51
|
Bower A, Makhani N. Radiologically Isolated Syndrome and the Multiple Sclerosis Prodrome in Pediatrics: Early Features of the Spectrum of Demyelination. Semin Pediatr Neurol 2023; 46:101053. [PMID: 37451751 DOI: 10.1016/j.spen.2023.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 07/18/2023]
Abstract
Radiologically isolated syndrome refers to the clinical scenario in which individuals have imaging concerning for multiple sclerosis and would otherwise satisfy radiographic dissemination in space criteria, but do not have any attributable signs or symptoms. Radiologically isolated syndrome has been increasingly recognized in the pediatric population and it is understood certain individuals will transition to a formal diagnosis of multiple sclerosis over time. This review aims to outline the available data within this unique population including the diagnostic criteria, epidemiology, risk factors associated with transitioning to multiple sclerosis, and the current therapeutic landscape. Radiologically isolated syndrome will also be positioned within a broader spectrum of demyelinating disease as recent data has pointed towards a likely prodromal phase that precedes a first clinical event and diagnosis of multiple sclerosis. Characterizing the radiographic features, clinical symptoms, and biomarkers that constitute this prodromal phase of multiple sclerosis would help identify patients who may most benefit from early intervention in the future.
Collapse
Affiliation(s)
- Aaron Bower
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Naila Makhani
- Department of Neurology, Yale School of Medicine, New Haven, CT; Department of Pediatrics, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
52
|
Patil SA, Joseph B, Tagliani P, Sastre-Garriga J, Montalban X, Vidal-Jordana A, Galetta SL, Balcer LJ, Kenney RC. Longitudinal stability of inter-eye differences in optical coherence tomography measures for identifying unilateral optic nerve lesions in multiple sclerosis. J Neurol Sci 2023; 449:120669. [PMID: 37167654 DOI: 10.1016/j.jns.2023.120669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Optical coherence tomography (OCT)-derived peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell+inner plexiform layer (GCIPL) thickness inter-eye differences (IEDs) are robust measurements for identifying clinical history acute ON in people with MS (PwMS). This study investigated the utility and durability of these measures as longitudinal markers to identify optic nerve lesions. METHODS Prospective, multi-center international study of PwMS (with/without clinical history of ON) and healthy controls. Data from two sites in the International MS Visual System Consortium (IMSVISUAL) were analyzed. Mixed-effects models were used to compare inter-eye differences based on MS and acute ON history. RESULTS Average age of those with MS (n = 210) was 39.1 ± 10.8 and 190 (91%) were relapsing-remitting. Fifty-nine (28.1%) had a history of acute unilateral ON, while 9/210 (4.3%) had >1 IB episode. Median follow-up between OCT scans was 9 months. By mixed-effects modeling, IEDs were stable between first and last visits within groups for GCIPL for controls (p = 0.18), all PwMS (p = 0.74), PwMs without ON (p = 0.22), and PwMS with ON (p = 0.48). For pRNFL, IEDs were within controls (p = 0.10), all PwMS (p = 0.53), PwMS without ON history (p = 0.98), and PwMS with history of ON (p = 0.81). CONCLUSION We demonstrated longitudinal stability of pRNFL and GCIPL IEDs as markers for optic nerve lesions in PwMS, thus reinforcing the role for OCT in demonstrating optic nerve lesions.
Collapse
Affiliation(s)
- Sachi A Patil
- Departments of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Binu Joseph
- Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Paula Tagliani
- Neurology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron University Hospital, Barcelona, Spain.
| | - Jaume Sastre-Garriga
- Neurology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron University Hospital, Barcelona, Spain.
| | - Xavier Montalban
- Neurology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron University Hospital, Barcelona, Spain.
| | - Angela Vidal-Jordana
- Neurology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron University Hospital, Barcelona, Spain.
| | - Steven L Galetta
- Departments of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA; Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Laura J Balcer
- Departments of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA; Neurology, New York University Grossman School of Medicine, New York, NY, USA; Population Health, New York University Grossman School of Medicine, New York, NY, USA.
