51
|
Choi WI, Kamaly N, Riol-Blanco L, Lee IH, Wu J, Swami A, Vilos C, Yameen B, Yu M, Shi J, Tabas I, von Andrian UH, Jon S, Farokhzad OC. A solvent-free thermosponge nanoparticle platform for efficient delivery of labile proteins. NANO LETTERS 2014; 14:6449-55. [PMID: 25333768 PMCID: PMC4245989 DOI: 10.1021/nl502994y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Protein therapeutics have gained attention recently for treatment of a myriad of human diseases due to their high potency and unique mechanisms of action. We present the development of a novel polymeric thermosponge nanoparticle for efficient delivery of labile proteins using a solvent-free polymer thermo-expansion mechanism with clinical potential, capable of effectively delivering a range of therapeutic proteins in a sustained manner with no loss of bioactivity, with improved biological half-lives and efficacy in vivo.
Collapse
Affiliation(s)
- Won Il Choi
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Nazila Kamaly
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Lorena Riol-Blanco
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - In-Hyun Lee
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Archana Swami
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Cristian Vilos
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
- Center
for Integrative Medicine and Innovative Science, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Basit Yameen
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Mikyung Yu
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Jinjun Shi
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Ira Tabas
- Department
of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University, New York, New York 10032, United States
| | - Ulrich H. von Andrian
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Sangyong Jon
- KAIST
Institute of the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Republic of Korea
| | - Omid C. Farokhzad
- Laboratory
of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham
and Women’s Hospital and Department of Microbiology and Immunobiology,
Division of Immunology, Harvard Medical
School, Boston, Massachusetts 02115, United States
- King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- E-mail: . Tel: 617-732-6093. Fax: 617-730-2801
| |
Collapse
|
52
|
Transferrin-conjugated nanodiamond as an intracellular transporter of chemotherapeutic drug and targeting therapy for cancer cells. Ther Deliv 2014; 5:511-24. [PMID: 24998271 DOI: 10.4155/tde.14.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM PEGylated fluorescent nanodiamond (FND) conjugated with Tf (FND-PEG-Tf) was investigated for targeted drug delivery. MATERIALS & METHODS Human hepatoma (HepG2) and normal (L-02) cell lines were used to investigate the difference in cellular uptake of FND-PEG-Tf and its loading drug system. Nanoparticle uptake was evaluated by flow cytometry and laser scanning confocal microscopy. RESULTS FND-PEG-Tf showed highly specific TfR-mediated uptake by HepG2 cells, relative to negative controls (L-02 cell), which was a strong correlation among TfR density on the cell surface. The mechanism of TfR-mediated uptake was attested by free Tf with Fe³⁺ as a competitive agent. The difference in cell viability between L-02 and HepG2 cells treated with doxorubicin hydrochloride (DOX) nanoparticles (FND-PEG-Tf-DOX) can be explained by FND-PEG-Tf, which can target drug delivery to cancer cells. CONCLUSION FND-PEG-Tf can potentially be utilized in targeted cancer cell imaging and effective drug delivery for cancer therapy.
Collapse
|
53
|
Improved Pharmacokinetic and Biodistribution Properties of the Selective Urokinase Inhibitor PAI-2 (SerpinB2) by Site-Specific PEGylation: Implications for Drug Delivery. Pharm Res 2014; 32:1045-54. [DOI: 10.1007/s11095-014-1517-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
|
54
|
Muñoz F, Caracciolo PC, Daleo G, Abraham GA, Guevara MG. Evaluation of in vitro cytotoxic activity of mono-PEGylated StAP3 ( Solanum tuberosum aspartic protease 3) forms. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2014; 3:1-7. [PMID: 28626641 PMCID: PMC5466107 DOI: 10.1016/j.btre.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
StAP3 is a plant aspartic protease with cytotoxic activity toward a broad spectrum of pathogens, including potato and human pathogen microorganisms, and cancer cells, but not against human T cells, human red blood cells or plant cells. For this reason, StAP3 could be a promising and potential drug candidate for future therapies. In this work, the improvement of the performance of StAP3 was achieved by means of a modification with PEG. The separation of a mono-PEGylated StAP3 fraction was easily performed by gel filtration chromatography. The mono-PEGylated StAP3 fraction was studied in terms of in vitro antimicrobial activity, exhibiting higher antimicrobial activity against Fusarium solani spores and Bacillus cereus, but slightly lower activity against Escherichia coli than native protein. Such increase in antifungal activity has not been reported previously for a PEGylated plant protein. In addition, PEGylation did not affect the selective cytotoxicity of StAP3, since no hemolytic activity was observed.
Collapse
Key Words
- AMPPs, antimicrobial proteins and peptides
- ATCC, American Type Culture Collection
- Antimicrobial protein
- BSA, bovine serum albumin
- DTT, dithiothreitol
- PBS, phosphate buffered saline
- PDA, potato dextrose agar
- PEG, polyethylene glycol
- PEGylation
- Plant aspartic protease
- SDS, sodium dodecyl sulphate
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- Selective cytotoxicity
- StAP3, Solanum tuberosum aspartic protease 3
- StAsp-PSI, plant-specific insert of potato aspartic protease
- hRBC, Fresh human red blood cells
- mPEG-SVA, succinimidyl valerate monomethoxy polyethylene glycol
Collapse
Affiliation(s)
- Fernando Muñoz
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Pablo C. Caracciolo
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, 7600, Mar del Plata, Argentina
| | - Gustavo Daleo
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Gustavo A. Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, 7600, Mar del Plata, Argentina
| | - M. Gabriela Guevara
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| |
Collapse
|
55
|
Healy AM, Amaro MI, Paluch KJ, Tajber L. Dry powders for oral inhalation free of lactose carrier particles. Adv Drug Deliv Rev 2014; 75:32-52. [PMID: 24735676 DOI: 10.1016/j.addr.2014.04.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
Dry powder inhaler (DPI) products have traditionally comprised a simple formulation of micronised drug mixed with a carrier excipient, typically lactose monohydrate. The presence of the carrier is aimed at overcoming issues of poor flowability and dispersibility, associated with the cohesive nature of small, micronised active pharmaceutical ingredient (API) particles. Both the powder blend and the DPI device must be carefully designed so as to ensure detachment of the micronised drug from the carrier excipient on inhalation. Over the last two decades there has been a significant body of research undertaken on the design of carrier-free formulations for DPI products. Many of these formulations are based on sophisticated particle engineering techniques; a common aim in formulation design of carrier-free products being to reduce the intrinsic cohesion of the particles, while maximising dispersion and delivery from the inhaler. In tandem with the development of alternative formulations has been the development of devices designed to ensure the efficient delivery and dispersion of carrier-free powder on inhalation. In this review we examine approaches to both the powder formulation and inhaler design for carrier-free DPI products.
