51
|
Steyn FJ, Li R, Kirk SE, Tefera TW, Xie TY, Tracey TJ, Kelk D, Wimberger E, Garton FC, Roberts L, Chapman SE, Coombes JS, Leevy WM, Ferri A, Valle C, René F, Loeffler JP, McCombe PA, Henderson RD, Ngo ST. Altered skeletal muscle glucose-fatty acid flux in amyotrophic lateral sclerosis. Brain Commun 2020; 2:fcaa154. [PMID: 33241210 PMCID: PMC7677608 DOI: 10.1093/braincomms/fcaa154] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis is characterized by the degeneration of upper and lower motor neurons, yet an increasing number of studies in both mouse models and patients with amyotrophic lateral sclerosis suggest that altered metabolic homeostasis is also a feature of disease. Pre-clinical and clinical studies have shown that modulation of energy balance can be beneficial in amyotrophic lateral sclerosis. However, the capacity to target specific metabolic pathways or mechanisms requires detailed understanding of metabolic dysregulation in amyotrophic lateral sclerosis. Here, using the superoxide dismutase 1, glycine to alanine substitution at amino acid 93 (SOD1G93A) mouse model of amyotrophic lateral sclerosis, we demonstrate that an increase in whole-body metabolism occurs at a time when glycolytic muscle exhibits an increased dependence on fatty acid oxidation. Using myotubes derived from muscle of amyotrophic lateral sclerosis patients, we also show that increased dependence on fatty acid oxidation is associated with increased whole-body energy expenditure. In the present study, increased fatty acid oxidation was associated with slower disease progression. However, within the patient cohort, there was considerable heterogeneity in whole-body metabolism and fuel oxidation profiles. Thus, future studies that decipher specific metabolic changes at an individual patient level are essential for the development of treatments that aim to target metabolic pathways in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Rui Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Siobhan E Kirk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Tesfaye W Tefera
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Teresa Y Xie
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Timothy J Tracey
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Dean Kelk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Elyse Wimberger
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Llion Roberts
- School of Human Movements and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,School of Allied Health Sciences, Griffith University, Southport, Gold Coast 4222, Australia
| | - Sarah E Chapman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeff S Coombes
- School of Human Movements and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - W Matthew Leevy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Frédérique René
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Jean-Philippe Loeffler
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Shyuan T Ngo
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
52
|
Glutamate-glutamine homeostasis is perturbed in neurons and astrocytes derived from patient iPSC models of frontotemporal dementia. Mol Brain 2020; 13:125. [PMID: 32928252 PMCID: PMC7491073 DOI: 10.1186/s13041-020-00658-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023] Open
Abstract
Frontotemporal dementia (FTD) is amongst the most prevalent early onset dementias and even though it is clinically, pathologically and genetically heterogeneous, a crucial involvement of metabolic perturbations in FTD pathology is being recognized. However, changes in metabolism at the cellular level, implicated in FTD and in neurodegeneration in general, are still poorly understood. Here we generate induced human pluripotent stem cells (hiPSCs) from patients carrying mutations in CHMP2B (FTD3) and isogenic controls generated via CRISPR/Cas9 gene editing with subsequent neuronal and glial differentiation and characterization. FTD3 neurons show a dysregulation of glutamate-glutamine related metabolic pathways mapped by 13C-labelling coupled to mass spectrometry. FTD3 astrocytes show increased uptake of glutamate whilst glutamate metabolism is largely maintained. Using quantitative proteomics and live-cell metabolic analyses, we elucidate molecular determinants and functional alterations of neuronal and glial energy metabolism in FTD3. Importantly, correction of the mutations rescues such pathological phenotypes. Notably, these findings implicate dysregulation of key enzymes crucial for glutamate-glutamine homeostasis in FTD3 pathogenesis which may underlie vulnerability to neurodegeneration. Neurons derived from human induced pluripotent stem cells (hiPSCs) of patients carrying mutations in CHMP2B (FTD3) display major metabolic alterations compared to CRISPR/Cas9 generated isogenic controls. Using quantitative proteomics, 13C-labelling coupled to mass spectrometry metabolic mapping and seahorse analyses, molecular determinants and functional alterations of neuronal and astrocytic energy metabolism in FTD3 were characterized. Our findings implicate dysregulation of glutamate-glutamine homeostasis in FTD3 pathogenesis. In addition, FTD3 neurons recapitulate glucose hypometabolism observed in FTD patient brains. The impaired mitochondria function found here is concordant with disturbed TCA cycle activity and decreased glycolysis in FTD3 neurons. FTD3 neuronal glutamine hypermetabolism is associated with up-regulation of PAG expression and, possibly, ROS production. Distinct compartments of glutamate metabolism can be suggested for the FTD3 neurons. Endogenous glutamate generated from glutamine via PAG may enter the TCA cycle via AAT (left side of neuron) while exogenous glutamate taken up from the extracellular space may be incorporated into the TCA cycle via GDH (right side of the neuron) FTD3 astrocytic glutamate uptake is upregulated whilst glutamate metabolism is largely maintained. Finally, pharmacological reversal of glutamate hypometabolism manifesting from decreased GDH expression should be explored as a novel therapeutic intervention for treating FTD3.
Collapse
|
53
|
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19:609-633. [PMID: 32709961 PMCID: PMC7948516 DOI: 10.1038/s41573-020-0072-x] [Citation(s) in RCA: 510] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Research Center on Aging, Sherbrooke, QC, Canada.
| | | | - Cecilie Morland
- Department of Pharmaceutical Biosciences, Institute of Pharmacy, University of Oslo, Oslo, Norway
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University of Dusseldorf, Dusseldorf, Germany
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M Flint Beal
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Linda H Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | - Jenni Harvey
- Ninewells Hospital, University of Dundee, Dundee, UK
- Medical School, University of Dundee, Dundee, UK
| | - Ross Jeggo
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - Jack H Jhamandas
- Department of Medicine, University of Albeta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Albeta, Edmonton, AB, Canada
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Clothide Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - William F Martin
- Institute of Molecular Evolution, University of Dusseldorf, Dusseldorf, Germany
| | | | - Paula I Moreira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Klaus-Armin Nave
- Department of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tal Nuriel
- Columbia University Medical Center, New York, NY, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Frédéric Saudou
- University of Grenoble Alpes, Grenoble, France
- INSERM U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France.
| |
Collapse
|
54
|
Ahmed RM, Devenney EM, Strikwerda-Brown C, Hodges JR, Piguet O, Kiernan MC. Phenotypic variability in ALS-FTD and effect on survival. Neurology 2020; 94:e2005-e2013. [PMID: 32277059 DOI: 10.1212/wnl.0000000000009398] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To determine if survival and cognitive profile is affected by initial presentation in amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) (motor vs cognitive), we compared survival patterns in ALS-FTD based on initial phenotypic presentation and their cognitive profile compared to behavioral variant FTD (bvFTD). METHODS Cognitive/behavioral profiles were examined in 98 patients (59 ALS-FTD and 39 bvFTD). The initial presentation of ALS-FTD was categorized into either motor or cognitive. Survival was calculated from initial symptom onset. MRI brain atrophy patterns were examined using a validated visual rating scale. RESULTS In the ALS-FTD group, 41 (69%) patients were categorized as having an initial cognitive presentation and 18 (31%) a motor presentation. Patients with motor presentation experienced a significantly shorter median survival of 2.7 years compared to 4.4 years (p < 0.001) in those with a cognitive presentation. No differences between motor vs cognitive onset ALS-FTD were found on cognitive testing. When compared to bvFTD, ALS-FTD-cognitive presentation was characterized by reduced language function (p < 0.001), verbal fluency (p = 0.001), and naming (p = 0.007). Both motor and cognitive onset ALS-FTD showed reduced emotion processing (p = 0.01) and exhibited greater motor cortex and dorsal lateral prefrontal cortex atrophy than bvFTD. Increased motor cortex atrophy was associated with 1.5-fold reduction in survival. CONCLUSIONS Initial motor presentation in ALS-FTD leads to faster progression than in those with a cognitive presentation, despite similar overall cognitive deficits. These findings suggest that disease progression in ALS-FTD may be critically linked to physiologic and motor changes.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia.
| | - Emma M Devenney
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia
| | - Cherie Strikwerda-Brown
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia
| | - John R Hodges
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia
| | - Olivier Piguet
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia
| | - Matthew C Kiernan
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia
| |
Collapse
|
55
|
Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM. Neurodegenerative Diseases - Is Metabolic Deficiency the Root Cause? Front Neurosci 2020; 14:213. [PMID: 32296300 PMCID: PMC7137637 DOI: 10.3389/fnins.2020.00213] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 01/31/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer, Parkinson, Huntington, and amyotrophic lateral sclerosis, are a prominent class of neurological diseases currently without a cure. They are characterized by an inexorable loss of a specific type of neurons. The selective vulnerability of specific neuronal clusters (typically a subcortical cluster) in the early stages, followed by the spread of the disease to higher cortical areas, is a typical pattern of disease progression. Neurodegenerative diseases share a range of molecular and cellular pathologies, including protein aggregation, mitochondrial dysfunction, glutamate toxicity, calcium load, proteolytic stress, oxidative stress, neuroinflammation, and aging, which contribute to neuronal death. Efforts to treat these diseases are often limited by the fact that they tend to address any one of the above pathological changes while ignoring others. Lack of clarity regarding a possible root cause that underlies all the above pathologies poses a significant challenge. In search of an integrative theory for neurodegenerative pathology, we hypothesize that metabolic deficiency in certain vulnerable neuronal clusters is the common underlying thread that links many dimensions of the disease. The current review aims to present an outline of such an integrative theory. We present a new perspective of neurodegenerative diseases as metabolic disorders at molecular, cellular, and systems levels. This helps to understand a common underlying mechanism of the many facets of the disease and may lead to more promising disease-modifying therapeutic interventions. Here, we briefly discuss the selective metabolic vulnerability of specific neuronal clusters and also the involvement of glia and vascular dysfunctions. Any failure in satisfaction of the metabolic demand by the neurons triggers a chain of events that precipitate various manifestations of neurodegenerative pathology.
