -2.16; p=0.034) electrode pairs was verified for a paired t-test. We conclude that to execute tasks involving anticipatory movements (feedforward mechanisms), like our own task, probably, there is no need of a strong participation of visual areas in the process of information organization to manipulate objects and to process visuospatial information regarding the contact hand-object.
Collapse
Affiliation(s)
- S Teixeira
- Federal University of Rio de Janeiro, Brazil
| | - B Velasques
- Federal University of Rio de Janeiro, Brazil; Institute of Applied Neuroscience, Brazil
| | - S Machado
- Federal University of Rio de Janeiro, Brazil; Institute of Applied Neuroscience, Brazil
| | - F Paes
- Federal University of Rio de Janeiro, Brazil; Brazilian Institute of Medicine and Rehabilitation, Brazil
| | - M Cunha
- Federal University of Rio de Janeiro, Brazil; Institute of Applied Neuroscience, Brazil; Federal University of Vale do São Francisco, Brazil
| | - H Budde
- Humboldt Universität zu Berlin, Germany
| | - R Anghinah
- University of São Paulo Medical School, Brazil
| | - L F H Basile
- University of São Paulo Medical School, Brazil; UMESP, Brazil
| | - M Cagy
- Federal Fluminense University, Brazil
| | - R Piedade
- Federal University of Rio de Janeiro, Brazil
| | - P Ribeiro
- Federal University of Rio de Janeiro, Brazil; UFRJ, Brazil; Institute of Applied Neuroscience, Brazil
| |
Collapse
|
80
|
Hinder MR, Schmidt MW, Garry MI, Carroll TJ, Summers JJ. Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. J Appl Physiol (1985) 2010; 110:166-75. [PMID: 21088207 DOI: 10.1152/japplphysiol.00958.2010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phenomenon of cross-limb transfer, in which unilateral strength training can result in bilateral strength gains, has recently been tested for ballistic movements. Performance gains associated with repetitive motor practice, and the associated transfer, occur within a few minutes. In this study, young and older adults were trained to perform ballistic abductions of their dominant (right) index finger as quickly as possible. Performance was assessed bilaterally before, during, and after this training. Both groups exhibited large performance gains in the right hand as a result of training (P < 0.001; young 84% improvement, older 70% improvement), which were not significantly different between groups (P = 0.40). Transcranial magnetic stimulation revealed that the performance improvements were accompanied by increases in excitability, together with decreases in intracortical inhibition, of the projections to both the trained muscle and the homologous muscle in the contralateral limb (P < 0.05). The young group also exhibited performance improvements as a result of cross-limb transfer in the left (untrained) hand (P < 0.005), equivalent to 75% of the performance increase in the trained hand. In contrast, there were no significant performance gains in the left hand for the older group (P = 0.23). This was surprising given that the older group exhibited a significantly greater degree of mirror activity than the young group (P < 0.01) in the left first dorsal interosseus muscle (FDI) during right hand movements. Our findings suggest that older adults exhibit a reduced capacity for cross-limb transfer, which may have implications for motor rehabilitation programs after stroke.
Collapse
Affiliation(s)
- Mark R Hinder
- uman Motor Control Laboratory, School of Psychology, University of Tasmania, Hobart, Australia.
| | | | | | | | | |
Collapse
|
81
|
Excitability changes in the ipsilateral primary motor cortex during rhythmic contraction of finger muscles. Neurosci Lett 2010; 488:22-5. [PMID: 21056628 DOI: 10.1016/j.neulet.2010.10.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/26/2010] [Accepted: 10/29/2010] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine whether the excitatory ipsilateral primary motor cortex (ipsi-M1) is affected by changes in the frequency of rhythmic voluntary contraction of the left first dorsal interosseous (FDI) induced by repetitive abduction of the left index-finger. Transcranial magnetic stimulations were delivered to the left M1 during repetitive left index-finger abduction at 1, 2, and 3Hz, and motor evoked potentials (MEPs) were simultaneously evoked in the resting right (Rt)-FDI, Rt-abductor pollicis brevis, and Rt-abductor digiti minimi. The stimulus-response (S-R) curve of the MEP at each frequency was recorded. In addition, F-waves were recorded from the Rt-FDI during these rhythmic contraction tasks in order to examine the changes in spinal motoneuron excitability. MEPs were markedly increased under the 3Hz conditions compared with the other conditions. However, F-waves were hardly changed under these conditions. The S-R curve of the MEP induced under the 3Hz conditions was significantly steeper than the curves produced under other conditions. Our results indicate that the excitability of ipsi-M1 is affected by the frequency of rhythmic voluntary contraction of unilateral finger movement, which may be caused by neural inputs delivered via a transcallosal pathway.