Collapse
|
56
|
Liebner R, Mathaes R, Meyer M, Hey T, Winter G, Besheer A. Protein HESylation for half-life extension: Synthesis, characterization and pharmacokinetics of HESylated anakinra. Eur J Pharm Biopharm 2014; 87:378-85. [DOI: 10.1016/j.ejpb.2014.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/07/2023]
|
57
|
Muralidharan P, Mallory E, Malapit M, Hayes D, Mansour HM. Inhalable PEGylated Phospholipid Nanocarriers and PEGylated Therapeutics for Respiratory Delivery as Aerosolized Colloidal Dispersions and Dry Powder Inhalers. Pharmaceutics 2014; 6:333-53. [PMID: 24955820 PMCID: PMC4085602 DOI: 10.3390/pharmaceutics6020333] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/25/2014] [Accepted: 06/04/2014] [Indexed: 12/29/2022] Open
Abstract
Nanomedicine is making groundbreaking achievements in drug delivery. The versatility of nanoparticles has given rise to its use in respiratory delivery that includes inhalation aerosol delivery by the nasal route and the pulmonary route. Due to the unique features of the respiratory route, research in exploring the respiratory route for delivery of poorly absorbed and systemically unstable drugs has been increasing. The respiratory route has been successfully used for the delivery of macromolecules like proteins, peptides, and vaccines, and continues to be examined for use with small molecules, DNA, siRNA, and gene therapy. Phospholipid nanocarriers are an attractive drug delivery system for inhalation aerosol delivery in particular. Protecting these phospholipid nanocarriers from pulmonary immune system attack by surface modification by polyethylene glycol (PEG)ylation, enhancing mucopenetration by PEGylation, and sustaining drug release for controlled drug delivery are some of the advantages of PEGylated liposomal and proliposomal inhalation aerosol delivery. This review discusses the advantages of using PEGylated phospholipid nanocarriers and PEGylated therapeutics for respiratory delivery through the nasal and pulmonary routes as inhalation aerosols.
Collapse
Affiliation(s)
- Priya Muralidharan
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Evan Mallory
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Monica Malapit
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Don Hayes
- Lung and Heart-Lung Transplant Programs, Departments of Pediatrics and Internal Medicine, the Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| |
Collapse
|
58
|
Asano S, Gavrilyuk J, Burton DR, Barbas CF. Preparation and activities of macromolecule conjugates of the CCR5 antagonist Maraviroc. ACS Med Chem Lett 2014; 5:133-137. [PMID: 24563723 DOI: 10.1021/ml400370w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CCR5 antagonists are among the most advanced approaches in HIV therapy and may also be relevant to treatment of graft-versus-host disease and Staphylococcus aureus infection. To expand the potential of the only approved CCR5 antagonist, Maraviroc, we studied derivatives that would enable functional linkage of Maraviroc to long-lived carriers. Through targeted synthesis, we discovered an effective linkage site on Maraviroc and demonstrate the potential of these derivatives to prepare potent chemically programmed antibodies and PEGylated derivatives. The resulting compounds effectively neutralized a variety of HIV-1 isolates. Both chemically programmed antibody and PEGylation approaches extend the neutralization activity of serum circulating Maraviroc. Derivation of a successful conjugation strategy for Maraviroc should further enable its use in chemically programmed vaccines, novel bispecific antibodies, and topical microbicides.
Collapse
Affiliation(s)
- Shigehiro Asano
- Departments
of Chemistry and Cell and Molecular Biology, The Skaggs Institute
for Chemical Biology, The Scripps Research Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - Julia Gavrilyuk
- Departments
of Chemistry and Cell and Molecular Biology, The Skaggs Institute
for Chemical Biology, The Scripps Research Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - Dennis R. Burton
- Department
of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Carlos F. Barbas
- Departments
of Chemistry and Cell and Molecular Biology, The Skaggs Institute
for Chemical Biology, The Scripps Research Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
59
|
Zhang B, Zhang H, Myers BK, Elupula R, Jayawickramarajah J, Grayson SM. Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chim Acta 2014; 816:28-40. [PMID: 24580852 DOI: 10.1016/j.aca.2014.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/13/2014] [Indexed: 11/26/2022]
Abstract
End groups play a critical role in macromolecular coupling reactions for building complex polymer architectures, yet their identity and purity can be difficult to ascertain using traditional analytical technique. Recent advances in mass spectrometry techniques have made matrix-assisted laser desorption/ionization time-of-fight (MALDI-TOF) mass spectrometry a rapid and powerful tool for providing detailed information about the identity and purity of homopolymer end groups. In this work, MALDI-TOF mass spectrometry was used to study end groups of linear polyethylene glycols. In particular, the identifications of alcohol, amine and thiol end groups are investigated because these nucleophilic moieties are among the most common within biological and synthetic macromolecules. Through comparative characterization of alcohol, amine, and thiol end groups, the exact identification of these end groups could be confirmed by selective and quantitative modification. The precision of this technique enables the unambiguous differentiation of primary amino groups relative to hydroxyl groups, which differ by only 1 mass unit. In addition, the quantitative conversion of various polyethylene glycol end groups using highly efficient coupling reactions such as the thiol-ene and azide-alkyne click reactions can be confirmed using MALDI-TOF mass spectrometry.