Collapse
Affiliation(s)
- Vignayanandam Ravindernath Muddapu
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - S. Akila Parvathy Dharshini
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - V. Srinivasa Chakravarthy
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M. Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
56
|
Ludolph AC, Dorst J, Dreyhaupt J, Weishaupt JH, Kassubek J, Weiland U, Meyer T, Petri S, Hermann A, Emmer A, Grosskreutz J, Grehl T, Zeller D, Boentert M, Schrank B, Prudlo J, Winkler AS, Gorbulev S, Roselli F, Schuster J, Dupuis L. Effect of High-Caloric Nutrition on Survival in Amyotrophic Lateral Sclerosis. Ann Neurol 2020; 87:206-216. [PMID: 31849093 DOI: 10.1002/ana.25661] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Weight loss has been identified as a negative prognostic factor in amyotrophic lateral sclerosis, but there is no evidence regarding whether a high-caloric diet increases survival. Therefore, we sought to evaluate the efficacy of a high-caloric fatty diet (HCFD) for increasing survival. METHODS A 1:1 randomized, placebo-controlled, parallel-group, double-blinded trial (LIPCAL-ALS study) was conducted between February 2015 and September 2018. Patients were followed up at 3, 6, 9, 12, 15, and 18 months after randomization. The study was performed at 12 sites of the clinical and scientific network of German motor neuron disease centers (ALS/MND-NET). Eligible patients were randomly assigned (1:1) to receive either HCFD (405kcal/day, 100% fat) or placebo in addition to riluzole (100mg/day). The primary endpoint was survival time, defined as time to death or time to study cutoff date. RESULTS Two hundred one patients (80 female, 121 male, age = 62.4 ± 10.8 years) were included. The confirmatory analysis of the primary outcome survival showed a survival probability of 0.39 (95% confidence interval [CI] = 0.27-0.51) in the placebo group and 0.37 (95% CI = 0.25-0.49) in the HCFD group, both after 28 months (point in time of the last event). The hazard ratio was 0.97, 1-sided 97.5% CI = -∞ to 1.44, p = 0.44. INTERPRETATION The results provide no evidence for a life-prolonging effect of HCFD for the whole amyotrophic lateral sclerosis population. However, post hoc analysis revealed a significant survival benefit for the subgroup of fast-progressing patients. ANN NEUROL 2020;87:206-216.
Collapse
Affiliation(s)
- Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Johannes Dorst
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Ulrike Weiland
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Thomas Meyer
- Charité-Universitätsmedizin Berlin, Humboldt University of Berlin, Berlin, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andreas Hermann
- Department of Neurology, Dresden University of Technology and German Center for Neurodegenerative Diseases, Dresden, Germany.,Albrecht Kossel Translational Neurodegeneration Section, Department of Neurology, University of Rostock, Rostock, Germany
| | - Alexander Emmer
- Department of Neurology, Halle University Hospital, Halle/Saale, Germany
| | | | - Torsten Grehl
- Department of Neurology, Bergmannsheil University Hospital, Bochum, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Matthias Boentert
- Department of Neurology, Institute of Translational Neurology, Münster University Hospital, Münster, Germany
| | - Bertold Schrank
- Department of Neurology, Deutsche Klinik für Diagnostik HELIOS Clinic of Wiesbaden, Wiesbaden, Germany
| | - Johannes Prudlo
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Andrea S Winkler
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Stanislav Gorbulev
- Interdisciplinary Center for Clinical Trials, Mainz University Medical Center, Mainz, Germany
| | | | | | - Luc Dupuis
- National Institute of Health and Medical Research, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
57
|
Zhang L, Chen L, Fan D. The protective role of pre-morbid type 2 diabetes in patients with amyotrophic lateral sclerosis: a center-based survey in China. Amyotroph Lateral Scler Frontotemporal Degener 2019; 21:209-215. [PMID: 31852260 DOI: 10.1080/21678421.2019.1704010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: To assess the role of premorbid type 2 diabetes in patients with amyotrophic lateral sclerosis (ALS) in China.Methods: We compared data from ALS patients with premorbid type 2 diabetes (T2D) and ALS patients without T2D with regard to the age of onset of ALS. In addition, survival was compared between these two groups of patients using propensity score matching (PSM). Results: Among 1331 consecutive sporadic ALS patients, 100 (7.5%) were labeled as ALS-T2D and 1231 were labeled as ALS-control according to the presence or absence of premorbid T2D. The mean age of onset in patients in the ALS-T2D group was 57.0 years, with a 4.4-year delay compared to that in the ALS-control group [57.0 (SD, 9.6) years vs 52.6 (SD, 10.3) years, respectively; p = 0.000]. This 4.4-year delay was significant after adjusting for sex and the site of onset in a multiple linear regression model. Additionally, after comparison with matched pairs, a nonsignificant increase in survival was observed among the ALS patients with premorbid T2D. Conclusions: The results support the protective role of diabetes in ALS. It is possible to infer that these beneficial effects occur mainly in the preclinical and early stages of the disease course.
Collapse
Affiliation(s)
- Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative diseases, Beijing, China, and
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative diseases, Beijing, China, and
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative diseases, Beijing, China, and.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
58
|
Germeys C, Vandoorne T, Bercier V, Van Den Bosch L. Existing and Emerging Metabolomic Tools for ALS Research. Genes (Basel) 2019; 10:E1011. [PMID: 31817338 PMCID: PMC6947647 DOI: 10.3390/genes10121011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that aberrant energy metabolism could play an important role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Despite this, studies applying advanced technologies to investigate energy metabolism in ALS remain scarce. The rapidly growing field of metabolomics offers exciting new possibilities for ALS research. Here, we review existing and emerging metabolomic tools that could be used to further investigate the role of metabolism in ALS. A better understanding of the metabolic state of motor neurons and their surrounding cells could hopefully result in novel therapeutic strategies.
Collapse
Affiliation(s)
- Christine Germeys
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|
59
|
Chern Y, Rei N, Ribeiro JA, Sebastião AM. Adenosine and Its Receptors as Potential Drug Targets in Amyotrophic Lateral Sclerosis. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Nádia Rei
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A. Ribeiro
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M. Sebastião
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
60
|
Wei L, Tian Y, Chen Y, Wei Q, Chen F, Cao B, Wu Y, Zhao B, Chen X, Xie C, Xi C, Yu X, Wang J, Lv X, Du J, Wang Y, Shen L, Wang X, Shen B, Guo Q, Guo L, Xia K, Xie P, Zhang X, Zuo X, Shang H, Wang K. Identification of TYW3/CRYZ and FGD4 as susceptibility genes for amyotrophic lateral sclerosis. NEUROLOGY-GENETICS 2019; 5:e375. [PMID: 31872054 PMCID: PMC6878836 DOI: 10.1212/nxg.0000000000000375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023]
Abstract
Objective A 2-stage genome-wide association was conducted to explore the genetic etiology of amyotrophic lateral sclerosis (ALS) in the Chinese Han population. Methods Totally, 700 cases and 4,027 controls were genotyped in the discovery stage using Illumina Human660W-Quad BeadChips. Top associated single nucleotide polymorphisms from the discovery stage were then genotyped in an independent cohort with 884 cases and 5,329 controls. Combined analysis was conducted by combining all samples from the 2 stages. Results Two novel loci, 1p31 and 12p11, showed strong associations with ALS. These novel loci explained 2.2% of overall variance in disease risk. Expression quantitative trait loci searches identified TYW/CRYZ and FGD4 as risk genes at 1p13 and 12p11, respectively. Conclusions This study identifies novel susceptibility genes for ALS. Identification of TYW3/CRYZ in the current study supports the notion that insulin resistance may be involved in ALS pathogenesis, whereas FGD4 suggests an association with Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Ling Wei
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Yanghua Tian
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Yongping Chen
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Qianqian Wei
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Fangfang Chen
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Bei Cao
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Ying Wu
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Bi Zhao
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xueping Chen
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Chengjuan Xie
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Chunhua Xi
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xu'en Yu
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Juan Wang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xinyi Lv
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Jing Du
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Yu Wang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Lu Shen
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xin Wang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Bin Shen
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Qihao Guo
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Li Guo
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Kun Xia
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Peng Xie
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xuejun Zhang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xianbo Zuo
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Huifang Shang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Kai Wang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| |
Collapse
|
61
|
Turner MR. The early biomarker challenge in neurodegenerative disorders. J Neurol Neurosurg Psychiatry 2019; 90:1190-1191. [PMID: 31243045 DOI: 10.1136/jnnp-2019-321145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| |
Collapse
|
62
|
Rosenbohm A, Nagel G, Peter RS, Brehme T, Koenig W, Dupuis L, Rothenbacher D, Ludolph AC. Association of Serum Retinol-Binding Protein 4 Concentration With Risk for and Prognosis of Amyotrophic Lateral Sclerosis. JAMA Neurol 2019; 75:600-607. [PMID: 29482216 DOI: 10.1001/jamaneurol.2017.5129] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Knowledge about the metabolic states of patients with amyotrophic lateral sclerosis (ALS) may provide a therapeutic approach. Objective To investigate the association between the onset and prognosis of ALS and serum retinol-binding protein 4 (RBP4) concentration as a biomarker for insulin resistance and vitamin A metabolism. Design, Setting, and Participants Case-control design for risk factors of ALS; cohort design for prognostic factors within ALS cases. Between October 1, 2010, and June 30, 2014, a population-based case-control study with randomly selected controls was established based on the ALS Registry Swabia in southern Germany, with a target population of 8.4 million inhabitants. Response rates were 64.8% among the cases and 18.7% among the controls. The dates of analysis were April 2016 to May 2017. Main Outcomes and Measures Serum samples were measured for RBP4. Information on covariates was assessed by an interview-based standardized questionnaire. Main outcomes and measures were adjusted odds ratios for risk of ALS associated with serum RBP4 concentration, as well as time to death associated with RBP4 concentration at baseline in ALS cases only. Conditional logistic regression was applied to calculate multivariable odds ratios for risk of ALS. Survival models were used in cases only to appraise their prognostic value. Results Data from 289 patients with ALS (mean [SD] age, 65.7 [10.5] years; 172 [59.5%] male) and 504 controls (mean [SD] age, 66.3 [9.8] years; 299 [59.3%] male) were included in the case-control study. Compared with controls, ALS cases were characterized by lower body mass index, less educational attainment, smoking, light occupational work intensity, and self-reported diabetes. The median serum RBP4 concentration was lower in ALS cases than in controls (54.0 vs 59.5 mg/L). In the multivariable model, increasing RBP4 concentration was associated with reduced odds for ALS (top vs bottom quartile odds ratio, 0.36; 95% CI, 0.22-0.59; P for trend <.001), which persisted after further adjustment for renal function and for leptin and adiponectin. Among 279 ALS cases during a median follow-up of 14.5 months, 104 died (mean [SD] age, 68.9 [10.3] years; 56 [53.9%] male). In this ALS cohort, an inverse association was found between serum RBP4 concentration as a continuous measure and survival. Conclusions and Relevance RBP4 was inversely related to risk for and prognosis of ALS, suggesting that vitamin A metabolism or impaired insulin signaling could be involved. Further research, including a prospective design and other biological markers, is necessary to clarify the role of insulin resistance in the pathogenesis of ALS.