| | - Rachel C Kenney
- Neurology, New York University Grossman School of Medicine, New York, NY, USA; Population Health, New York University Grossman School of Medicine, New York, NY, USA; Departments of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
53
|
Collorone S, Foster MA, Toosy AT. Advanced central nervous system imaging biomarkers in radiologically isolated syndrome: a mini review. Front Neurol 2023; 14:1172807. [PMID: 37273705 PMCID: PMC10235479 DOI: 10.3389/fneur.2023.1172807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Radiologically isolated syndrome is characterised by central nervous system white-matter hyperintensities highly suggestive of multiple sclerosis in individuals without a neurological history of clinical demyelinating episodes. It probably represents the pre-symptomatic phase of clinical multiple sclerosis but is poorly understood. This mini review summarises our current knowledge regarding advanced imaging techniques in radiologically isolated syndrome that provide insights into its pathobiology and prognosis. The imaging covered will include magnetic resonance imaging-derived markers of central nervous system volumetrics, connectivity, and the central vein sign, alongside optical coherence tomography-related metrics.
Collapse
Affiliation(s)
| | | | - Ahmed T. Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|
54
|
Bsteh G, Hegen H, Altmann P, Auer M, Berek K, Di Pauli F, Haider L, Kornek B, Krajnc N, Leutmezer F, Macher S, Rommer P, Walchhofer LM, Zebenholzer K, Zulehner G, Deisenhammer F, Pemp B, Berger T. Retinal layer thickness predicts disability accumulation in early relapsing multiple sclerosis. Eur J Neurol 2023; 30:1025-1034. [PMID: 36719184 DOI: 10.1111/ene.15718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to investigate baseline peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell and inner plexiform layer (GCIPL) thickness for prediction of disability accumulation in early relapsing multiple sclerosis (RMS). METHODS From a prospective observational study, we included patients with newly diagnosed RMS and obtained spectral-domain optical coherence tomography scan within 90 days after RMS diagnosis. Impact of pRNFL and GCIPL thickness for prediction of disability accumulation (confirmed Expanded Disability Status Scale [EDSS] score ≥ 3.0) was tested by multivariate (adjusted hazard ratio [HR] with 95% confidence interval [CI]) Cox regression models. RESULTS We analyzed 231 MS patients (mean age = 30.3 years, SD = 8.1, 74% female) during a median observation period of 61 months (range = 12-93). Mean pRNFL thickness was 92.6 μm (SD = 12.1), and mean GCIPL thickness was 81.4 μm (SD = 11.8). EDSS ≥ 3 was reached by 28 patients (12.1%) after a median 49 months (range = 9-92). EDSS ≥ 3 was predicted with GCIPL < 77 μm (HR = 2.7, 95% CI = 1.6-4.2, p < 0.001) and pRNFL thickness ≤ 88 μm (HR = 2.0, 95% CI = 1.4-3.3, p < 0.001). Higher age (HR = 1.4 per 10 years, p < 0.001), incomplete remission of first clinical attack (HR = 2.2, p < 0.001), ≥10 magnetic resonance imaging (MRI) lesions (HR = 2.0, p < 0.001), and infratentorial MRI lesions (HR = 1.9, p < 0.001) were associated with increased risk of disability accumulation, whereas highly effective disease-modifying treatment was protective (HR = 0.6, p < 0.001). Type of first clinical attack and presence of oligoclonal bands were not significantly associated. CONCLUSIONS Retinal layer thickness (GCIPL more than pRNFL) is a useful predictor of future disability accumulation in RMS, independently adding to established markers.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Haider
- Department of Neuroradiology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Karin Zebenholzer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gudrun Zulehner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Berthold Pemp
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
55
|
Wauschkuhn J, Solorza Buenrostro G, Aly L, Asseyer S, Wicklein R, Hartberger JM, Ruprecht K, Mühlau M, Schmitz-Hübsch T, Chien C, Berthele A, Brandt AU, Korn T, Paul F, Hemmer B, Zimmermann HG, Knier B. Retinal ganglion cell loss is associated with future disability worsening in early relapsing-remitting multiple sclerosis. Eur J Neurol 2023; 30:982-990. [PMID: 36635219 DOI: 10.1111/ene.15681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/03/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND PURPOSE Thinning of the retinal combined ganglion cell and inner plexiform layer (GCIP) as measured by optical coherence tomography (OCT) is a common finding in patients with multiple sclerosis. This study aimed to investigate whether a single retinal OCT analysis allows prediction of future