Collapse
Affiliation(s)
- Boyu Zhang
- Tulane University, Department of Chemistry,
| | - Hong Zhang
- Tulane University, Department of Chemistry,
| | | | | | | | | |
Collapse
|
60
|
Van Tomme SR, Hennink WE. Biodegradable dextran hydrogels for protein delivery applications. Expert Rev Med Devices 2014; 4:147-64. [PMID: 17359222 DOI: 10.1586/17434440.4.2.147] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The rapid development of protein-based pharmaceuticals over recent decades has tremendously increased the need for suitable delivery systems, guaranteeing a safe and controlled delivery of proteinacious drugs. Hydrogels offer good opportunities as protein delivery systems or tissue engineering scaffolds owing to an inherent biocompatibility. Their hydrophilic, soft and rubbery nature ensures minimal tissue irritation and a low tendency of cells and proteins to adhere to the hydrogel surface. A variety of both natural and synthetic polymers have been used for the design of hydrogels, in which network formation is established by chemical or physical crosslinking. This review introduces the general features of hydrogels and focuses on dextran hydrogels in particular. Chemically and physically crosslinked systems are described and their potential suitability as protein delivery systems, as well as tissue engineering scaffolds are discussed. Special attention is given to network properties, protein delivery, degradation behavior and biocompatibility.
Collapse
Affiliation(s)
- Sophie R Van Tomme
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, PO Box 80082, 3508 TB Utrecht, The Netherlands.
| | | |
Collapse
|
61
|
Mironi-Harpaz I, Berdichevski A, Seliktar D. Fabrication of PEGylated fibrinogen: a versatile injectable hydrogel biomaterial. Methods Mol Biol 2014; 1181:61-8. [PMID: 25070327 DOI: 10.1007/978-1-4939-1047-2_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hydrogels are one of the most versatile biomaterials in use for tissue engineering and regenerative medicine. They are assembled from either natural or synthetic polymers, and their high water content gives these materials practical advantages in numerous biomedical applications. Semisynthetic hydrogels, such as those that combine synthetic and biological building blocks, have the added advantage of controlled bioactivity and material properties. In myocardial regeneration, injectable hydrogels premised on a semisynthetic design are advantageous both as bioactive bulking agents and as a delivery vehicle for controlled release of bioactive factors and/or cardiomyocytes. A new semisynthetic hydrogel based on PEGylated fibrinogen has been developed to address the many requirements of an injectable biomaterial in cardiac restoration. This chapter highlights the fundamental aspects of making this biomimetic hydrogel matrix for cardiac applications.
Collapse
Affiliation(s)
- Iris Mironi-Harpaz
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, office silver 168, Haifa, 32000, Israel
| | | | | |
Collapse
|
62
|
Rodrigues RC, Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Fernandez-Lafuente R. Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools. RSC Adv 2014. [DOI: 10.1039/c4ra04625k] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts.
Collapse
Affiliation(s)
- Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Oveimar Barbosa
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Edificio Camilo Torres 210
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología y Laboratorio Clínico
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Ap. 99-03080 Alicante, Spain
| | - Rodrigo Torres
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Edificio Camilo Torres 210
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | | |
Collapse
|
63
|
Cuchiara ML, Horter KL, Banda OA, West JL. Covalent immobilization of stem cell factor and stromal derived factor 1α for in vitro culture of hematopoietic progenitor cells. Acta Biomater 2013; 9:9258-69. [PMID: 23958779 DOI: 10.1016/j.actbio.2013.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/13/2013] [Accepted: 08/08/2013] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells (HSCs) are currently utilized in the treatment of blood diseases, but widespread application of HSC therapeutics has been hindered by the limited availability of HSCs. With a better understanding of the HSC microenvironment and the ability to precisely recapitulate its components, we may be able to gain control of HSC behavior. In this work we developed a novel, biomimetic PEG hydrogel material as a substrate for this purpose and tested its potential with an anchorage-independent hematopoietic cell line, 32D clone 3 cells. We immobilized a fibronectin-derived adhesive peptide sequence, RGDS; a cytokine critical in HSC self-renewal, stem cell factor (SCF); and a chemokine important in HSC homing and lodging, stromal derived factor 1α (SDF1α), onto the surfaces of poly(ethylene glycol) (PEG) hydrogels. To evaluate the system's capabilities, we observed the effects of the biomolecules on 32D cell adhesion and morphology. We demonstrated that the incorporation of RGDS onto the surfaces promotes 32D cell adhesion in a dose-dependent fashion. We also observed an additive response in adhesion on surfaces with RGDS in combination with either SCF or SDF1α. In addition, the average cell area increased and circularity decreased on gel surfaces containing immobilized SCF or SDF1α, indicating enhanced cell spreading. By recapitulating aspects of the HSC microenvironment using a PEG hydrogel scaffold, we have shown the ability to control the adhesion and spreading of the 32D cells and demonstrated the potential of the system for the culture of primary hematopoietic cell populations.
Collapse
|
64
|
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 2013; 4:1443-67. [PMID: 24228993 PMCID: PMC3956587 DOI: 10.4155/tde.13.104] [Citation(s) in RCA: 479] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed.
Collapse
Affiliation(s)
- Benjamin J Bruno
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| | - Geoffrey D Miller
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| | - Carol S Lim
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| |
Collapse
|
65
|
Elder AN, Hannes SK, Atoyebi SF, Washburn NR. Effects on peptide binding affinity for TNFα by PEGylation and conjugation to hyaluronic acid. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
66
|
Liu Q, De Felippis MR, Huang L. Method for characterization of PEGylated bioproducts in biological matrixes. Anal Chem 2013; 85:9630-7. [PMID: 24066974 DOI: 10.1021/ac401921z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PEGylation of peptides and proteins has been widely used to enhance stability and reduce immunogenicity of biotherapeutics. Characterizing the degradation of these PEGylated products in biological fluids can yield essential information to support pharmacokinetic evaluations and provide clues about their in vivo properties useful for further molecular optimization. In this paper, we describe a novel and uncomplicated approach to characterize PEGylated peptides or proteins and their related degradation products in biological matrixes. The method involves direct liquid chromatography/mass spectrometry (LC/MS) analysis of animal sera containing low nanograms to low micrograms per milliliter of PEGylated product with or without an acetonitrile precipitation sample treatment. Applying the methodology to analyze the model PEGylated peptides, 20K PEGylated-Pancreatic Polypeptide analogue (PPA) and 20K PEGylated-glucagon, we elucidated the decomposition pathways occurring in animal sera. The data provided direct evidence of cleavages within the peptide backbone. The identified degradation products were unambiguously confirmed by tandem mass spectrometry with high-energy C-trap dissociation (HCD) analysis, followed with in-source fragmentation. Additional spiking studies demonstrated nearly full recovery of PEGylated products, linear detection when the spiked concentration of PEGylated product was ≤1000 ng/mL, and a low ng/mL limit of quantitation (LOQ).