Collapse
Affiliation(s)
| | - Gabriele Nagel
- Institute for Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Raphael S Peter
- Institute for Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Torben Brehme
- Institute for Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Wolfgang Koenig
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany.,Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich
| | - Luc Dupuis
- Institut National de la Santé et de la Récherche Médicale Unité 1118, Université de Strasbourg, Strasbourg, France
| | | | | | | |
Collapse
|
63
|
Ahmed RM, Landin-Romero R, Liang CT, Keogh JM, Henning E, Strikwerda-Brown C, Devenney EM, Hodges JR, Kiernan MC, Farooqi IS, Piguet O. Neural networks associated with body composition in frontotemporal dementia. Ann Clin Transl Neurol 2019; 6:1707-1717. [PMID: 31461580 PMCID: PMC6764740 DOI: 10.1002/acn3.50869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 11/29/2022] Open
Abstract
Background Frontotemporal dementia (FTD) is associated with complex changes in eating behavior and metabolism, which potentially affect disease pathogenesis and survival. It is currently not known if body composition changes and changes in fat deposition also exist in FTD, the relationship of these changes in eating behavior and appetite, and whether these changes are centrally mediated. Methods Body composition was measured in 28 people with behavioral‐variant frontotemporal dementia (bvFTD), 16 with Alzheimer’s disease (AD), and 19 healthy controls, using dual energy x‐ray absorptiometry. Changes in body composition were correlated to brain grey matter atrophy using voxel‐based morphometry on high‐resolution magnetic resonance imaging. Results Behavioral‐variant FTD was characterized by changes in body composition, with increased total fat mass, visceral adipose tissue area (VAT area), and android: gynoid ratio compared to control and AD participants (all P values < 0.05). Changes in body composition correlated to abnormal eating behavior and behavioral change (P < 0.01) and functional decline (P < 0.01). Changes in body composition also correlated to grey matter atrophy involving a distributed neural network that included the hippocampus, amygdala, nucleus accumbens, insula, cingulate, and cerebellum – structures known to be central to autonomic control – as well as the thalamus, putamen, accumbens, and caudate, which are involved in reward processing. Conclusions Changes in body composition and fat deposition extend the clinical phenomenology in bvFTD beyond cognition and behavior, with changes associated with changes in reward and autonomic processing suggesting that these deficits may be central in FTD
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia.,Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - Ramon Landin-Romero
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence of Cognition and its Disorders, Sydney, Australia
| | - Cheng T Liang
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence of Cognition and its Disorders, Sydney, Australia
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Cherie Strikwerda-Brown
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence of Cognition and its Disorders, Sydney, Australia
| | - Emma M Devenney
- Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - John R Hodges
- Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence of Cognition and its Disorders, Sydney, Australia
| | - Matthew C Kiernan
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia.,Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Olivier Piguet
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, Australia.,ARC Centre of Excellence of Cognition and its Disorders, Sydney, Australia
| |
Collapse
|
64
|
Mouzat K, Chudinova A, Polge A, Kantar J, Camu W, Raoul C, Lumbroso S. Regulation of Brain Cholesterol: What Role Do Liver X Receptors Play in Neurodegenerative Diseases? Int J Mol Sci 2019; 20:E3858. [PMID: 31398791 PMCID: PMC6720493 DOI: 10.3390/ijms20163858] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Liver X Receptors (LXR) alpha and beta are two members of nuclear receptor superfamily documented as endogenous cholesterol sensors. Following conversion of cholesterol in oxysterol, both LXR isoforms detect intracellular concentrations and act as transcription factors to promote expression of target genes. Among their numerous physiological roles, they act as central cholesterol-lowering factors. In the central nervous system (CNS), cholesterol has been shown to be an essential determinant of brain function, particularly as a major constituent of myelin and membranes. In the brain, LXRs act as cholesterol central regulators, and, beyond this metabolic function, LXRs have additional roles such as providing neuroprotective effects and lowering neuroinflammation. In many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and multiple sclerosis (MS), dysregulations of cholesterol and oxysterol have been reported. In this paper, we propose to focus on recent advances in the knowledge of the LXRs roles on brain cholesterol and oxysterol homeostasis, neuroinflammation, neuroprotection, and their putative involvement in neurodegenerative disorders. We will discuss their potential use as candidates for both molecular diagnosis and as promising pharmacological targets in the treatment of ALS, AD, or MS patients.
Collapse
Affiliation(s)
- Kevin Mouzat
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France.
| | - Aleksandra Chudinova
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - Anne Polge
- Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Jovana Kantar
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, Inserm UMR1051, 34000 Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, University of Montpellier, 34091 Montpellier, France
| | - Serge Lumbroso
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| |
Collapse
|
65
|
Ngo ST, van Eijk RPA, Chachay V, van den Berg LH, McCombe PA, Henderson RD, Steyn FJ. Loss of appetite is associated with a loss of weight and fat mass in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:497-505. [PMID: 31144522 DOI: 10.1080/21678421.2019.1621346] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Weight loss in amyotrophic lateral sclerosis (ALS) is associated with faster disease progression and shorter survival. It has different possible causes, including loss of appetite. Our objective is to determine the prevalence and impact of loss of appetite on change in body weight and composition in patients with ALS. Methods: We conducted a prospective case-control study, comparing demographic, clinical, appetite and prognostic features between 62 patients with ALS and 45 healthy non-neurodegenerative disease (NND) controls. To determine the impact of loss of appetite on weight throughout disease course, we conducted serial assessments at ∼three to four-month intervals. Results: Loss of appetite is more prevalent in patients with ALS than NND controls (29 vs. 11.1%, odds ratio = 3.27 (1.1-9.6); p < 0.01). In patients with ALS, loss of appetite is associated with greater weight loss and greater loss of fat mass. Appetite scores in patients with ALS worsens as disease progresses and are correlated with worsening ALS Functional Rating Scale-Revised scores. Conclusion: We confirm that loss of appetite is prevalent in patients with ALS and is significantly associated with weight loss and loss of fat mass. Appetite worsens with disease progression. Identification and early interventions to address loss of appetite in patients with ALS may prevent or slow weight loss; this could improve disease outcome.