disease activity after a first demyelinating event. METHODS This observational cohort study included 201 patients with recently diagnosed clinically isolated syndrome or relapsing-remitting multiple sclerosis from two German tertiary referral centers. Individuals underwent neurological examination, magnetic resonance imaging, and OCT at baseline and at yearly follow-up visits. RESULTS Patients were included at a median disease duration of 2.0 months. During a median follow-up of 59 (interquartile range = 43-71) months, 82% of patients had ongoing disease activity as demonstrated by failing the no evidence of disease activity 3 (NEDA-3) criteria, and 19% presented with confirmed disability worsening. A GCIP threshold of ≤77 μm at baseline identified patients with a high risk for NEDA-3 failure (hazard ratio [HR] = 1.7, 95% confidence interval [CI] = 1.1-2.8, p = 0.04), and GCIP measures of ≤69 μm predicted disability worsening (HR = 2.2, 95% CI = 1.2-4.3, p = 0.01). Higher rates of annualized GCIP loss increased the risk for disability worsening (HR = 2.5 per 1 μm/year increase of GCIP loss, p = 0.03). CONCLUSIONS Ganglion cell thickness as measured by OCT after the initial manifestation of multiple sclerosis may allow early risk stratification as to future disease activity and progression.
Collapse
Affiliation(s)
- Josephine Wauschkuhn
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Gilberto Solorza Buenrostro
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine and the Helmholtz Association, Charité - University Medicine Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lilian Aly
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Susanna Asseyer
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine and the Helmholtz Association, Charité - University Medicine Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Rebecca Wicklein
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Maria Hartberger
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine and the Helmholtz Association, Charité - University Medicine Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine and the Helmholtz Association, Charité - University Medicine Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine and the Helmholtz Association, Charité - University Medicine Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Neurology, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, University of California, Irvine, Irvine, California, USA
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine and the Helmholtz Association, Charité - University Medicine Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Neurology, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine and the Helmholtz Association, Charité - University Medicine Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
56
|
Rzepiński Ł, Kucharczuk J, Tkaczyńska M, Parisi V, Grzybowski A. Swept-Source Optical Coherence Tomography Thresholds in Differentiating Clinical Outcomes in a Real-World Cohort of Treatment-Naïve Multiple Sclerosis Patients. Brain Sci 2023; 13:brainsci13040591. [PMID: 37190556 DOI: 10.3390/brainsci13040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
This study aimed to determine whether peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell–inner plexiform layer (GCIPL) thickness thresholds for single-time-point swept-source optical coherence tomography (SS-OCT) measures can differentiate the clinical outcomes of treatment-naïve people with multiple sclerosis (pwMS). A total of 275 patients with the clinically isolated syndrome (n = 23), benign MS (n = 8), relapsing–remitting MS (n = 185), secondary progressive MS (n = 28), primary progressive MS (n = 31), and with no history of optic neuritis were included. The mean Expanded Disability Status Scale (EDSS) score was 3.0 ± 1.6. The cut-off values of pRNFL (87 µm and 88 µm) and GCIPL (70 µm) thicknesses have been adopted from previous studies using spectral-domain OCT. PwMS with pRNFL ≤87 µm and ≤88 µm had a longer disease duration, more advanced disability, and more frequently progressive MS variants compared to those with greater pRNFL thicknesses. In distinguishing pwMS with disability greater than or equal to the mean EDSS score (EDSS ≥ 3) from those with less severe disability, GCIPL thickness <70 µm had the highest sensitivity, while pRNFL thickness ≤87 µm had the greatest specificity. The optimal cut-off values differentiating patients with EDSS ≥ 3 from those with less severe disability was 63 µm for GCIPL thickness and 93.5 µm for pRNFL thickness. In conclusion, pRNFL and GCIPL thickness thresholds for single-time-point SS-OCT measurements may be helpful in differentiating the disability status of treatment-naïve pwMS.