Collapse
|
82
|
Teixeira S, Velasques B, Machado S, Cunha M, Domingues CA, Budde H, Anghinah R, Basile LF, Cagy M, Piedade R, Ribeiro P. Gamma-band oscillations in fronto-central areas during performance of a sensorimotor integration task: A qEEG coherence study. Neurosci Lett 2010; 483:114-7. [DOI: 10.1016/j.neulet.2010.07.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 07/05/2010] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
|
83
|
Christova M, Rafolt D, Mayr W, Wilfling B, Gallasch E. Vibration stimulation during non-fatiguing tonic contraction induces outlasting neuroplastic effects. J Electromyogr Kinesiol 2010; 20:627-35. [PMID: 20363152 DOI: 10.1016/j.jelekin.2010.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022] Open
|
84
|
Kasahara M, Menon DK, Salmond CH, Outtrim JG, Taylor Tavares JV, Carpenter TA, Pickard JD, Sahakian BJ, Stamatakis EA. Altered functional connectivity in the motor network after traumatic brain injury. Neurology 2010; 75:168-76. [PMID: 20625170 DOI: 10.1212/wnl.0b013e3181e7ca58] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND A large proportion of survivors of traumatic brain injury (TBI) have persistent cognitive impairments, the profile of which does not always correspond to the size and location of injuries. One possible explanation could be that TBI-induced damage extends beyond obvious lesion sites to affect remote brain networks. We explored this hypothesis in the context of a simple and well-characterized network, the motor network. The aim of this cross-sectional study was to establish the residual integrity of the motor network as an important proof of principle of abnormal connectivity in TBI. METHODS fMRI data were obtained from 12 right-handed patients and 9 healthy controls while they performed the finger-thumb opposition task with the right hand. We used both conventional and psychophysiologic interaction (PPI) analyses to examine the integrity of functional connections from brain regions we found to be activated in the paradigm we used. RESULTS As expected, the analysis showed significant activations of the left primary motor cortex (M1), right cerebellum (Ce), and bilateral supplementary motor area (SMA) in controls. However, only the activation of M1 survived robust statistical thresholding in patients. In controls, the PPI analysis revealed that left M1, SMA, and right Ce positively interacted with the left frontal cortex and negatively interacted with the right supramarginal gyrus. In patients, we observed no negative interaction and reduced interhemispheric interactions from these seed regions. CONCLUSIONS These observations suggest that patients display compromised activation and connectivity patterns during the finger-thumb opposition task, which may imply functional reorganization of motor networks following TBI.
Collapse
Affiliation(s)
- M Kasahara
- Division of Anaesthesia, University Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
The effect of ballistic thumb contractions on the excitability of the ipsilateral motor cortex. Exp Brain Res 2009; 201:229-38. [DOI: 10.1007/s00221-009-2029-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 09/21/2009] [Indexed: 11/25/2022]
|
86
|
Beck S, Shamim EA, Richardson SP, Schubert M, Hallett M. Inter-hemispheric inhibition is impaired in mirror dystonia. Eur J Neurosci 2009; 29:1634-40. [PMID: 19419426 DOI: 10.1111/j.1460-9568.2009.06710.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surround inhibition, a neural mechanism relevant for skilled motor behavior, has been shown to be deficient in the affected primary motor cortex (M1) in patients with focal hand dystonia (FHD). Even in unilateral FHD, however, electrophysiological and neuroimaging studies have provided evidence for bilateral M1 abnormalities. Clinically, the presence of mirror dystonia, dystonic posturing when the opposite hand is moved, also suggests abnormal interhemispheric interaction. To assess whether a loss of inter-hemispheric inhibition (IHI) may contribute to the reduced surround inhibition, IHI towards the affected or dominant M1 was examined in 13 patients with FHD (seven patients with and six patients without mirror dystonia, all affected on the right hand) and 12 right-handed, age-matched healthy controls (CON group). IHI was tested at rest and during three different phases of a right index finger movement in a synergistic, as well as in a neighboring, relaxed muscle. There was a trend for a selective loss of IHI between the homologous surrounding muscles in the phase 50 ms before electromyogram onset in patients with FHD. Post hoc analysis revealed that this effect was due to a loss of IHI in the patients with FHD with mirror dystonia, while patients without mirror dystonia did not show any difference in IHI modulation compared with healthy controls. We conclude that mirror dystonia may be due to impaired IHI towards neighboring muscles before movement onset. However, IHI does not seem to play a major role in the general pathophysiology of FHD.