Collapse
Affiliation(s)
- Qingyuan Liu
- Bioproduct Research & Development, Lilly Research Laboratories, Eli Lilly and Company , Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | | | | |
Collapse
|
67
|
Mu Q, Hu T, Yu J. Molecular insight into the steric shielding effect of PEG on the conjugated staphylokinase: biochemical characterization and molecular dynamics simulation. PLoS One 2013; 8:e68559. [PMID: 23874671 PMCID: PMC3715476 DOI: 10.1371/journal.pone.0068559] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022] Open
Abstract
PEGylation is a successful approach to improve potency of a therapeutic protein. The improved therapeutic potency is mainly due to the steric shielding effect of PEG. However, the underlying mechanism of this effect on the protein is not well understood, especially on the protein interaction with its high molecular weight substrate or receptor. Here, experimental study and molecular dynamics simulation were used to provide molecular insight into the interaction between the PEGylated protein and its receptor. Staphylokinase (Sak), a therapeutic protein for coronary thrombolysis, was used as a model protein. Four PEGylated Saks were prepared by site-specific conjugation of 5 kDa/20 kDa PEG to N-terminus and C-terminus of Sak, respectively. Experimental study suggests that the native conformation of Sak is essentially not altered by PEGylation. In contrast, the bioactivity, the hydrodynamic volume and the molecular symmetric shape of the PEGylated Sak are altered and dependent on the PEG chain length and the PEGylation site. Molecular modeling of the PEGylated Saks suggests that the PEG chain remains highly flexible and can form a distinctive hydrated layer, thereby resulting in the steric shielding effect of PEG. Docking analyses indicate that the binding affinity of Sak to its receptor is dependent on the PEG chain length and the PEGylation site. Computational simulation results explain experimental data well. Our present study clarifies molecular details of PEG chain on protein surface and may be essential to the rational design, fabrication and clinical application of PEGylated proteins.
Collapse
Affiliation(s)
- Qimeng Mu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
68
|
Challenges for PEGylated Proteins and Alternative Half-Life Extension Technologies Based on Biodegradable Polymers. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1135.ch013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
69
|
Ozcelik B, Brown KD, Blencowe A, Daniell M, Stevens GW, Qiao GG. Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater 2013; 9:6594-605. [PMID: 23376126 DOI: 10.1016/j.actbio.2013.01.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/16/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
Due to the high demand for donor corneas and their low supply, autologous corneal endothelial cell (CEC) culture and transplantation for treatment of corneal endothelial dysfunction would be highly desirable. Many studies have shown the possibility of culturing CECs in vitro, but lack potential robust substrates for transplantation into the cornea. In this study, we investigate the properties of novel ultrathin chitosan-poly(ethylene glycol) (PEG) hydrogel films (CPHFs) for corneal tissue engineering applications. Cross-linking of chitosan films with diepoxy-PEG and cystamine was employed to prepare ~50 μm (hydrated) hydrogel films. Through variation of the PEG content (1.5-5.9 wt.%) it was possible to tailor the CPHFs to have tensile strains and ultimate stresses identical to or greater than those of human corneal tissue while retaining similar tensile moduli. Light transmission measurements in the visible spectrum (400-700 nm) revealed that the films were >95% optically transparent, above that of the human cornea (maximum ~90%), whilst in vitro degradation studies with lysozyme revealed that the CPHFs maintained the biodegradable characteristics of chitosan. Cell culture studies demonstrated the ability of the CPHFs to support the attachment and proliferation of sheep CECs. Ex vivo surgical trials on ovine eyes demonstrated that the CPHFs displayed excellent characteristics for physical manipulation and implantation purposes. The ultrathin CPHFs display desirable mechanical, optical and degradation properties whilst allowing attachment and proliferation of ovine CECs, and as such are attractive candidates for the regeneration and transplantation of CECs, as well as other corneal tissue engineering applications.
Collapse
|
70
|
Jin M, Chen W, Huang W, Rong L, Gao Z. Preparation of pegylated lumbrokinase and an evaluation of its thrombolytic activity both in vitro and in vivo. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
71
|
Ritter DW, Roberts JR, McShane MJ. Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity. Enzyme Microb Technol 2013; 52:279-85. [PMID: 23540931 DOI: 10.1016/j.enzmictec.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 11/29/2022]
Abstract
Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220±73% signal change (n=4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0-400mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay.
Collapse
Affiliation(s)
- Dustin W Ritter
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
72
|
Choi AWT, Louie MW, Li SPY, Liu HW, Chan BTN, Lam TCY, Lin ACC, Cheng SH, Lo KKW. Emissive Behavior, Cytotoxic Activity, Cellular Uptake, and PEGylation Properties of New Luminescent Rhenium(I) Polypyridine Poly(ethylene glycol) Complexes. Inorg Chem 2012. [DOI: 10.1021/ic301948d] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alex Wing-Tat Choi
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Man-Wai Louie
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Steve Po-Yam Li
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Hua-Wei Liu
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Bruce Ting-Ngok Chan
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Tonlex Chun-Ying Lam
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Alex Chun-Chi Lin
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Shuk-Han Cheng
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| |
Collapse
|
73
|
Da Pieve C, Blackshaw E, Missailidis S, Perkins AC. PEGylation and biodistribution of an anti-MUC1 aptamer in MCF-7 tumor-bearing mice. Bioconjug Chem 2012; 23:1377-81. [PMID: 22708500 DOI: 10.1021/bc300128r] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aptamers are characterized by a rapid renal clearance leading to a short in vivo circulating half-life. In order to use aptamers as anticancer therapeutic agents, their exposure time to the tumor has to be enhanced via increasing residency in the bloodstream. A way to achieve this goal is by conjugating the aptamer to poly(ethylene glycol) (PEG). Herein, we present the conjugation of a bifunctionalized anti-MUC1 aptamer (NH(2)-AptA-SR) with the (99m)Tc coordinating moiety MAG2 and either a conventional branched PEG or the comb-shaped PolyPEG via a two-step synthesis. The isolated products were radiolabeled with (99m)Tc and their biodistribution and tumor-targeting properties in MCF-7 tumor bearing mice were analyzed and compared.