Collapse
Affiliation(s)
- Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia.,Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Ruben P A van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht , The Netherlands.,Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht , Utrecht , The Netherlands , and
| | - V Chachay
- School of Human Movement and Nutrition Sciences, The University of Queensland , Brisbane , Australia
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht , The Netherlands
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Robert D Henderson
- Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Frederik J Steyn
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| |
Collapse
|
66
|
Zeng P, Yu X, Xu H. Association Between Premorbid Body Mass Index and Amyotrophic Lateral Sclerosis: Causal Inference Through Genetic Approaches. Front Neurol 2019; 10:543. [PMID: 31178821 PMCID: PMC6543002 DOI: 10.3389/fneur.2019.00543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: Inverse association between premorbid body mass index (BMI) and amyotrophic lateral sclerosis (ALS) was implied in observational studies; however, whether this association is causal remains largely unknown. Materials and Methods: We first conducted a meta-analysis to investigate whether there exits an association between premorbid BMI and ALS. We then employed a two-sample Mendelian randomization approach to evaluate the causal relationship of genetically increased BMI with the risk of ALS. The Mendelian randomization analysis was implemented using summary statistics for independent instruments obtained from large-scale genome-wide association studies of BMI (up to ~770,000 individuals) and ALS (up to ~81,000 individuals). The causal effect of BMI on ALS was estimated using inverse-variance weighted methods and was further validated through extensive complementary and sensitivity analyses. Results: The meta-analysis showed that a unit increase of premorbid BMI can result in about 3.0% (95% CI 2.1-4.5%) risk reduction of ALS. Using 1,031 instruments that were strongly related to BMI, the causal effect of per one standard deviation increase of BMI was estimated to be 1.04 (95% CI 0.97-1.11, p = 0.275) in the European population. This null association between BMI and ALS also held in the East Asian population and was robust against various modeling assumptions and outlier biases. Additionally, the Egger-regression and MR-PRESSO ruled out the possibility of horizontal pleiotropic effects of instruments. Conclusion: Our results do not support the causal role of genetically increased or decreased BMI on the risk of ALS.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xinghao Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haibo Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
67
|
Hodges JR, Piguet O. Progress and Challenges in Frontotemporal Dementia Research: A 20-Year Review. J Alzheimers Dis 2019; 62:1467-1480. [PMID: 29504536 PMCID: PMC5870022 DOI: 10.3233/jad-171087] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The landscape of frontotemporal dementia (FTD) has evolved remarkably in recent years and is barely recognizable from two decades ago. Knowledge of the clinical phenomenology, cognition, neuroimaging, genetics, pathology of the different subtypes of FTD, and their relations to other neurodegenerative conditions, has increased rapidly, due in part, to the growing interests into these neurodegenerative brain conditions. This article reviews the major advances in the field of FTD over the past 20 years, focusing primarily on the work of Frontier, the frontotemporal dementia clinical research group, based in Sydney, Australia. Topics covered include clinical presentations (cognition, behavior, neuroimaging), pathology, genetics, and disease progression, as well as interventions and carer directed research. This review demonstrates the improvement in diagnostic accuracy and capacity to provide advice on genetic risks, prognosis, and outcome. The next major challenge will be to capitalize on these research findings to develop effective disease modifying drugs, which are currently lacking.
Collapse
Affiliation(s)
- John R Hodges
- The University of Sydney, Sydney Medical School and Brain and Mind Centre, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| | - Olivier Piguet
- ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,The University of Sydney, School of Psychology, and Brain and Mind Centre, Sydney, Australia
| |
Collapse
|
68
|
The Relation Between Type 2 Diabetes Mellitus and Parkinson Disease Up to Date. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2019. [DOI: 10.2478/rjdnmd-2019-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Parkinson’s disease is defined nowadays as a neurodegenerative disease with prominent motor symptoms accompanied by a wide range of comorbidities, some of them, like type 2 diabetes mellitus, probably implicated in the pathogenesis and progression of the disease. In order to achieve this article, which aimed to realize an up to date synthesis of published dedicated papers, a PubMed search was performed; it revealed increasing evidence that these two morbid conditions share many pathogenic pathways and current studies are trying to finally transform the accumulated knowledge into curative therapy or effective prevention for these frequent and complex diseases.
Collapse
|
69
|
Zhang F, Liu M, Li Q, Song FX. Exploration of attractor modules for sporadic amyotrophic lateral sclerosis via systemic module inference and attract method. Exp Ther Med 2019; 17:2575-2580. [PMID: 30906448 PMCID: PMC6425136 DOI: 10.3892/etm.2019.7264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/01/2019] [Indexed: 12/01/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (SALS) is a devastating neurodegenerative disorder. However, the understanding of SALS is still poor. This research aimed to excavate attractor modules for SALS by integrating the systemic module inference and attract method. To achieve this, gene expression data and protein-protein data were recruited and preprocessed. Then, based on the Spearman's correlation coefficient (SCC) of the interactions under these two conditions, two PPI networks separately with 870 nodes (979 interactions) in normal control group and 601 nodes (777 interactions) in SALS group were built. Systemic module inference method was performed to identify the modules, and attract method was used to identify attractor modules. Finally, pathway enrichment analysis was performed to disclose the functional enrichment of these attractor modules. In total 44 and 118 modules were identified for normal control and SALS groups, respectively. Among them, 6 modules were with similar gene composition between the two groups, and all 6 modules were considered as the attractor module via attract method. These attractor modules might be potential biomarkers for early diagnosis and therapy of SALS, which could provide insight into the disease biology and suggest possible directions for drug screening programs.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Rehabilitation, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Mei Liu
- Department of Rehabilitation, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Qun Li
- Department of Rehabilitation, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Fei-Xue Song
- Department of Oncology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
70
|
Prognostic significance of body weight variation after diagnosis in ALS: a single-centre prospective cohort study. J Neurol 2019; 266:1412-1420. [PMID: 30868220 DOI: 10.1007/s00415-019-09276-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Body weight reduction after disease onset is an independent predictor of survival in amyotrophic lateral sclerosis (ALS), but significance of weight variation after diagnosis remains to be established. OBJECTIVE To investigate weight variation after diagnosis and its prognostic significance in patients with ALS as a prospective cohort study. METHODS Seventy-nine patients with ALS were enrolled in this study. At the time of diagnosis and about 1 year later, we evaluated the following parameters: age, sex, onset age, onset region, body mass index (BMI) and premorbid BMI, forced vital capacity and the revised ALS functional rating scale. Annual BMI decline rates (∆BMI) from onset to diagnosis and from diagnosis to about 1 year later were calculated. Patients were followed to the endpoints (death or tracheostomy), and the relationships between ∆BMIs and survival were investigated. RESULTS Patients with post-diagnostic ∆BMI ≥ 2.0 kg/m2/year showed shorter survival length than those with < 2.0 kg/m2/year (log-rank test, p < 0.0001), and multivariate analysis using the Cox model revealed post-diagnostic ∆BMI as an independent prognostic factor. No correlation was identified between pre- and post-diagnostic ∆BMIs. Female patients with post-diagnostic ∆BMI < pre-diagnostic ∆BMI showed longer survival than those with the opposite ∆BMI trend (log-rank test, p = 0.0147). Female patients with post-diagnostic weight increase showed longer survival than those with weight decrease (log-rank test, p = 0.0228). CONCLUSION Body weight changes after diagnosis strongly predicts survival in ALS, and weight gain after diagnosis may improve survival prognosis, particularly in female ALS patients.
Collapse
|
71
|
Ahmed RM, Phan K, Highton‐Williamson E, Strikwerda‐Brown C, Caga J, Ramsey E, Zoing M, Devenney E, Kim WS, Hodges JR, Piguet O, Halliday GM, Kiernan MC. Eating peptides: biomarkers of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia. Ann Clin Transl Neurol 2019; 6:486-495. [PMID: 30911572 PMCID: PMC6414477 DOI: 10.1002/acn3.721] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Physiological changes potentially influence disease progression and survival along the Amyotrophic Lateral Sclerosis (ALS)-Frontotemporal dementia (FTD) spectrum. The peripheral peptides that regulate eating and metabolism may provide diagnostic, metabolic, and progression biomarkers. The current study aimed to examine the relationships and biomarker potential of hormonal peptides. Methods One hundred and twenty-seven participants (36 ALS, 26 ALS- cognitive, patients with additional cognitive behavioral features, and 35 behavioral variant FTD (bvFTD) and 30 controls) underwent fasting blood analyses of leptin, ghrelin, neuropeptide Y (NPY), peptide YY (PYY), and insulin levels. Relationships between endocrine measures, cognition, eating behaviors, and body mass index (BMI) were investigated. Biomarker potential was evaluated using multinomial logistic regression for diagnosis and correlation to disease duration. Results Compared to controls, ALS and ALS-cognitive had higher NPY levels and bvFTD had lower NPY levels, while leptin levels were increased in all patient groups. All groups had increased insulin levels and a state of insulin resistance compared to controls. Lower NPY levels correlated with increasing eating behavioral change and BMI, while leptin levels correlated with BMI. On multinomial logistic regression, NPY and leptin levels were found to differentiate between diagnosis. Reduced Neuropeptide Y levels correlated with increasing disease duration, suggesting it may be useful as a potential marker of disease progression. Interpretation ALS-FTD is characterized by changes in NPY and leptin levels that may impact on the underlying regional neurodegeneration as they were predictive of diagnosis and disease duration, offering the potential as biomarkers and for the development of interventional treatments.