Collapse
Affiliation(s)
- S Beck
- Human Motor Control Section, NINDS, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
87
|
Fukumura K, Sugawara K, Tanabe S, Ushiba J, Tomita Y. INFLUENCE OF MIRROR THERAPY ON HUMAN MOTOR CORTEX. Int J Neurosci 2009; 117:1039-48. [PMID: 17613113 DOI: 10.1080/00207450600936841] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article investigates whether or not mirror therapy alters the neural mechanisms in human motor cortex. Six healthy volunteers participated. The study investigated the effects of three main factors of mirror therapy (observation of hand movements in a mirror, motor imagery of an assumed affected hand, and assistance in exercising the assumed affected hand) on excitability changes in the human motor cortex to clarify the contribution of each factor. The increase in motor-evoked potential (MEP) amplitudes during motor imagery tended to be larger with a mirror than without one. Moreover, MEP amplitudes increased greatly when movements were assisted. Watching the movement of one hand in a mirror makes it easier to move the other hand in the same way. Moreover, the increase in MEP amplitudes is related to the synergic effects of afferent information and motor imagery.
Collapse
Affiliation(s)
- Kenji Fukumura
- Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
88
|
Perez MA, Cohen LG. Scaling of motor cortical excitability during unimanual force generation. Cortex 2009; 45:1065-71. [PMID: 19243741 DOI: 10.1016/j.cortex.2008.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/04/2008] [Accepted: 12/09/2008] [Indexed: 12/22/2022]
Abstract
During performance of a unimanual force generation task primary motor cortices (M1s) experience clear functional changes. Here, we evaluated the way in which M1s interact during parametric increases in right wrist flexion force in healthy volunteers. We measured the amplitude and the slope of motor evoked potentials (MEP) recruitment curves to transcranial magnetic stimulation (TMS) in the left and right flexor carpi radialis (FCR) muscles at rest and during 10%, 30% and 70% of maximal wrist flexion force. At rest, no differences were observed in the amplitude and slope of MEP recruitment curves in the left and right FCR muscles. With increasing right wrist flexion force, MEP amplitudes increased in both FCR muscles, with larger amplitudes in the right FCR. We found a significant correlation between the left and right MEP amplitudes across conditions. The slope of right and left FCR MEP recruitment curve was significantly steeper at 70% of force compared to rest and 10% of force. A significant correlation between the slope of left and right FCR MEP amplitudes was found at 70% of force only. Our results indicate a differential scaling of excitability in the corticospinal system controlling right and left FCR muscles at increasing levels of unimanual force generation. Specifically, these data highlights that at strong levels of unimanual force the increases in motor cortical excitability with increasing TMS stimulus intensities follow a similar pattern in both M1s, while at low levels of force they do not.
Collapse
Affiliation(s)
- Monica A Perez
- Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
89
|
Abstract
Behavior arises from a constant competition between potential actions. For example, movements performed unimanually require selecting one hand rather than the other. Corticospinal (CS) excitability of the nonselected hand is typically decreased prior to movement initiation, suggesting that response selection may involve mechanisms that inhibit nonselected candidate movements. To examine this hypothesis, participants performed a reaction time task, responding with the left, right, or both indexes. Transcranial magnetic stimulation was applied over the right primary motor cortex (M1) to induce motor-evoked potentials (MEPs) in a left hand muscle at various stages during response preparation. To vary the time of response selection, an imperative signal was preceded by a preparatory cue that was either informative or uninformative. Left MEPs decreased following the cue. Surprisingly, this decrease was greater when an informative cue indicated that the response might require the left hand than when it indicated a right hand response. In the uninformative condition, we did not observe additional attenuation of left MEP after an imperative indicating a right hand response. These results argue against the "deselection" hypothesis. Rather, CS suppression seems to arise from "impulse control" mechanisms that ensure that responses associated with potentially selected actions are not initiated prematurely.