Collapse
Affiliation(s)
- Chiara Da Pieve
- Department of Chemistry and Analytical Sciences, The Open University, MK7 6AA Milton Keynes, UK.
| | | | | | | |
Collapse
|
74
|
Kaminskas LM, Boyd BJ, Porter CJH. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine (Lond) 2012; 6:1063-84. [PMID: 21955077 DOI: 10.2217/nnm.11.67] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dendrimers show increasing promise as drug-delivery vectors and can be generated with a wide range of scaffold structures, sizes and surface functionalities. To this point, the majority of studies of dendrimer-based drug-delivery systems have detailed pharmacodynamic outcomes, or have followed the pharmacokinetics of a solubilized or conjugated drug. By contrast, detailed commentary on the in vivo fate of the dendrimer carrier is less evident, even though the pharmacokinetics of the carrier will likely dictate both pharmacodynamic and toxicokinetic outcomes. In the current article, the influence of size, structure and surface functionality on the absorption, distribution, metabolism and elimination (ADME) properties of dendrimers have been examined and the implications of these findings for delivery system design are discussed.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University. 381 Royal Parade, Parkville, VIC, 3052, Australia
| | | | | |
Collapse
|
75
|
Kaminskas LM, McLeod VM, Porter CJH, Boyd BJ. Association of chemotherapeutic drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation compared to noncovalent encapsulation. Mol Pharm 2012; 9:355-73. [PMID: 22250750 DOI: 10.1021/mp2005966] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer is a leading cause of death within developed nations, and part of this morbidity is due to difficulties associated with its treatment. Currently, anticancer therapy relies heavily upon the administration of small molecule cytotoxic drugs that attack both cancerous and noncancerous cells due to limited selectivity of the drugs and widespread distribution of the cytotoxic molecules throughout the body. The antitumor efficacy and systemic toxicity of existing chemotherapeutic drugs can, however, be improved by employing formulation and particle engineering approaches. Thus, drug delivery systems can be developed that more specifically target tumor tissue using both passive (such as the enhanced permeation and retention effect) and active (through the use of cancer targeting ligands) modalities. Dendrimers are one such system that can be developed with high structural monodispersity, long plasma circulation times and precise control over surface structure and biodistribution properties. Chemotherapeutic drugs can be associated with dendrimers via covalent conjugation to the surface, or via encapsulation of drugs within the structure. Each of these approaches has demonstrated therapeutic benefit relative to the administration of free drug. Thus far, however, there has not been a systematic review toward which drug association approach will provide the best outcomes in terms of antitumor efficacy and systemic toxicity. Hence, the current literature is reviewed here and recommendations are proposed as to the suggested approach to develop dendrimers as tumor targeted drug-delivery vectors.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
76
|
Turunen S, Haaparanta AM, Äänismaa R, Kellomäki M. Chemical and topographical patterning of hydrogels for neural cell guidancein vitro. J Tissue Eng Regen Med 2011; 7:253-70. [DOI: 10.1002/term.520] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 06/02/2011] [Accepted: 09/22/2011] [Indexed: 02/05/2023]
Affiliation(s)
- Sanna Turunen
- Department of Biomedical Engineering; Tampere University of Technology; Finland
| | | | - Riikka Äänismaa
- NeuroGroup, Institute for Biomedical Technology; University of Tampere; Finland
| | - Minna Kellomäki
- Department of Biomedical Engineering; Tampere University of Technology; Finland
| |
Collapse
|
77
|
Tewes F, Gobbo OL, Amaro MI, Tajber L, Corrigan OI, Ehrhardt C, Healy AM. Evaluation of HPβCD-PEG microparticles for salmon calcitonin administration via pulmonary delivery. Mol Pharm 2011; 8:1887-98. [PMID: 21882837 DOI: 10.1021/mp200231c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For therapeutic peptides, the lung represents an attractive, noninvasive route into the bloodstream. To achieve optimal bioavailability and control their fast rate of absorption, peptides can be protected by coprocessing with polymers such as polyethylene glycol (PEG). Here, we formulated and characterized salmon calcitonin (sCT)-loaded microparticles using linear or branched PEG (L-PEG or B-PEG) and hydroxypropyl-beta-cyclodextrin (HPβCD) for pulmonary administration. Mixtures of sCT, L-PEG or B-PEG and HPβCD were co-spray dried. Based on the particle properties, the best PEG:HPβCD ratio was 1:1 w:w for both PEGs. In the sCT-loaded particles, the L-PEG was more crystalline than B-PEG. Thus, L-PEG-based particles had lower surface free energy and better aerodynamic behavior than B-PEG-based particles. However, B-PEG-based particles provided better protection against chemical degradation of sCT. A decrease in sCT permeability, measured across Calu-3 bronchial epithelial monolayers, occurred when the PEG and HPβCD concentrations were both 1.6 wt %. This was attributed to an increase in buffer viscosity, caused by the two excipients. sCT pharmacokinetic profiles in Wistar rats were evaluated using a 2-compartment model after iv injection or lung insufflation. The maximal sCT plasma concentration was reached within 3 min following nebulization of sCT solution. L-PEG and B-PEG-based microparticles were able to increase T(max) to 20 ± 1 min and 18 ± 8 min, respectively. Furthermore, sCT absolute bioavailability after L-PEG-based microparticle aerosolization at 100 μg/kg was 2.3 times greater than for the nebulized sCT solution.