Collapse
Affiliation(s)
- Łukasz Rzepiński
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
- Sanitas—Neurology Outpatient Clinic, Dworcowa 110, 85-010 Bydgoszcz, Poland
| | - Jan Kucharczuk
- Department of Ophthalmology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
| | - Magda Tkaczyńska
- Department of Surgery, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
| | | | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Żołnierska 18, 10-561 Olsztyn, Poland
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Mickiewicza 24/3B, 60-836 Poznan, Poland
| |
Collapse
|
57
|
Changes in Retinal Thickness and Brain Volume during 6.8-Year Escalating Therapy for Multiple Sclerosis. Acta Neurol Scand 2023. [DOI: 10.1155/2023/7587221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Background. Different disease-modifying therapies (DMT) for multiple sclerosis (MS) have disparate effects on disability outcomes. Sweden has a leading position globally in initiating high-efficacy DMT instead of escalating DMT from 1st-line to high-efficacy DMT. With optical coherence tomography (OCT), retinal changes can be measured at a few micrometer level. OCT has been increasingly applied in diagnosing MS and monitoring disease course and therapeutic effect. Objective. We investigate the effects of 1st-line versus high-efficacy DMT for MS on retinal and brain atrophy and on functional outcomes during 6.8 years of escalating DMT. Materials and Methods. In this prospective longitudinal observational study, 18 MS patients were followed up for 6.8 years. Twelve of the patients were untreated at baseline. All patients underwent 1st-line DMT for median duration of 2.4 years and then switched to high-efficacy DMT for a median duration of 2.9 years. Findings from neurological examinations, MRI, and OCT measures were registered 2-4 times per year. Results. Ganglion cell-inner plexiform layer (GCIPL) thickness was significantly reduced during 1st-line DMT (73.75 μm,
) compared to baseline (76.38 μm). During high-efficacy DMT, thickness reduction was slower (73.27 μm,
), and MRI contrast-loading lesions vanished (
). However, brain parenchymal fraction (BPF) decreased during high-efficacy DMT compared to 1st-line DMT. Estimated models showed similar results. Conclusion. GCIPL decline was most profound during 1st-line DMT and diminished during high-efficacy DMT. MRI contrast lesions vanished during high-efficacy DMT. However, brain atrophy continued regardless of high-efficacy DMT.
Collapse
|
58
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
59
|
Tiu VE, Popescu BO, Enache II, Tiu C, Cherecheanu AP, Panea CA. Serum Neurofilaments and OCT Metrics Predict EDSS-Plus Score Progression in Early Relapse-Remitting Multiple Sclerosis. Biomedicines 2023; 11:biomedicines11020606. [PMID: 36831142 PMCID: PMC9953670 DOI: 10.3390/biomedicines11020606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
(1) Background: Early disability accrual in RRMS patients is frequent and is associated with worse long-term prognosis. Correctly identifying the patients that present a high risk of early disability progression is of utmost importance, and may be aided by the use of predictive biomarkers. (2) Methods: We performed a prospective cohort study that included newly diagnosed RRMS patients, with a minimum follow-up period of one year. Biomarker samples were collected at baseline, 3-, 6- and 12-month follow-ups. Disability progression was measured using the EDSS-plus score. (3) Results: A logistic regression model based on baseline and 6-month follow-up sNfL z-scores, RNFL and GCL-IPL thickness and BREMSO score was statistically significant, with χ2(4) = 19.542, p < 0.0001, R2 = 0.791. The model correctly classified 89.1% of cases, with a sensitivity of 80%, a specificity of 93.5%, a positive predictive value of 85.7% and a negative predictive value of 90.62%. (4) Conclusions: Serum biomarkers (adjusted sNfL z-scores at baseline and 6 months) combined with OCT metrics (RNFL and GCL-IPL layer thickness) and the clinical score BREMSO can accurately predict early disability progression using the EDSS-plus score for newly diagnosed RRMS patients.