Collapse
Affiliation(s)
- Julie Duque
- Department of Psychology, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
90
|
Abstract
It is proposed that the mind and brain often work at a gross level and only with fine tuning or inhibition act in a more differentiated manner, even when one might think the domains being issued the global command should be distinct. This applies to disparate findings in cognitive science and neuroscience in both children and adults. Thus, it is easier to switch everything, or nothing, than to switch one thing (the rule one is following or which button to press) but not the other. It is easier to issue the same command to both hands than to move only one hand. If one needs to respond to the opposite (or antonym) of a stimulus, one is faster if the correct response is to the side opposite the stimulus. People tend to think of the nervous system as sending out very precise commands only to the relevant recipient, but it appears that often the command goes out more globally and then parts of the system need to be inhibited from acting on the command.
Collapse
Affiliation(s)
- Adele Diamond
- Department of Psychiatry, University of British Columbia, Canada.
| |
Collapse
|
91
|
Takahashi K, Maruyama A, Maeda M, Etoh S, Hirakoba K, Kawahira K, Rothwell JC. Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex. Clin Neurophysiol 2008; 120:198-203. [PMID: 19028439 DOI: 10.1016/j.clinph.2008.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/16/2008] [Accepted: 10/02/2008] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study was designed to examine whether exhaustive grip exercise of the left hand affected intracortical excitability in ipsilateral motor cortex. METHODS Ten healthy male subjects (aged 21-24 years) participated in experiment 1 in which paired-pulse transcranial magnetic stimulation (TMS) was used to test corticospinal and corticocortical excitability in right (relaxed) first dorsal interosseous (FDI) muscle during the recovery period after exhaustive forceful grip exercise of the left hand. Seven of the same subjects participated in experiment 2, in which the intensity of the test stimulus was adjusted so that the amplitude of motor evoked potential (MEP(TEST)) was kept constant throughout the measurement. RESULTS In experiment 1, MEP(TEST) was slightly reduced from 5 to 15min after exercise whilst short interval intracortical inhibition (SICI) at interstimulus interval (ISI) of 2 and 3ms became less effective. Intracortical facilitation (ICF) was unchanged. In experiment 2 when the MEP(TEST) was maintained at a constant size there was again no change in ICF, and the reduction in SICI was still present at the same intervals. CONCLUSIONS We conclude that unilateral exhaustive grip exercise reduced the excitability of the corticospinal output of the ipsilateral motor cortex whilst simultaneously reducing the excitability of SICI. These results would be compatible with the idea that fatigue increases the tonic level of interhemispheric inhibition from the fatigued to the non-fatigued cortex. SIGNIFICANCE Muscle fatigue to the point of exhaustion has lasting effects on the excitability of intracortical circuits in the non-exercised hemisphere, perhaps via changes in the tonic levels of activity in transcallosal pathways.
Collapse
Affiliation(s)
- Kyohei Takahashi
- Biological Functions and Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
92
|
Walsh RR, Small SL, Chen EE, Solodkin A. Network activation during bimanual movements in humans. Neuroimage 2008; 43:540-53. [PMID: 18718872 DOI: 10.1016/j.neuroimage.2008.07.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/07/2008] [Accepted: 07/10/2008] [Indexed: 11/16/2022] Open
Abstract
The coordination of movement between the upper limbs is a function highly distributed across the animal kingdom. How the central nervous system generates such bilateral, synchronous movements, and how this differs from the generation of unilateral movements, remain uncertain. Electrophysiologic and functional imaging studies support that the activity of many brain regions during bimanual and unimanual movement is quite similar. Thus, the same brain regions (and indeed the same neurons) respond similarly during unimanual and bimanual movements as measured by electrophysiological responses. How then are different motor behaviors generated? To address this question, we studied unimanual and bimanual movements using fMRI and constructed networks of activation using Structural Equation Modeling (SEM). Our results suggest that (1) the dominant hemisphere appears to initiate activity responsible for bimanual movement; (2) activation during bimanual movement does not reflect the sum of right and left unimanual activation; (3) production of unimanual movement involves a network that is distinct from, and not a mirror of, the network for contralateral unimanual movement; and (4) using SEM, it is possible to obtain robust group networks representative of a population and to identify individual networks which can be used to detect subtle differences both between subjects as well as within a single subject over time. In summary, these results highlight a differential role for the dominant and non-dominant hemispheres during bimanual movements, further elaborating the concept of handedness and dominance. This knowledge increases our understanding of cortical motor physiology in health and after neurological damage.