Collapse
Affiliation(s)
- Frederic Tewes
- School of Pharmacy and Pharmaceutical Sciences, University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
78
|
Maleki A, Najafabadi AR, Roohvand F, Shafiee A, Khanahmad H, Faghihi H, Hedayati MH, Tajerzadeh H. Evaluation of Bioactivity and Pharmacokinetic Characteristics of PEGylatedP.pastoris-Expressed Erythropoietin. Drug Deliv 2011; 18:570-7. [DOI: 10.3109/10717544.2011.600782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
79
|
Bhatnagar BS, Martin SW, Hodge TS, Das TK, Joseph L, Teagarden DL, Shalaev EY, Suryanarayanan R. Investigation of PEG Crystallization in Frozen and Freeze‐Dried PEGylated Recombinant Human Growth Hormone–Sucrose Systems: Implications on Storage Stability. J Pharm Sci 2011; 100:3062-3075. [DOI: 10.1002/jps.22562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/21/2011] [Accepted: 02/24/2011] [Indexed: 11/09/2022]
|
80
|
Cho HY, Kadir MA, Kim BS, Han HS, Nagasundarapandian S, Kim YR, Ko SB, Lee SG, Paik HJ. Synthesis of Well-Defined (Nitrilotriacetic Acid)-End-Functionalized Polystyrenes and Their Bioconjugation with Histidine-Tagged Green Fluorescent Proteins. Macromolecules 2011. [DOI: 10.1021/ma200480f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hong Y. Cho
- Department of Polymer Science & Engineering, Pusan National University, Busan 609-735, Korea
| | - Mohammad Abdul Kadir
- Department of Polymer Science & Engineering, Pusan National University, Busan 609-735, Korea
| | - Bong-Soo Kim
- Department of Polymer Science & Engineering, Pusan National University, Busan 609-735, Korea
| | - Ho Seok Han
- Department of Polymer Science & Engineering, Pusan National University, Busan 609-735, Korea
| | | | - Young-Rok Kim
- Department of Food Science and Biotechnology & Institute of Life Sciences and Resources, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Sung Bo Ko
- MediGen Inc., 461-6 Jeonmin-Dong, Yuseong-Gu, Daejon 305-811, Korea
| | - Sun-Gu Lee
- Department of Chemical Engineering, Pusan National University, San 30 Jangjeon 2-dong Geumjeong-gu, Busan 609-735, Korea
| | - Hyun-jong Paik
- Department of Polymer Science & Engineering, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
81
|
Cooke MJ, Wang Y, Morshead CM, Shoichet MS. Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials 2011; 32:5688-97. [PMID: 21550655 DOI: 10.1016/j.biomaterials.2011.04.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/12/2011] [Indexed: 01/06/2023]
Abstract
One of the challenges in treating central nervous system (CNS) disorders with biomolecules is achieving local delivery while minimizing invasiveness. For the treatment of stroke, stimulation of endogenous neural stem/progenitor cells (NSPCs) by growth factors is a promising strategy for tissue regeneration. Epidermal growth factor (EGF) enhances proliferation of endogenous NSPCs in the subventricular zone (SVZ) when delivered directly to the ventricles of the brain; however, this strategy is highly invasive. We designed a biomaterials-based strategy to deliver molecules directly to the brain without tissue damage. EGF or poly(ethylene glycol)-modified EGF (PEG-EGF) was dispersed in a hyaluronan and methylcellulose (HAMC) hydrogel and placed epi-cortically on both uninjured and stroke-injured mouse brains. PEG-modification decreased the rate of EGF degradation by proteases, leading to a significant increase in protein accumulation at greater tissue depths than previously shown. Consequently, EGF and PEG-EGF increased NSPC proliferation in uninjured and stroke-injured brains; and in stroke-injured brains, PEG-EGF significantly increased NSPC stimulation. Our epi-cortical delivery system is a minimally-invasive method for local delivery to the brain, providing a new paradigm for local delivery to the brain.
Collapse
Affiliation(s)
- Michael J Cooke
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5
| | | | | | | |
Collapse
|
82
|
Damodaran VB, Fee CJ. Synthesis and Evaluation of α-(β-Alanine)-ω-carboxy PEG Derivative as a Novel Cleavable Heterobifunctional PEG Tether for Solid-Phase Polymeric Drug Delivery. INT J POLYM MATER PO 2011. [DOI: 10.1080/00914037.2010.531811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
83
|
Kim I, Kim TH, Ma K, Park ES, Oh KT, Lee ES, Lee KC, Youn YS. A 4-arm polyethylene glycol derivative conjugated with exendin-4 peptide and palmitylamine having dual-function of size-increase and albumin-binding for long hypoglycemic action. ACTA ACUST UNITED AC 2011; 167:239-45. [DOI: 10.1016/j.regpep.2011.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/06/2011] [Accepted: 02/08/2011] [Indexed: 11/25/2022]
|
84
|
Fee CJ, Van Alstine JM. Purification of PEGylated Proteins. METHODS OF BIOCHEMICAL ANALYSIS 2011; 54:339-62. [DOI: 10.1002/9780470939932.ch14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
85
|
Zhang Y, Wang G, Huang J. A new strategy for synthesis of “umbrella-like” poly(ethylene glycol) with monofunctional end group for bioconjugation. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
86
|
Wang Y, Cooke MJ, Lapitsky Y, Wylie RG, Sachewsky N, Corbett D, Morshead CM, Shoichet MS. Transport of epidermal growth factor in the stroke-injured brain. J Control Release 2010; 149:225-35. [PMID: 21035512 DOI: 10.1016/j.jconrel.2010.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 12/21/2022]
Abstract
Stroke is a neurological disorder that currently has no cure. Intrathecal delivery of growth factors, specifically recombinant human epidermal growth factor (rhEGF), stimulates endogenous neural precursor cells in the subventricular zone (SVZ) and promotes tissue regeneration in animal models of stroke. In this model, rhEGF is delivered with an invasive minipump/catheter system, which causes trauma to the brain. A less invasive strategy is to deliver rhEGF from the brain cortex; however, this requires the protein to diffuse through the brain, from the site of injection to the SVZ. Although this method of delivery has great potential, diffusion is limited by rapid removal from the extracellular space and hence for successful translation into the clinic strategies are needed to increase the diffusion distance. Using integrative optical imaging we investigate diffusion of rhEGF vs. poly(ethylene glycol)-modified rhEGF (PEG-rhEGF) in brain slices of both uninjured and stroke-injured animals. For the first time, we quantitatively show that PEG modification reduces the rate of growth factor elimination by over an order of magnitude. For rhEGF this corresponds to a two to threefold increase in predicted brain penetration distance, which we confirm with in vivo data.