Collapse
Affiliation(s)
- Rebekah M. Ahmed
- Memory and Cognition ClinicInstitute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
| | - Katherine Phan
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | | | - Cherie Strikwerda‐Brown
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
- The University of SydneySchool of Psychology and Brain and Mind CentreSydneyNew South WalesAustralia
| | - Jashelle Caga
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Eleanor Ramsey
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Margaret Zoing
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Emma Devenney
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Woojin S. Kim
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - John R. Hodges
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
| | - Olivier Piguet
- ARC Centre of Excellence in Cognition and its DisordersSydneyNew South WalesAustralia
- The University of SydneySchool of Psychology and Brain and Mind CentreSydneyNew South WalesAustralia
| | - Glenda M. Halliday
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Matthew C. Kiernan
- Memory and Cognition ClinicInstitute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
- Brain and Mind CentreSydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
72
|
Ahmed RM, Highton-Williamson E, Caga J, Thornton N, Ramsey E, Zoing M, Kim WS, Halliday GM, Piguet O, Hodges JR, Farooqi IS, Kiernan MC. Lipid Metabolism and Survival Across the Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Spectrum: Relationships to Eating Behavior and Cognition. J Alzheimers Dis 2019; 61:773-783. [PMID: 29254092 DOI: 10.3233/jad-170660] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) exhibit changes in eating behavior that could potentially affect lipid levels. OBJECTIVE This study aimed to document changes in lipid metabolism across the ALS-FTD spectrum to identify potential relationships to eating behavior (including fat intake), cognitive change, body mass index (BMI), and effect on survival. METHODS One hundred and twenty-eight participants were recruited: 37 ALS patients, 15 ALS patients with cognitive and behavioral change (ALS-Plus), 13 ALS-FTD, 31 behavioral variant FTD, and 32 healthy controls. Fasting total cholesterol, low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL) and triglyceride levels were measured and correlated to eating behavior (caloric, fat intake), cognitive change, and BMI; effect on survival was examined using cox regression analyses. RESULTS There was a spectrum of lipid changes from ALS to FTD with increased triglyceride (p < 0.001), total cholesterol/HDL ratio (p < 0.001), and lower HDL levels (p = 0.001) in all patient groups compared to controls. While there was no increase in total cholesterol levels, a higher cholesterol level was found to correlate with 3.25 times improved survival (p = 0.008). Triglyceride and HDL cholesterol levels correlated to fat intake, BMI, and measures of cognition and disease duration. CONCLUSION A spectrum of changes in lipid metabolism has been identified in ALS-FTD, with total cholesterol levels found to potentially impact on survival. These changes were mediated by changes in fat intake, and BMI, and may also be mediated by the neurodegenerative process, offering the potential to modify these factors to slow disease progression and improve survival.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Jashelle Caga
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Nicolette Thornton
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Eleanor Ramsey
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Margaret Zoing
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Woojin Scott Kim
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,Neuroscience Research Australia and the University of NSW, Faculty of Medicine, Sydney, Australia
| | - Olivier Piguet
- ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Neuroscience Research Australia and the University of NSW, Faculty of Medicine, Sydney, Australia.,The University of Sydney, School of Psychology and Brain and Mind Centre, Sydney, Australia
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Neuroscience Research Australia and the University of NSW, Faculty of Medicine, Sydney, Australia
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Matthew C Kiernan
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
73
|
Agarwal S, Koch G, Hillis AE, Huynh W, Ward NS, Vucic S, Kiernan MC. Interrogating cortical function with transcranial magnetic stimulation: insights from neurodegenerative disease and stroke. J Neurol Neurosurg Psychiatry 2019; 90:47-57. [PMID: 29866706 DOI: 10.1136/jnnp-2017-317371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic stimulation (TMS) is an accessible, non-invasive technique to study cortical function in vivo. TMS studies have provided important pathophysiological insights across a range of neurodegenerative disorders and enhanced our understanding of brain reorganisation after stroke. In neurodegenerative disease, TMS has provided novel insights into the function of cortical output cells and the related intracortical interneuronal networks. Characterisation of cortical hyperexcitability in amyotrophic lateral sclerosis and altered motor cortical function in frontotemporal dementia, demonstration of cholinergic deficits in Alzheimer's disease and Parkinson's disease are key examples where TMS has led to advances in understanding of disease pathophysiology and potential mechanisms of propagation, with the potential for diagnostic applications. In stroke, TMS methodology has facilitated the understanding of cortical reorganisation that underlie functional recovery. These insights are critical to the development of effective and targeted rehabilitation strategies in stroke. The present review will provide an overview of cortical function measures obtained using TMS and how such measures may provide insight into brain function. Through an improved understanding of cortical function across a range of neurodegenerative disorders, and identification of changes in neural structure and function associated with stroke that underlie clinical recovery, more targeted therapeutic approaches may now be developed in an evolving era of precision medicine.
Collapse
Affiliation(s)
- Smriti Agarwal
- Brain and Mind Centre, University of Sydney, and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy.,Stroke Unit, Department of Neuroscience, Policlinico Tor Vergata, Rome, Italy
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - William Huynh
- Brain and Mind Centre, University of Sydney, and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Nick S Ward
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, UK.,UCL Partners Centre for Neurorehabilitation, UCL Institute of Neurology, University College London, London, UK.,The National Hospital for Neurology and Neurosurgery, London, UK
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
74
|
Steyn FJ, Ioannides ZA, van Eijk RPA, Heggie S, Thorpe KA, Ceslis A, Heshmat S, Henders AK, Wray NR, van den Berg LH, Henderson RD, McCombe PA, Ngo ST. Hypermetabolism in ALS is associated with greater functional decline and shorter survival. J Neurol Neurosurg Psychiatry 2018; 89:1016-1023. [PMID: 29706605 PMCID: PMC6166607 DOI: 10.1136/jnnp-2017-317887] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the prevalence of hypermetabolism, relative to body composition, in amyotrophic lateral sclerosis (ALS) and its relationship with clinical features of disease and survival. METHODS Fifty-eight patients with clinically definite or probable ALS as defined by El Escorial criteria, and 58 age and sex-matched control participants underwent assessment of energy expenditure. Our primary outcome was the prevalence of hypermetabolism in cases and controls. Longitudinal changes in clinical parameters between hypermetabolic and normometabolic patients with ALS were determined for up to 12 months following metabolic assessment. Survival was monitored over a 30-month period following metabolic assessment. RESULTS Hypermetabolism was more prevalent in patients with ALS than controls (41% vs 12%, adjusted OR=5.4; p<0.01). Change in body weight, body mass index and fat mass (%) was similar between normometabolic and hypermetabolic patients with ALS. Mean lower motor neuron score (SD) was greater in hypermetabolic patients when compared with normometabolic patients (4 (0.3) vs 3 (0.7); p=0.04). In the 12 months following metabolic assessment, there was a greater change in Revised ALS Functional Rating Scale score in hypermetabolic patients when compared with normometabolic patients (-0.68 points/month vs -0.39 points/month; p=0.01). Hypermetabolism was inversely associated with survival. Overall, hypermetabolism increased the risk of death during follow-up to 220% (HR 3.2, 95% CI 1.1 to 9.4, p=0.03). CONCLUSIONS AND RELEVANCE Hypermetabolic patients with ALS have a greater level of lower motor neuron involvement, faster rate of functional decline and shorter survival. The metabolic index could be important for informing prognosis in ALS.
Collapse
Affiliation(s)
- Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Wesley Medical Research, The Wesley Hospital, Brisbane, Queensland, Australia
| | - Zara A Ioannides
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ruben P A van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan Heggie
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Kathryn A Thorpe
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Amelia Ceslis
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Saman Heshmat
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Wesley Medical Research, The Wesley Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Shyuan T Ngo
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Wesley Medical Research, The Wesley Hospital, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
75
|
Ahmed RM, Dupuis L, Kiernan MC. Paradox of amyotrophic lateral sclerosis and energy metabolism. J Neurol Neurosurg Psychiatry 2018; 89:1013-1014. [PMID: 29735514 DOI: 10.1136/jnnp-2018-318428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Luc Dupuis
- Fédération de médecine translationnelle, Université de Strasbourg, Inserm, UMR-S1118, Strasbourg, France
| | - Matthew C Kiernan
- Memory and Cognition Clinic, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
76
|
Dardiotis E, Siokas V, Sokratous M, Tsouris Z, Aloizou AM, Florou D, Dastamani M, Mentis AFA, Brotis AG. Body mass index and survival from amyotrophic lateral sclerosis: A meta-analysis. Neurol Clin Pract 2018; 8:437-444. [PMID: 30564498 DOI: 10.1212/cpj.0000000000000521] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Background Several studies have examined the relationship between body mass index (BMI) and survival from amyotrophic lateral sclerosis (ALS). Many indicate that low BMI at diagnosis or during follow-up may be associated with accelerated progression and shortened survival. This study systematically evaluated the relationship between BMI and survival in patients with ALS. Methods The PubMed database was searched to identify all available studies reporting time-to-event data. Eight studies with 6,098 patients fulfilled the eligibility criteria. BMI was considered a continuous and ordered variable. Interstudy heterogeneity was assessed by the Cochran Q test and quantified by the I2 metric. Fixed- or random-effects odds ratios summarized pooled effects after taking interstudy variability into account. Significance was set at p < 0.05. Results The ALS survival hazard ratio (HR) decreased approximately by 3% (95% confidence interval [CI]: 2%-5%) for each additional BMI unit when BMI was considered a continuous variable. When BMI was considered a categorical variable, the HRs for "normal" BMI vs "overweight" BMI and "obese" BMI were estimated to be as high as 0.91 (95% CI: 0.79-1.04) and 0.78 (95% CI: 0.60-1.01), respectively. The HR for the comparison of the "normal" BMI vs "underweight" BMI was estimated to be as high as 1.94 (95% CI: 1.42-2.65). Conclusions BMI is significantly and inversely associated with ALS survival.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Maria Sokratous
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Desponia Florou
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexios-Fotios A Mentis
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexandros G Brotis
- Department of Neurology (ED, VS, MS, ZT, A-MA, DF, MD), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Microbiology (A-FAM), University of Thessaly, University Hospital of Larissa, Larissa, Greece; Public Health Laboratories (A-FAM), Hellenic Pasteur Institute, Athens, Greece; and Department of Neurosurgery (AGB), University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
77
|
Ahmed RM, Goldberg ZL, Kaizik C, Kiernan MC, Hodges JR, Piguet O, Irish M. Neural correlates of changes in sexual function in frontotemporal dementia: implications for reward and physiological functioning. J Neurol 2018; 265:2562-2572. [DOI: 10.1007/s00415-018-9024-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/31/2023]
|
78
|
Huang Z, Liu Q, Peng Y, Dai J, Xie Y, Chen W, Long S, Pei Z, Su H, Yao X. Circadian Rhythm Dysfunction Accelerates Disease Progression in a Mouse Model With Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:218. [PMID: 29740382 PMCID: PMC5928145 DOI: 10.3389/fneur.2018.00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by interactions between environmental factors and genetic susceptibility. Circadian rhythm dysfunction (CRD) is a significant contributor to neurodegenerative conditions such as Alzheimer’s disease and Parkinson’s disease. However, whether CRD contributes to the progression of ALS remains little known. We performed behavioral and physiological tests on SOD1G93A ALS model mice with and without artificially induced CRD, and on wild-type controls; we also analyzed spinal cord samples histologically for differences between groups. We found that CRD accelerated the disease onset and progression of ALS in model mice, as demonstrated by aggravated functional deficits and weight loss, as well as increased motor neuron loss, activated gliosis, and nuclear factor κB-mediated inflammation in the spinal cord. We also found an increasing abundance of enteric cyanobacteria in the ALS model mice shortly after disease onset that was further enhanced by CRD. Our study provides initial evidence on the CRD as a risk factor for ALS, and intestinal cyanobacteria may be involved.