Collapse
Affiliation(s)
- R R Walsh
- Brain Research Imaging Center, Department of Neurology, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
93
|
van Duinen H, Renken R, Maurits NM, Zijdewind I. Relation between muscle and brain activity during isometric contractions of the first dorsal interosseus muscle. Hum Brain Mapp 2008; 29:281-99. [PMID: 17394210 PMCID: PMC6870705 DOI: 10.1002/hbm.20388] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We studied the relationship between muscle activity (electromyography, EMG), force, and brain activity during isometric contractions of the index finger, on a group and individual level. Ten subjects contracted their right or left index finger at 5, 15, 30, 50, and 70% of their maximal force. Subjects received visual feedback of the produced force. We focused our analysis on brain activation that correlated with EMG. Brain activity of specific anatomical areas (region-of-interest analysis, ROI) was quantified and correlated with EMG activity. Furthermore, we tried to distinguish between brain areas in which activity was modulated by the amount of EMG and areas that were active during the task but in which the activity was not modulated. Therefore, we used two regressors simultaneously: (1) the produced EMG and (2) the task (a categorical regressor). As expected, activity in the motor areas (contralateral sensorimotor cortex, premotor areas, and ipsilateral cerebellum) strongly correlated with the amount of EMG. In contrast, activity in frontal and parietal areas (inferior part of the right precentral sulcus, ipsilateral supramarginal gyrus, bilateral inferior parietal lobule, bilateral putamen, and insular cortex) correlated with activation per se, independently of the amount of EMG. Activity in these areas was equal during contractions of the right or left index finger. We suppose that these areas are more involved in higher order motor processes during the preparatory phase or monitoring feedback mechanisms. Furthermore, our ROI analysis showed that muscle and brain activity strongly correlate in traditional motor areas, both at group and at subject level.
Collapse
Affiliation(s)
- Hiske van Duinen
- Department of Medical Physiology, University Medical Center Groningen, University of Groningen, The Netherlands.
| | | | | | | |
Collapse
|
94
|
Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. J Neurosci 2008; 28:5631-40. [PMID: 18509024 DOI: 10.1523/jneurosci.0093-08.2008] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Performance of a unimanual hand motor task results in functional changes in both primary motor cortices (M1(ipsilateral) and M1(contralateral)). The neuronal mechanisms controlling the corticospinal output originated in M1(ipsilateral) and the resting hand during a unimanual task remain unclear. Here, we assessed functional changes within M1(ipsilateral) and in interhemispheric inhibition (IHI) associated with parametric increases in unimanual force. We measured motor-evoked potential (MEP) recruitment curves (RCs) and short-interval intracortical inhibition (SICI) in M1(ipsilateral), IHI from M1(contralateral) to M1(ipsilateral), and the influence of IHI over SICI using transcranial magnetic stimulation at rest and during 10, 30, and 70% of maximal right wrist flexion force. EMG from the left resting flexor carpi radialis (FCR) muscle was comparable across conditions. Left FCR MEP RCs increased, and SICI decreased with increasing right wrist force. Activity-dependent (rest and 10, 30, and 70%) left FCR maximal MEP size correlated with absolute changes in SICI. IHI decreased with increasing force at matched conditioned MEP amplitudes. IHI and SICI were inversely correlated at increasing forces. In the presence of IHI, SICI decreased at rest and 70% force. In summary, we found activity-dependent changes in (1) SICI in M1(ipsilateral), (2) IHI from M1(contralateral) to M1(ipsilateral), and (3) the influence of IHI over SICI in the left resting hand during force generation by the right hand. Our findings indicate that interactions between GABAergic intracortical circuits mediating SICI and interhemispheric glutamatergic projections between M1s contribute to control activity-dependent changes in corticospinal output to a resting hand during force generation by the opposite hand.