Collapse
Affiliation(s)
- Yuanfei Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Tewes F, Tajber L, Corrigan O, Ehrhardt C, Healy A. Development and characterisation of soluble polymeric particles for pulmonary peptide delivery. Eur J Pharm Sci 2010; 41:337-52. [DOI: 10.1016/j.ejps.2010.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/10/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
88
|
|
89
|
Verheyen E, Delain-Bioton L, van der Wal S, el Morabit N, Barendregt A, Hennink WE, van Nostrum CF. Conjugation of methacrylamide groups to a model protein via a reducible linker for immobilization and subsequent triggered release from hydrogels. Macromol Biosci 2010; 10:1517-26. [PMID: 20824693 DOI: 10.1002/mabi.201000168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/15/2010] [Indexed: 02/03/2023]
Abstract
An efficient strategy is reported to introduce methacrylamide groups on the lysine residues of a model protein (lysozyme) for immobilization and triggered release from a hydrogel network. A novel spacer unit was designed, containing a disulfide bond, such that the release of the protein can be triggered by reduction. The modified proteins were characterized by MALDI-TOF MS, titration of free NH(2) residues and spectral analysis. The modification reaction is well controlled, and the number of introduced functions can be tailored by changing the reaction conditions. Gel electrophoresis experiments showed that the methacrylamide modified protein can be immobilized in a polyacrylamide hydrogel and subsequently released by reduction of the spacer by which the protein was grafted to the polymeric network.
Collapse
Affiliation(s)
- Ellen Verheyen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
90
|
Preparation and characterization of methoxy polyethylene glycol-conjugated phosphotriesterase as a potential catalytic bioscavenger against organophosphate poisoning. Chem Biol Interact 2010; 187:380-3. [DOI: 10.1016/j.cbi.2010.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/03/2010] [Accepted: 03/08/2010] [Indexed: 11/23/2022]
|
91
|
Soderquist RG, Milligan ED, Harrison JA, Chavez RA, Johnson KW, Watkins LR, Mahoney MJ. PEGylation of interleukin-10 for the mitigation of enhanced pain states. J Biomed Mater Res A 2010; 93:1169-79. [PMID: 19768789 DOI: 10.1002/jbm.a.32611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The anti-inflammatory cytokine interleukin-10 (IL-10) shows promise for the treatment of neuropathic pain, but for IL-10 to be clinically useful as a short-term therapeutic its duration needs to be improved. In this study, IL-10 was covalently modified with polyethylene glycol (PEG) with the goal of stabilizing and increasing protein levels in the CSF to improve the efficacy of IL-10 for treating neuropathic pain. Two different PEGylation methods were explored in vitro to identify suitable PEGylated IL-10 products for subsequent in vivo testing. PEGylation of IL-10 by acylation yielded a highly PEGylated product with a 35-fold in vitro biological activity reduction. PEGylation of IL-10 by reductive amination yielded products with a minimal number of PEG molecules attached and in vitro biological activity reductions of approximately 3-fold. In vivo collections of cerebrospinal fluid after intrathecal administration demonstrated that 20 kDa PEG attachment to IL-10 increased the concentration of IL-10 in the cerebrospinal fluid over time. Relative to unmodified IL-10, the 20 kDa PEG-IL-10 product exhibited an increased therapeutic duration and magnitude in an animal model of neuropathic pain. This suggests that PEGylation is a viable strategy for the short-term treatment or, in conjunction with other approaches, the long-term treatment of enhanced pain states.
Collapse
Affiliation(s)
- Ryan G Soderquist
- Department of Chemical & Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Li SY, Liu HW, Zhang K, Lo KW. Modification of Luminescent Iridium(III) Polypyridine Complexes with Discrete Poly(ethylene glycol) (PEG) Pendants: Synthesis, Emissive Behavior, Intracellular Uptake, and PEGylation Properties. Chemistry 2010; 16:8329-39. [DOI: 10.1002/chem.201000474] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
93
|
Heidel JD, Davis ME. Clinical developments in nanotechnology for cancer therapy. Pharm Res 2010; 28:187-99. [PMID: 20549313 DOI: 10.1007/s11095-010-0178-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/19/2010] [Indexed: 11/26/2022]
Abstract
Nanoparticle approaches to drug delivery for cancer offer exciting and potentially "game-changing" ways to improve patient care and quality of life in numerous ways, such as reducing off-target toxicities by more selectively directing drug molecules to intracellular targets of cancer cells. Here, we focus on technologies being investigated clinically and discuss numerous types of therapeutic molecules that have been incorporated within nanostructured entities such as nanoparticles. The impacts of nanostructured therapeutics on efficacy and safety, including parameters like pharmacokinetics and biodistribution, are described for several drug molecules. Additionally, we discuss recent advances in the understanding of ligand-based targeting of nanoparticles, such as on receptor avidity and selectivity.
Collapse
|
94
|
Soderquist RG, Mahoney MJ. Central nervous system delivery of large molecules: challenges and new frontiers for intrathecally administered therapeutics. Expert Opin Drug Deliv 2010; 7:285-93. [PMID: 20201735 DOI: 10.1517/17425240903540205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IMPORTANCE OF THE FIELD Therapeutic proteins and DNA constructs offer promise for the treatment of central nervous system disorders, yet significant biological barriers limit the ability of these molecules to reach the central nervous system from the bloodstream. Direct administrations to the cerebrospinal fluid (intrathecal administration) comprise an emerging field to facilitate the efficient delivery of these biological macromolecules to central nervous system tissues. AREAS COVERED IN THIS REVIEW Previous reports from 1990 to the present time describing the interactions and turnover of the cerebrospinal fluid within the intrathecal space, characterizations of the effects that therapeutic proteins and DNA have shown after intrathecal delivery through a lumbar route, and reports of emerging technologies to address the limitations of intrathecally administered macromolecules are reviewed. WHAT THE READER WILL GAIN This review provides an overview of the limitations that must be overcome for intrathecally administered biological macromolecules and the recent advances and promising approaches for surmounting these limitations. TAKE HOME MESSAGE Emerging approaches that stabilize and sustain the delivery of intrathecally administered biological macromolecules may enhance substantially the clinical relevance of promising therapeutic proteins and DNA constructs for the treatment of various central nervous system disorders.