Collapse
Affiliation(s)
- Zhilin Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiaying Dai
- Comprehensive Department, Sun Yat-sen Memorial Hospital affiliated to Sun Yat-sen University, Guangzhou, China
| | - Youna Xie
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weineng Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Simei Long
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
79
|
Matamala JM, Arias-Carrasco R, Sanchez C, Uhrig M, Bargsted L, Matus S, Maracaja-Coutinho V, Abarzua S, van Zundert B, Verdugo R, Manque P, Hetz C. Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis. Neurobiol Aging 2018; 64:123-138. [DOI: 10.1016/j.neurobiolaging.2017.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
|
80
|
Vandoorne T, De Bock K, Van Den Bosch L. Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol 2018; 135:489-509. [PMID: 29549424 PMCID: PMC5978930 DOI: 10.1007/s00401-018-1835-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative disorder that primarily affects motor neurons. Despite our increased understanding of the genetic factors contributing to ALS, no effective treatment is available. A growing body of evidence shows disturbances in energy metabolism in ALS. Moreover, the remarkable vulnerability of motor neurons to ATP depletion has become increasingly clear. Here, we review metabolic alterations present in ALS patients and models, discuss the selective vulnerability of motor neurons to energetic stress, and provide an overview of tested and emerging metabolic approaches to treat ALS. We believe that a further understanding of the metabolic biology of ALS can lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
81
|
Physiological changes in neurodegeneration - mechanistic insights and clinical utility. Nat Rev Neurol 2018; 14:259-271. [PMID: 29569624 DOI: 10.1038/nrneurol.2018.23] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.
Collapse
|
82
|
Crespi C, Dodich A, Cappa SF, Canessa N, Iannaccone S, Corbo M, Lunetta C, Falini A, Cerami C. Multimodal MRI quantification of the common neurostructural bases within the FTD-ALS continuum. Neurobiol Aging 2018; 62:95-104. [DOI: 10.1016/j.neurobiolaging.2017.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
83
|
Clark CN, Golden HL, McCallion O, Nicholas JM, Cohen MH, Slattery CF, Paterson RW, Fletcher PD, Mummery CJ, Rohrer JD, Crutch SJ, Warren JD. Music models aberrant rule decoding and reward valuation in dementia. Soc Cogn Affect Neurosci 2018; 13:192-202. [PMID: 29186630 PMCID: PMC5827340 DOI: 10.1093/scan/nsx140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 01/03/2023] Open
Abstract
Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer's disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved ('finished') or unresolved ('unfinished'); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias.
Collapse
Affiliation(s)
- Camilla N Clark
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Hannah L Golden
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Oliver McCallion
- Oxford University Clinical Academic Graduate School, University of Oxford, Oxford, UK
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Miriam H Cohen
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Catherine F Slattery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Ross W Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Phillip D Fletcher
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
84
|
Vercruysse P, Vieau D, Blum D, Petersén Å, Dupuis L. Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Front Mol Neurosci 2018; 11:2. [PMID: 29403354 PMCID: PMC5780436 DOI: 10.3389/fnmol.2018.00002] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders characterized by progressive deterioration of brain structure and function. Selective neuronal populations are affected leading to symptoms which are prominently motor in amyotrophic lateral sclerosis (ALS) or Huntington’s disease (HD), or cognitive in Alzheimer’s disease (AD) and fronto-temporal dementia (FTD). Besides the common existence of neuronal loss, NDDs are also associated with metabolic changes such as weight gain, weight loss, loss of fat mass, as well as with altered feeding behavior. Importantly, preclinical research as well as clinical studies have demonstrated that altered energy homeostasis influences disease progression in ALS, AD and HD, suggesting that identification of the pathways leading to perturbed energy balance might provide valuable therapeutic targets Signals from both the periphery and central inputs are integrated in the hypothalamus, a major hub for the control of energy balance. Recent research identified major hypothalamic changes in multiple NDDs. Here, we review these hypothalamic alterations and seek to identify commonalities and differences in hypothalamic involvement between the different NDDs. These hypothalamic defects could be key in the development of perturbations in energy homeostasis in NDDs and further understanding of the underlying mechanisms might open up new avenues to not only treat weight loss but also to ameliorate overall neurological symptoms.
Collapse
Affiliation(s)
- Pauline Vercruysse
- UMR-S 1118, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.,UMR-S1118, Université de Strasbourg, Strasbourg, France.,Department of Neurology, Ulm University, Ulm, Germany
| | - Didier Vieau
- UMR-S 1172-JPArc, Centre Hospitalier Régional Universitaire de Lille (CHRU de Lille), Alzheimer and Tauopathies, Lille, France
| | - David Blum
- UMR-S 1172-JPArc, Centre Hospitalier Régional Universitaire de Lille (CHRU de Lille), Alzheimer and Tauopathies, Lille, France
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit (TNU), Lund University, Lund, Sweden
| | - Luc Dupuis
- UMR-S 1118, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.,UMR-S1118, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
85
|
Zanardini R, Benussi L, Fostinelli S, Saraceno C, Ciani M, Borroni B, Padovani A, Binetti G, Ghidoni R. Serum C-Peptide, Visfatin, Resistin, and Ghrelin are Altered in Sporadic and GRN-Associated Frontotemporal Lobar Degeneration. J Alzheimers Dis 2018; 61:1053-1060. [DOI: 10.3233/jad-170747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- MAC Memory Center, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Although there is no cure for motor neurone disease (MND), the advent of multidisciplinary care and neuroprotective agents has improved treatment interventions and enhanced quality of life for MND patients and their carers. RECENT FINDINGS Evidence-based multidisciplinary care, respiratory management and disease-modifying therapy have improved the outcomes of patients diagnosed with MND. Supportive approaches to nutritional maintenance and optimization of symptomatic treatments, including management of communication and neuropsychiatric issues, improve the quality of life for MND patients. SUMMARY Recent progress in the understanding of the clinical, pathophysiological and genetic heterogeneity of MND has improved the approach of clinicians to treatment. Notwithstanding improvement to care and quality of life, survival benefit has become evident with the advent of a multidisciplinary care framework, early treatment with riluzole and noninvasive ventilation. Weight maintenance remains critical, with weight loss associated with more rapid disease progression. The end-of-life phase is poorly defined and treatment is challenging, but effective symptom control through palliative care is achievable and essential. Encouragingly, current progress of clinical trials continues to close the gap towards the successful development of curative treatment in MND.
Collapse
|
87
|
|
88
|
Vucic S. Hypermetabolism appears to be an adverse prognostic biomarker in amyotrophic lateral sclerosis: a potential for therapeutic intervention? Eur J Neurol 2017; 25:1-2. [PMID: 28940741 DOI: 10.1111/ene.13470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- S Vucic
- Westmead Clinical School, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
89
|
Tortarolo M, Lo Coco D, Veglianese P, Vallarola A, Giordana MT, Marcon G, Beghi E, Poloni M, Strong MJ, Iyer AM, Aronica E, Bendotti C. Amyotrophic Lateral Sclerosis, a Multisystem Pathology: Insights into the Role of TNF α. Mediators Inflamm 2017; 2017:2985051. [PMID: 29081600 PMCID: PMC5610855 DOI: 10.1155/2017/2985051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is considered a multifactorial, multisystem disease in which inflammation and the immune system play important roles in development and progression. The pleiotropic cytokine TNFα is one of the major players governing the inflammation in the central nervous system and peripheral districts such as the neuromuscular and immune system. Changes in TNFα levels are reported in blood, cerebrospinal fluid, and nerve tissues of ALS patients and animal models. However, whether they play a detrimental or protective role on the disease progression is still not clear. Our group and others have recently reported opposite involvements of TNFR1 and TNFR2 in motor neuron death. TNFR2 mediates TNFα toxic effects on these neurons presumably through the activation of MAP kinase-related pathways. On the other hand, TNFR2 regulates the function and proliferation of regulatory T cells (Treg) whose expression is inversely correlated with the disease progression rate in ALS patients. In addition, TNFα is considered a procachectic factor with a direct catabolic effect on skeletal muscles, causing wasting. We review and discuss the role of TNFα in ALS in the light of its multisystem nature.