Collapse
|
95
|
Carroll TJ, Lee M, Hsu M, Sayde J. Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability. J Appl Physiol (1985) 2008; 104:1656-64. [DOI: 10.1152/japplphysiol.01351.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has long been known that practicing a task with one limb can result in performance improvements with the opposite, untrained limb. Hypotheses to account for cross-limb transfer of performance state that the effect is mediated either by neural adaptations in higher order control centers that are accessible to both limbs, or that there is a “spillover” of neural drive to the opposite hemisphere that results in bilateral adaptation. Here we address these hypotheses by assessing performance and corticospinal excitability in both hands after unilateral practice of a ballistic finger movement. Participants ( n = 9) completed 300 practice trials of a ballistic task with the right hand, the aim of which was to maximize the peak abduction acceleration of the index finger. Practice caused a 140% improvement in right-hand performance and an 82% improvement for the untrained left hand. There were bilateral increases in the amplitude of responses to transcranial magnetic stimulation, but increased corticospinal excitability was not correlated with improved performance. There were no significant changes in corticospinal excitability or task performance for a control group that did not train ( n = 9), indicating that performance testing for the left hand alone did not induce performance or corticospinal effects. Although the data do not provide conclusive evidence whether increased corticospinal excitability in the untrained hand is causally related to the cross-transfer of ballistic performance, the finding that ballistic practice can induce bilateral corticospinal adaptations may have important clinical implications for movement rehabilitation.
Collapse
|
96
|
Hayashi MJ, Saito DN, Aramaki Y, Asai T, Fujibayashi Y, Sadato N. Hemispheric asymmetry of frequency-dependent suppression in the ipsilateral primary motor cortex during finger movement: a functional magnetic resonance imaging study. ACTA ACUST UNITED AC 2008; 18:2932-40. [PMID: 18413350 PMCID: PMC2583153 DOI: 10.1093/cercor/bhn053] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrophysiological studies have suggested that the activity of the primary motor cortex (M1) during ipsilateral hand movement reflects both the ipsilateral innervation and the transcallosal inhibitory control from its counterpart in the opposite hemisphere, and that their asymmetry might cause hand dominancy. To examine the asymmetry of the involvement of the ipsilateral motor cortex during a unimanual motor task under frequency stress, we conducted block-design functional magnetic resonance imaging with 22 normal right-handed subjects. The task involved visually cued unimanual opponent finger movement at various rates. The contralateral M1 showed symmetric frequency-dependent activation. The ipsilateral M1 showed task-related deactivation at low frequencies without laterality. As the frequency of the left-hand movement increased, the left M1 showed a gradual decrease in the deactivation. This data suggests a frequency-dependent increased involvement of the left M1 in ipsilateral hand control. By contrast, the right M1 showed more prominent deactivation as the frequency of the right-hand movement increased. This suggests that there is an increased transcallosal inhibition from the left M1 to the right M1, which overwhelms the right M1 activation during ipsilateral hand movement. These results demonstrate the dominance of the left M1 in both ipsilateral innervation and transcallosal inhibition in right-handed individuals.
Collapse
Affiliation(s)
- Masamichi J Hayashi
- Department of Physiological Sciences, The Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | | | | | | | | | | |
Collapse
|
97
|
Kastrup A, Baudewig J, Schnaudigel S, Huonker R, Becker L, Sohns JM, Dechent P, Klingner C, Witte OW. Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex. Neuroimage 2008; 41:1364-71. [PMID: 18495495 DOI: 10.1016/j.neuroimage.2008.03.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 03/14/2008] [Accepted: 03/23/2008] [Indexed: 10/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) hypothesis testing based on the blood oxygenation level dependent (BOLD) contrast mechanism typically involves a search for a positive effect during a specific task relative to a control state. However, aside from positive BOLD signal changes there is converging evidence that neuronal responses within various cortical areas also induce negative BOLD signals. Although it is commonly believed that these negative BOLD signal changes reflect suppression of neuronal activity direct evidence for this assumption is sparse. Since the somatosensory system offers the opportunity to quantitatively test sensory function during concomitant activation and has been well-characterized with fMRI in the past, the aim of this study was to determine the functional significance of ipsilateral negative BOLD signal changes during unilateral sensory stimulation. For this, we measured BOLD responses in the somatosensory system during unilateral electric stimulation of the right median nerve and additionally determined the current perception threshold of the left index finger during right-sided electrical median nerve stimulation as a quantitative measure of sensory function. As expected, positive BOLD signal changes were observed in the contralateral primary and bilateral secondary somatosensory areas, whereas a decreased BOLD signal was observed in the ipsilateral primary somatosensory cortex (SI). The negative BOLD signal changes were much more spatially extensive than the representation of the hand area within the ipsilateral SI. The negative BOLD signal changes in the area of the index finger highly correlated with an increase in current perception thresholds of the contralateral, unstimulated finger, thus supporting the notion that the ipsilateral negative BOLD response reflects a functionally effective inhibition in the somatosensory system.