Collapse
Affiliation(s)
- Ryan G Soderquist
- University of Colorado at Boulder, Department of Chemical and Biological Engineering, 424 UCB, Boulder, CO 80309, USA
| | | |
Collapse
|
95
|
Abstract
The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g., liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches.
Collapse
Affiliation(s)
- Dipak S. Pisal
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| | - Matthew P. Kosloski
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| | - Sathy V. Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| |
Collapse
|
96
|
Da Pieve C, Williams P, Haddleton DM, Palmer RMJ, Missailidis S. Modification of thiol functionalized aptamers by conjugation of synthetic polymers. Bioconjug Chem 2010; 21:169-74. [PMID: 20000459 DOI: 10.1021/bc900397s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aptamers are known for their short in vivo circulating half-life and rapid renal clearance. Their conjugation to poly(ethylene glycol) (PEG) is a way to improve their residence in the body. Two aptamers (AptD and AptF), having a disulfide protected thiol modification on the 3' end, have been conjugated to maleimide activated PEGs of various molecular weights and structures (linear PEG20; branched PEG20 and 40; PolyPEG17, 40, and 60 kDa). The high yield coupling (70-80% in most of the cases) could be achieved using immobilized tris[2-carboxyethyl]phosphine hydrochloride (TCEP) as reducing agent at pH 4. The affinity of PEGylated AptD for its target was reduced by conjugation to linear PEG20 and branched PEG40, but not to branched PEG20 and PolyPEGs. This work demonstrates an alternative approach to PEGylation of aptamers, and that the effect of PEG on the affinity for the target varies according to the structure and conformation of the synthetic polymer.
Collapse
Affiliation(s)
- Chiara Da Pieve
- Department of Chemistry and Analytical Sciences, The Open University, Milton Keynes, UK.
| | | | | | | | | |
Collapse
|
97
|
Freitas DDS, Abrahão-Neto J. Biochemical and biophysical characterization of lysozyme modified by PEGylation. Int J Pharm 2010; 392:111-7. [PMID: 20307635 DOI: 10.1016/j.ijpharm.2010.03.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/04/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
PEGylation is a strategy that has been used to improve the biochemical properties of proteins and their physical and thermal stabilities. In this study, hen egg-white lysozyme (EC 3.2.1.17; LZ) was modified with methoxypolyethylene glycol-p-nitrophenyl carbonate (mPEG-pNP, MW 5000). This PEGylation of LZ produced conjugates that retained full enzyme activity with glycol chitosan, independent of degree of enzyme modification; its biological activity with the substrate Micrococcus lysodeikticus was altered according to its degree of modification. The conjugate obtained with a low degree of mPEG-pNP/NH(2) modification was studied by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), demonstrating a spectral peak at m/z 19,988 Da with 77% of its original enzymatic activity. Spectroscopic studies of Fourier transform infrared (FTIR) and circular dichroism (CD) did not show any relevant differences in protein structure between the native and conjugate LZ. Studies of the effects of pH and temperature on PEGylated LZ indicated that the conjugate was active over a broad pH range, stable at 50 degrees C, and demonstrated resistance to proteolytic degradation.
Collapse
Affiliation(s)
- Débora da Silva Freitas
- Department of Biochemical and Pharmaceutical Technology, Pharmaceutical Sciences School, University of São Paulo, São Paulo, SP, Brazil.
| | | |
Collapse
|
98
|
Bian X, Shen F, Chen Y, Wang B, Deng M, Meng Y. PEGylation of alpha-momorcharin: synthesis and characterization of novel anti-tumor conjugates with therapeutic potential. Biotechnol Lett 2010; 32:883-90. [DOI: 10.1007/s10529-010-0242-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
99
|
Biochemical and biopharmaceutical properties of PEGylated uricase. Int J Pharm 2010; 387:215-22. [DOI: 10.1016/j.ijpharm.2009.11.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 11/25/2009] [Accepted: 11/27/2009] [Indexed: 11/18/2022]
|
100
|
Soderquist RG, Milligan ED, Sloane EM, Harrison JA, Douvas KK, Potter JM, Hughes TS, Chavez RA, Johnson K, Watkins LR, Mahoney MJ. PEGylation of brain-derived neurotrophic factor for preserved biological activity and enhanced spinal cord distribution. J Biomed Mater Res A 2010; 91:719-29. [PMID: 19048635 DOI: 10.1002/jbm.a.32254] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) was covalently attached to polyethylene glycol (PEG) in order to enhance delivery to the spinal cord via the cerebrospinal fluid (intrathecal administration). By varying reaction conditions, mixtures of BDNF covalently attached to one (primary), two (secondary), three (tertiary), or more (higher order) PEG molecules were produced. The biological activity of each resulting conjugate mixture was assessed with the goal of identifying a relationship between the number of PEG molecules attached to BDNF and biological activity. A high degree of in vitro biological activity was maintained in mixtures enriched in primary and secondary conjugate products, while a substantial reduction in biological activity was observed in mixtures with tertiary and higher order conjugates. When a biologically active mixture of PEG-BDNF was administered intrathecally, it displayed a significantly improved half-life in the cerebrospinal fluid and an enhanced penetration into spinal cord tissue relative to native BDNF. Results from these studies suggest a PEGylation strategy that preserves the biological activity of the protein while also improving the half-life of the protein in vivo. Furthermore, PEGylation may be a promising approach for enhancing intrathecal delivery of therapeutic proteins with potential for treating disease and injury in the spinal cord.
Collapse
Affiliation(s)
- Ryan G Soderquist
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, 424 UCB, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|