Collapse
Affiliation(s)
- Massimo Tortarolo
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Daniele Lo Coco
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- ALS Research Center, Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy
| | - Pietro Veglianese
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Antonio Vallarola
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Gabriella Marcon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- DAME, University of Udine, Udine, Italy
| | - Ettore Beghi
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Marco Poloni
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Michael J. Strong
- Cell Biology Research Group, Robarts Research Institute, London, ON, Canada
| | - Anand M. Iyer
- Department of Neuropathology, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
90
|
What is "Hyper" in the ALS Hypermetabolism? Mediators Inflamm 2017; 2017:7821672. [PMID: 29081604 PMCID: PMC5610793 DOI: 10.1155/2017/7821672] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
The progressive and fatal loss of upper (brain) and lower (spinal cord) motor neurons and muscle denervation concisely condenses the clinical picture of amyotrophic lateral sclerosis (ALS). Despite the multiple mechanisms believed to underlie the selective loss of motor neurons, ALS aetiology remains elusive and obscure. Likewise, there is also a cluster of alterations in ALS patients in which muscle wasting, body weight loss, eating dysfunction, and abnormal energy dissipation coexist. Defective energy metabolism characterizes the ALS progression, and such paradox of energy balance stands as a challenge for the understanding of ALS pathogenesis. The hypermetabolism in ALS will be examined from tissue-specific energy imbalance (e.g., skeletal muscle) to major energetic pathways (e.g., AMP-activated protein kinase) and whole-body energy alterations including glucose and lipid metabolism, nutrition, and potential involvement of interorgan communication. From the point of view here expressed, the hypermetabolism in ALS should be evaluated as a magnifying glass through which looking at the ALS pathogenesis is from a different perspective in which defective metabolism can disclose novel mechanistic interpretations and lines of intervention.
Collapse
|
91
|
Taskesen E, Mishra A, van der Sluis S, Ferrari R, Veldink JH, van Es MA, Smit AB, Posthuma D, Pijnenburg Y. Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with Amyotrophic Lateral Sclerosis by DNA-methylation and GWAS. Sci Rep 2017; 7:8899. [PMID: 28827549 PMCID: PMC5567187 DOI: 10.1038/s41598-017-09320-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disorder predominantly affecting the frontal and temporal lobes. Genome-wide association studies (GWAS) on FTD identified only a few risk loci. One of the possible explanations is that FTD is clinically, pathologically, and genetically heterogeneous. An important open question is to what extent epigenetic factors contribute to FTD and whether these factors vary between FTD clinical subgroup. We compared the DNA-methylation levels of FTD cases (n = 128), and of FTD cases with Amyotrophic Lateral Sclerosis (FTD-ALS; n = 7) to those of unaffected controls (n = 193), which resulted in 14 and 224 candidate genes, respectively. Cluster analysis revealed significant class separation of FTD-ALS from controls. We could further specify genes with increased susceptibility for abnormal gene-transcript behavior by jointly analyzing DNA-methylation levels with the presence of mutations in a GWAS FTD-cohort. For FTD-ALS, this resulted in 9 potential candidate genes, whereas for FTD we detected 1 candidate gene (ELP2). Independent validation-sets confirmed the genes DLG1, METTL7A, KIAA1147, IGHMBP2, PCNX, UBTD2, WDR35, and ELP2/SLC39A6 among others. We could furthermore demonstrate that genes harboring mutations and/or displaying differential DNA-methylation, are involved in common pathways, and may therefore be critical for neurodegeneration in both FTD and FTD-ALS.
Collapse
Affiliation(s)
- E Taskesen
- VU University Amsterdam, Center for Neurogenomics and Cognitive Research, Complex Trait Genetics (CTG), Amsterdam Neuroscience, Amsterdam, The Netherlands
- VU University Medical Center (VUMC), Alzheimer Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Mishra
- VU University Amsterdam, Center for Neurogenomics and Cognitive Research, Complex Trait Genetics (CTG), Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - S van der Sluis
- VU University Amsterdam, Center for Neurogenomics and Cognitive Research, Complex Trait Genetics (CTG), Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - R Ferrari
- UCL London, Institute of Neurology, Department of Molecular Neuroscience, London, UK
| | - J H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M A van Es
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A B Smit
- VU University Amsterdam, Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology (MCN), Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - D Posthuma
- VU University Amsterdam, Center for Neurogenomics and Cognitive Research, Complex Trait Genetics (CTG), Amsterdam Neuroscience, Amsterdam, The Netherlands
- VU University Medical Center (VUMC), Alzheimer Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Y Pijnenburg
- VU University Medical Center (VUMC), Alzheimer Center, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
92
|
Ngo ST, Mi JD, Henderson RD, McCombe PA, Steyn FJ. Exploring targets and therapies for amyotrophic lateral sclerosis: current insights into dietary interventions. Degener Neurol Neuromuscul Dis 2017; 7:95-108. [PMID: 30050381 PMCID: PMC6053104 DOI: 10.2147/dnnd.s120607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A growing number of preclinical and human studies demonstrate a disease-modifying effect of nutritional state in amyotrophic lateral sclerosis (ALS). The management of optimal nutrition in ALS is complicated, as physiological, physical, and psychological effects of the disease need to be considered and addressed accordingly. In this regard, multidisciplinary care teams play an integral role in providing dietary guidance to ALS patients and their carers. However, with an increasing research focus on the use of dietary intervention strategies to manage disease symptoms and improve prognosis in ALS, many ALS patients are now seeking or are actively engaged in using complementary and alternative therapies that are dietary in nature. In this article, we review the aspects of appetite control, energy balance, and the physiological effects of ALS relative to their impact on overall nutrition. We then provide current insights into dietary interventions for ALS, considering the mechanisms of action of some of the common dietary interventions used in ALS, discussing their validity in the context of clinical trials.
Collapse
Affiliation(s)
- Shyuan T Ngo
- School of Biomedical Sciences.,Queensland Brain Institute.,Centre for Clinical Research, The University of Queensland, .,Department of Neurology, Royal Brisbane & Women's Hospital, .,Wesley Medical Research, The Wesley Hospital, Auchenflower, Brisbane, QLD, Australia,
| | | | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland, .,Department of Neurology, Royal Brisbane & Women's Hospital,
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, .,Department of Neurology, Royal Brisbane & Women's Hospital,
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, .,Department of Neurology, Royal Brisbane & Women's Hospital, .,Wesley Medical Research, The Wesley Hospital, Auchenflower, Brisbane, QLD, Australia,
| |
Collapse
|
93
|
Liu YJ, Tsai PY, Chern Y. Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2017; 11:126. [PMID: 28522961 PMCID: PMC5415567 DOI: 10.3389/fncel.2017.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that is clinically characterized by progressive muscle weakness and impaired voluntary movement due to the loss of motor neurons in the brain, brain stem and spinal cord. To date, no effective treatment is available. Ample evidence suggests that impaired RNA homeostasis and abnormal energy status are two major pathogenesis pathways in ALS. In the present review article, we focus on recent studies that report molecular insights of both pathways, and discuss the possibility that energy dysfunction might negatively regulate RNA homeostasis via the impairment of cytoplasmic-nuclear shuttling in motor neurons and subsequently contribute to the development of ALS.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Po-Yi Tsai
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| |
Collapse
|
94
|
Kim DY, Yu J, Mui RK, Niibori R, Taufique HB, Aslam R, Semple JW, Cordes SP. The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy) neuron survival in the mouse anorexia ( anx) mutation. Dis Model Mech 2017; 10:581-595. [PMID: 28093506 PMCID: PMC5451163 DOI: 10.1242/dmm.027433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy) and agouti-related peptide (Agrp) in adult mice or in mice homozygous for the anorexia (anx) mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T) that converts an arginine to a tryptophan (R7W) in the TYRO3 protein tyrosine kinase 3 (Tyro3) gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3-/- mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19). The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions targeting detrimental weight loss.
Collapse
Affiliation(s)
- Dennis Y Kim
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Joanna Yu
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Ryan K Mui
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Hamza Bin Taufique
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Rukhsana Aslam
- Keenan Research Centre for Biomedical Science, St. Michaels Hospital, Toronto, ON M5B 1W8, Canada
- Canadian Blood Services, 67 College Street, Toronto, ON M5G 2M1, Canada
| | - John W Semple
- Keenan Research Centre for Biomedical Science, St. Michaels Hospital, Toronto, ON M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canadian Blood Services, 67 College Street, Toronto, ON M5G 2M1, Canada
| | - Sabine P Cordes
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
95
|
Ioannides ZA, Steyn FJ, Henderson RD, Mccombe PA, Ngo ST. Anthropometric measures are not accurate predictors of fat mass in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:486-491. [PMID: 28446030 DOI: 10.1080/21678421.2017.1317811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Anthropometric measurements including body mass index (BMI) and body adiposity index (BAI) are widely employed as indicators of fat mass (FM). Metabolic abnormalities in amyotrophic lateral sclerosis (ALS) impact disease progression, therefore assessment of FM informs care. The aim of this study was to determine whether BMI and BAI are accurate predictors of FM in ALS. Methodology and main findings: BMI, BAI and percentage FM (determined by air displacement plethysmography; FM-ADP) were measured in control (n = 35) and ALS (n = 44) participants. While BMI and BAI correlated significantly with FM-ADP, neither index provided an accurate estimate of FM. In longitudinally assessed ALS participants (n = 29; ∼six-month repeat assessment interval), although a change in BMI (r2 = 0.62 r = 0.79 p < 0.01) and BAI (r2 = 0.20 r = 0.44, p = 0.02) correlated with a change in FM-ADP, the anthropometric measures did not consistently reflect increases or decreases observed in FM-ADP. CONCLUSIONS/SIGNIFICANCE Using FM-ADP as the standard, this study suggests that BMI and BAI are not accurate measures of FM in ALS. Furthermore, longitudinal assessments indicate that changes in BMI and BAI do not consistently reflect true changes of FM in ALS.