Collapse
Affiliation(s)
- Andreas Kastrup
- Department of Neurology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Cincotta M, Ziemann U. Neurophysiology of unimanual motor control and mirror movements. Clin Neurophysiol 2008; 119:744-62. [DOI: 10.1016/j.clinph.2007.11.047] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/17/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022]
|
99
|
Frye RE, Rotenberg A, Ousley M, Pascual-Leone A. Transcranial magnetic stimulation in child neurology: current and future directions. J Child Neurol 2008; 23:79-96. [PMID: 18056688 PMCID: PMC2539109 DOI: 10.1177/0883073807307972] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation based on the principle of electromagnetic induction, where small intracranial electric currents are generated by a powerful, rapidly changing extracranial magnetic field. Over the past 2 decades TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disease in adults, but has been used on a more limited basis in children. We reviewed the literature to identify potential diagnostic and therapeutic applications of TMS in child neurology and also its safety in pediatrics. Although TMS has not been associated with any serious side effects in children and appears to be well tolerated, general safety guidelines should be established. The potential for applications of TMS in child neurology and psychiatry is significant. Given its excellent safety profile and possible therapeutic effect, this technique should develop as an important tool in pediatric neurology over the next decade.
Collapse
Affiliation(s)
- Richard E. Frye
- Department of Pediatrics, Division of Child Neurology, University of Texas Health Science Center at Houston
| | - Alexander Rotenberg
- Department of Neurology, Children's Hospital Boston, Boston, Massachusetts, Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Harvard Medical School, Boston, Massachusetts
| | | | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Harvard Medical School, Boston, Massachusetts, Institut Guttmann de Neurorehabilitació, Universitat Autónoma de Barcelona, Spain
| |
Collapse
|
100
|
Brocke J, Schmidt S, Irlbacher K, Cichy RM, Brandt SA. Transcranial cortex stimulation and fMRI: electrophysiological correlates of dual-pulse BOLD signal modulation. Neuroimage 2007; 40:631-643. [PMID: 18234515 DOI: 10.1016/j.neuroimage.2007.11.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 11/21/2007] [Accepted: 11/28/2007] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Are the local hemodynamic changes in BOLD-fMRI correlated to increased or decreased neuronal activity or both? We combined transcranial electrical cortex stimulation (TES) with simultaneous fMRI and electromyographic (EMG) recording to study the influence of inhibitory and excitatory neuronal activity on the concomitant BOLD signal change. Unilateral or bilateral TES was applied with a postero-anterior orientation. This activates pyramidal cells transsynaptically and allows for the induction of cortical inhibition and excitation of the pyramidal cell, respectively. In this project interhemispheric inhibition (IHI) served as an in vivo model to investigate electrophysiologically well defined inhibitory and excitatory effects. METHODOLOGY Included event-related fMRI, which triggered TES; online recording of the EMG response monitored the inhibitory and excitatory influences on discharging corticospinal neurons. RESULTS Revealed that a single suprathreshold stimulus induced a positive BOLD response both in the ipsilateral as well as in the contralateral primary motor cortex (M1). The contralateral co-activation of the homotopic M1 should be a functional correlate of transcallosal connections. If a contralateral conditioning stimulus preceded the test stimulus by 10 ms (IHI), the subsequent ipsilateral BOLD signal was significantly reduced. We find that cortical inhibitory processes are accompanied by attenuation of the local neurovascular signal.
Collapse
Affiliation(s)
- Jan Brocke
- Department of Neurology, Berlin NeuroImaging Center, Charité, 10117 Berlin, Germany
| | - Sein Schmidt
- Department of Neurology, Berlin NeuroImaging Center, Charité, 10117 Berlin, Germany
| | - Kerstin Irlbacher
- Department of Neurology, Berlin NeuroImaging Center, Charité, 10117 Berlin, Germany
| | | | - Stephan A Brandt
- Department of Neurology, Berlin NeuroImaging Center, Charité, 10117 Berlin, Germany.
| |
Collapse
|