Collapse
Affiliation(s)
- Vlad Eugen Tiu
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Correspondence:
| | - Iulian Ion Enache
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Cristina Tiu
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alina Popa Cherecheanu
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ophtalmology Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Cristina Aura Panea
- Department of Clinical Neurosciences—Department 6 (Neurology)—“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
60
|
Petropoulos IN, Al-Shibani F, Bitirgen G, Ponirakis G, Khan A, Gad H, Mahfoud ZR, Altarawneh H, Rehman MH, John K, Al-Merekhi D, George P, Uca AU, Ozkagnici A, Ibrahim F, Francis R, Canibano B, Deleu D, El-Sotouhy A, Vattoth S, Own A, Shuaib A, Akhtar N, Kamran S, Malik RA. Corneal axonal loss as an imaging biomarker of neurodegeneration in multiple sclerosis: a longitudinal study. Ther Adv Neurol Disord 2023; 16:17562864221118731. [PMID: 36776530 PMCID: PMC9909084 DOI: 10.1177/17562864221118731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/23/2022] [Indexed: 02/09/2023] Open
Abstract
Background Resourceful endpoints of axonal loss are needed to predict the course of multiple sclerosis (MS). Corneal confocal microscopy (CCM) can detect axonal loss in patients with clinically isolated syndrome and established MS, which relates to neurological disability. Objective To assess corneal axonal loss over time in relation to retinal atrophy, and neurological and radiological abnormalities in MS. Methods Patients with relapsing-remitting (RRMS) (n = 68) or secondary progressive MS (SPMS) (n = 15) underwent CCM and optical coherence tomography. Corneal nerve fibre density (CNFD-fibres/mm2), corneal nerve branch density (CNBD-branches/mm2), corneal nerve fibre length (CNFL-mm/mm2) and retinal nerve fibre layer (RNFL-μm) thickness were quantified along with neurological and radiological assessments at baseline and after 2 years of follow-up. Age-matched, healthy controls (n = 20) were also assessed. Results In patients with RRMS compared with controls at baseline, CNFD (p = 0.004) and RNFL thickness (p < 0.001) were lower, and CNBD (p = 0.003) was higher. In patients with SPMS compared with controls, CNFD (p < 0.001), CNFL (p = 0.04) and RNFL thickness (p < 0.001) were lower. For identifying RRMS, CNBD had the highest area under the receiver operating characteristic (AUROC) curve (0.99); and for SPMS, CNFD had the highest AUROC (0.95). At follow-up, there was a further significant decrease in CNFD (p = 0.04), CNBD (p = 0.001), CNFL (p = 0.008) and RNFL (p = 0.002) in RRMS; in CNFD (p = 0.04) and CNBD (p = 0.002) in SPMS; and in CNBD (p = 0.01) in SPMS compared with RRMS. Follow-up corneal nerve loss was greater in patients with new enhancing lesions and optic neuritis history. Conclusion Progressive corneal and retinal axonal loss was identified in patients with MS, especially those with more active disease. CCM may serve as an imaging biomarker of axonal loss in MS.
Collapse
Affiliation(s)
| | - Fatima Al-Shibani
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Gulfidan Bitirgen
- Department of Ophthalmology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Georgios Ponirakis
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Adnan Khan
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Hoda Gad
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Ziyad R. Mahfoud
- Division of Medical Education, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar,Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Heba Altarawneh
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | | | - Karen John
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Dhabia Al-Merekhi
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Pooja George
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ali Ulvi Uca
- Department of Neurology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ahmet Ozkagnici
- Department of Neurology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Faiza Ibrahim
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Reny Francis
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Dirk Deleu
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Surjith Vattoth
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Own
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Naveed Akhtar
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | | |
Collapse
|
61
|