Collapse
Affiliation(s)
- Zara A Ioannides
- a The University of Queensland Centre for Clinical Research, The University of Queensland , Herston , Australia.,b Department of Neurology , Royal Brisbane & Women's Hospital , Herston , Australia.,c School of Medicine, The University of Queensland , Herston , Australia
| | - Frederik J Steyn
- a The University of Queensland Centre for Clinical Research, The University of Queensland , Herston , Australia.,b Department of Neurology , Royal Brisbane & Women's Hospital , Herston , Australia.,d School of Biomedical Sciences, The University of Queensland , St Lucia , Australia , and
| | - Robert D Henderson
- b Department of Neurology , Royal Brisbane & Women's Hospital , Herston , Australia.,c School of Medicine, The University of Queensland , Herston , Australia
| | - Pamela A Mccombe
- a The University of Queensland Centre for Clinical Research, The University of Queensland , Herston , Australia.,b Department of Neurology , Royal Brisbane & Women's Hospital , Herston , Australia.,c School of Medicine, The University of Queensland , Herston , Australia
| | - Shyuan T Ngo
- a The University of Queensland Centre for Clinical Research, The University of Queensland , Herston , Australia.,b Department of Neurology , Royal Brisbane & Women's Hospital , Herston , Australia.,d School of Biomedical Sciences, The University of Queensland , St Lucia , Australia , and.,e Queensland Brain Institute, The University of Queensland , St Lucia , Australia
| |
Collapse
|
96
|
Bossolasco P, Cancello R, Doretti A, Morelli C, Silani V, Cova L. Adiponectin levels in the serum and cerebrospinal fluid of amyotrophic lateral sclerosis patients: possible influence on neuroinflammation? J Neuroinflammation 2017; 14:85. [PMID: 28427413 PMCID: PMC5397697 DOI: 10.1186/s12974-017-0861-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adiponectin (APN) is a key player in energy homeostasis strictly associated with cerebrovascular and neurodegenerative diseases. Since APN also belongs to anti-inflammatory-acting adipokines and may influence both neuroinflammation and neurodegenerative processes, we decided to study the APN levels in amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. METHODS We assessed APN levels by ELISA immunoassay in both the serum and cerebrospinal fluid of a cohort of familial and sporadic ALS patients, characterized by normal body mass index and absence of dysautonomic symptoms. The screening of serum APN levels was also performed in patients affected by other neurological disorders, including fronto-temporal dementia (FTD) patients. Means were compared using the non-parametric Wilcoxon test, and Pearson's or Spearman's rho was used to assess correlations between variables. RESULTS In the whole ALS group, serum APN levels were not different when compared to the age- and sex-matched control group (CTR), but a gender-specific analysis enlightened a significant opposite APN trend between ALS males, characterized by lower values (ALS 9.8 ± 5.2 vs. CTR 15 ± 9.7 μg/ml), and ALS females, showing higher amounts (ALS 26.5 ± 11.6 vs. CTR 14.6 ± 5.2 μg/ml). This sex-linked difference was significantly enhanced in familial ALS cases (p ≤ 0.01). The APN levels in ALS cerebrospinal fluids were unrelated to serum values and not linked to sex and/or familiarity of the disease. Finally, the screening of serum APN levels in patients affected by other neurological disorders revealed the highest serum values in FTD patients. CONCLUSIONS Opposite serum APN levels are gender-related in ALS and altered in several neurological disorders, with the highest values in FTD, which shares with ALS several overlapping and neuropathological features. Further investigations are needed to clarify the possible involvement of APN in neuroinflammation and neurodegeneration. Possible involvement of APN in neuroinflammatory neurodegenerative diseases.
Collapse
Affiliation(s)
- Patrizia Bossolasco
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, piazzale Brescia 20, 20149, Milan, Italy
| | - Raffaella Cancello
- Diabetes Research Laboratory, IRCCS, Istituto Auxologico Italiano, via Ariosto 13, 20145, Milan, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, piazzale Brescia 20, 20149, Milan, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, piazzale Brescia 20, 20149, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, piazzale Brescia 20, 20149, Milan, Italy.,"Dino Ferrari" Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Sforza 35, 20122, Milan, Italy
| | - Lidia Cova
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, piazzale Brescia 20, 20149, Milan, Italy. .,Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy.
| |
Collapse
|
97
|
Timmins HC, Saw W, Cheah BC, Lin CSY, Vucic S, Ahmed RM, Kiernan MC, Park SB. Cardiometabolic health and risk of amyotrophic lateral sclerosis. Muscle Nerve 2017; 56:721-725. [PMID: 28029705 DOI: 10.1002/mus.25547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/14/2016] [Accepted: 12/26/2016] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Patients diagnosed with amyotrophic lateral sclerosis (ALS) generally have a limited medical history and a normal body mass index, raising the possibility of a premorbid ALS phenotype. METHODS The prevalence of cardiometabolic factors was analyzed in 58 ALS patients via comprehensive cardiovascular assessments and compared with Australian population norms. RESULTS ALS patients had good cardiac fitness and no reported cardiovascular events. Average blood pressure, heart rate, PR interval, and corrected QT interval were in the normal range. There were significantly fewer obese women in the ALS cohort (13.6%, P < 0.05) and more men with a normal body mass index than in the general population (47.2%, P < 0.001). The percentage of individuals who had never smoked was greater for the ALS cohort (55.8%, P ≤ 0.001), and the prevalence of dyslipidemia was lower (38.7%) compared with the general population (74.4%, P < 0.001). CONCLUSION ALS patients had good cardiometabolic health, with evidence of a reduced vascular risk profile. Muscle Nerve 56: 721-725, 2017.
Collapse
Affiliation(s)
- Hannah C Timmins
- Brain and Mind Centre, University of Sydney, Level 4, 94 Mallett Street, Camperdown, 2050, Sydney, New South Wales, Australia
| | - Wilfred Saw
- Eastern Heart Clinic, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Benjamin C Cheah
- Brain and Mind Centre, University of Sydney, Level 4, 94 Mallett Street, Camperdown, 2050, Sydney, New South Wales, Australia
| | - Cindy S Y Lin
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Steve Vucic
- Western Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Rebekah M Ahmed
- Brain and Mind Centre, University of Sydney, Level 4, 94 Mallett Street, Camperdown, 2050, Sydney, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Level 4, 94 Mallett Street, Camperdown, 2050, Sydney, New South Wales, Australia
| | - Susanna B Park
- Brain and Mind Centre, University of Sydney, Level 4, 94 Mallett Street, Camperdown, 2050, Sydney, New South Wales, Australia
| |
Collapse
|
98
|
Mouse models of frontotemporal dementia: A comparison of phenotypes with clinical symptomatology. Neurosci Biobehav Rev 2017; 74:126-138. [DOI: 10.1016/j.neubiorev.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
|
99
|
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
100
|
Vucic S, Kiernan MC. Transcranial Magnetic Stimulation for the Assessment of Neurodegenerative Disease. Neurotherapeutics 2017; 14:91-106. [PMID: 27830492 PMCID: PMC5233629 DOI: 10.1007/s13311-016-0487-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive technique that has provided important information about cortical function across an array of neurodegenerative disorders, including Alzheimer's disease, frontotemporal dementia, Parkinson's disease, and related extrapyramidal disorders. Application of TMS techniques in neurodegenerative diseases has provided important pathophysiological insights, leading to the development of pathogenic and diagnostic biomarkers that could be used in the clinical setting and therapeutic trials. Abnormalities of TMS outcome measures heralding cortical hyperexcitability, as evidenced by a reduction of short-interval intracortical inhibition and increased in motor-evoked potential amplitude, have been consistently identified as early and intrinsic features of amyotrophic lateral sclerosis (ALS), preceding and correlating with the ensuing neurodegeneration. Cortical hyperexcitability appears to form the pathogenic basis of ALS, mediated by trans-synaptic glutamate-mediated excitotoxic mechanisms. As a consequence of these research findings, TMS has been developed as a potential diagnostic biomarker, capable of identifying upper motor neuronal pathology, at earlier stages of the disease process, and thereby aiding in ALS diagnosis. Of further relevance, marked TMS abnormalities have been reported in other neurodegenerative diseases, which have varied from findings in ALS. With time and greater utilization by clinicians, TMS outcome measures may prove to be of utility in future therapeutic trial settings across the neurodegenerative disease spectrum, including the monitoring of neuroprotective, stem-cell, and genetic-based strategies, thereby enabling assessment of biological effectiveness at early stages of drug development.
Collapse
Affiliation(s)
- Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Camperdown, Australia.
| |
Collapse
|