Wang L, Tan H, Yu J, ZhangBao J, Huang W, Chang X, Zhou L, Lu C, Xiao Y, Lu J, Zhao C, Wang M, Wu X, Wu M, Dong Q, Ngew KY, Quan C. Baseline retinal nerve fiber layer thickness as a predictor of multiple sclerosis progression: New insights from the FREEDOMS II study. Eur J Neurol 2023; 30:443-452. [PMID: 36286605 DOI: 10.1111/ene.15612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE The aim was to evaluate the potential of retinal nerve fiber layer thickness (RNFLT) measured with optical coherence tomography in predicting disease progression in relapsing-remitting multiple sclerosis (RRMS). METHODS Analyses were conducted post hoc of this 24-month, phase III, double-blind study, in which RRMS patients were randomized (1:1:1) to once daily oral fingolimod 0.5 mg, 1.25 mg or placebo. The key outcomes were the association between baseline RNFLT and baseline clinical characteristics and clinical/imaging outcomes up to 24 months. Change of RNFLT with fingolimod versus placebo within 24 months and time to retinal nerve fiber layer (RNFL) thinning were evaluated. RESULTS Altogether 885 patients were included. At baseline, lower RNFLT was correlated with higher Expanded Disability Status Scale score (r = -1.085, p = 0.018), lower brain volume (r = 0.025, p = 0.006) and deep gray matter volume (r = 0.731, p < 0.0001), worse visual acuity (r = -19.846, p < 0.0001) and longer duration since diagnosis (r = -0.258, p = 0.018). At month 12, low baseline RNFLT (<86 μm) versus high baseline RNFLT (≥99 μm) was associated with a greater brain volume loss (percentage change -0.605% vs. -0.315%, p = 0.035) in patients without optic neuritis history. At month 24, low baseline RNFLT versus high baseline RNFLT was associated with a higher number of new or newly enlarged T2 lesions (mean number 4.0 vs. 2.8, p = 0.014) and a higher risk of subsequent RNFL thinning (hazard ratio 2.55; 95% confidence interval 1.84-3.53; p < 0.001). The atrophy of the RNFL in the inferior quadrant was alleviated with fingolimod 0.5 mg versus placebo at month 24 (Δ(least squares mean) = 1.8, p = 0.047). CONCLUSION Retinal nerve fiber layer thickness could predict disease progression in RRMS. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT00355134, https://clinicaltrials.gov/ct2/show/NCT00355134.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Hongmei Tan
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingzi ZhangBao
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Wenjuan Huang
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Xuechun Chang
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Lei Zhou
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Chuanzhen Lu
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqin Xiao
- Department of Ophthalmology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahong Lu
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Wang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue Wu
- Novartis Pharmaceuticals, Shanghai, China
| | - Mengyun Wu
- Novartis Pharmaceuticals, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kok Yew Ngew
- Novartis Corporation (Malaysia) Sdn. Bhd., Petaling Jaya, Malaysia
| | - Chao Quan
- Department of Neurology and Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
62
|
Optical coherence tomography as a prognostic tool for disability progression in MS: a systematic review. J Neurol 2023; 270:1178-1186. [PMID: 36372866 DOI: 10.1007/s00415-022-11474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022]
Abstract
Since multiple sclerosis (MS) is characterized by an unpredictable disease course, accurate prognosis and personalized treatment constitute an important challenge in clinical practice. We performed a qualitative systematic review to assess the predictive value of retinal layer measurement by spectral-domain optical coherence tomography (SD-OCT) in MS patients. Longitudinal MS cohort studies that determined the risk of clinical deterioration based on peripapillary retinal nerve fiber layer (pRNFL) and/or macular ganglion cell-inner plexiform layer (mGCIPL) atrophy were included. Our search strategy and selection process yielded eight articles in total. Of those, five studies only focused on patients with a relapsing-remitting disease pattern (RRMS). After correction for confounders such as disease duration, we found that (1) cross-sectional measurement of pRNFL thickness ≤ 88 µm; (2) cross-sectional measurement of mGCIPL thickness < 77 µm; (3) longitudinal measurement of pRNFL thinning > 1.5 µm/year; and (4) longitudinal measurement of mGCIPL thinning ≥ 1.0 µm/year is associated with an increased risk for disability progression in subsequent years. Longitudinal mGCIPL assessment consistently resulted in the highest risk estimates in our analysis. Within these studies, inclusion and exclusion criteria accounted for the retinal degeneration inherent to (acute) optic neuritis (ON). This small systematic review provides additional evidence that OCT-measured pRNFL and/or mGCIPL atrophy can predict disability progression in RRMS patients. We therefore recommend close clinical follow-up or initiation/change of treatment in RRMS patients with increased risk for clinical deterioration based on retinal layer thresholds, in particular when other poor prognostic signs co-occur.
Collapse
|
63
|
Camara-Lemarroy C, Silva C, Gohill J, Yong VW, Koch M. Serum neurofilament-light and glial fibrillary acidic protein levels in hydroxychloroquine-treated primary progressive multiple sclerosis. Eur J Neurol 2023; 30:187-194. [PMID: 36214614 DOI: 10.1111/ene.15588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In a recent trial, hydroxychloroquine (HCQ) treatment reduced the expected rate of disability worsening at 18 months in primary progressive multiple sclerosis (PPMS). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are emerging biomarkers in multiple sclerosis. METHODS We measured NfL and GFAP levels in serum samples from 39 patients with inactive PPMS included in a phase II clinical trial of HCQ treatment in PPMS at multiple time points over 18 months, and investigated the association of these biomarkers with clinical disability at screening and during follow-up. Screening and 12-month retinal nerve fiber layer (RNFL) thickness was also recorded and analyzed. RESULTS NfL and GFAP levels increased over time, but only significantly from screening to month 6. NfL and GFAP levels did not significantly increase from month 6 up to month 18. At screening, NfL and GFAP levels did not correlate with the Expanded Disability Status Scale (EDSS), and GFAP but not NfL modestly correlated with Timed 25-Foot Walk test (T25FW). Screening NfL and GFAP levels did not predict disability worsening (≥20% worsening on the T25FW) at month 18. RNFL thickness decreased significantly from screening to month 12 and independently predicted disability worsening. CONCLUSIONS In this cohort of people with inactive PPMS, HCQ treatment attenuated the increase of NfL and GFAP after 6 months of treatment and up to 18 months of follow-up, suggesting a treatment effect of HCQ over these biomarkers. RNFL thickness, a marker of neuroaxonal atrophy, was associated with disability worsening, and should be explored further as a prognostic marker in this population.
Collapse
Affiliation(s)
- Carlos Camara-Lemarroy
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,UANL School of Medicine, Monterrey, Mexico
| | - Claudia Silva
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jit Gohill
- Section of Ophthalmology, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Koch
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
64
|
Vasileiou ES, Hu C, Bernstein CN, Lublin F, Wolinsky JS, Cutter GR, Sotirchos ES, Kowalec K, Salter A, Saidha S, Mowry EM, Calabresi PA, Marrie RA, Fitzgerald KC. Association of Vitamin D Polygenic Risk Scores and Disease Outcome in People With Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2023; 10:10/1/e200062. [DOI: 10.1212/nxi.0000000000200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
Background and ObjectivesObservational studies suggest low levels of 25-hydroxyvitamin D (25[OH]D) may be associated with increased disease activity in people with multiple sclerosis (PwMS). Large-scale genome-wide association studies (GWAS) suggest 25(OH)D levels are partly genetically determined. The resultant polygenic scores (PGSs) could serve as a proxy for 25(OH)D levels, minimizing potential confounding and reverse causation in analyses with outcomes. Herein, we assess the association of genetically determined 25(OH)D and disease outcomes in MS.MethodsWe generated 25(OH)D PGS for 1,924 PwMS with available genotyping data pooled from 3 studies: the CombiRx trial (n = 575), Johns Hopkins MS Center (n = 1,152), and Immune-Mediated Inflammatory Diseases study (n = 197). 25(OH)D-PGS were derived using summary statistics (p < 5 × 10−8) from a large GWAS including 485,762 individuals with circulating 25(OH)D levels measured. We included clinical and imaging outcomes: Expanded disability status scale (EDSS), timed 25-foot walk (T25FW), nine-hole peg test (9HPT), radiologic activity, and optical coherence tomography-derived ganglion cell inner plexiform layer (GCIPL) thickness. A subset (n = 935) had measured circulating 25(OH)D levels. We fitted multivariable models based on the outcome of interest and pooled results across studies using random effects meta-analysis. Sensitivity analyses included a modifiedpvalue threshold for inclusion in the PGS (5 × 10−5) and applying Mendelian randomization (MR) rather than using PGS.ResultsInitial analyses demonstrated a positive association between generated 25(OH)D-PGS and circulating 25(OH)D levels (per 1SD increase in 25[OH]D PGS: 3.08%, 95% CI: 1.77%, 4.42%;p= 4.33e-06; R2= 2.24%). In analyses with outcomes, we did not observe an association between 25(OH)D-PGS and relapse rate (per 1SD increase in 25[OH]D-PGS: 0.98; 95% CI: 0.87–1.10), EDSS worsening (per 1SD: 1.05; 95% CI: 0.87–1.28), change in T25FW (per 1SD: 0.07%; 95% CI: −0.34 to 0.49), or change in 9HPT (per 1SD: 0.09%; 95% CI: −0.15 to 0.33). 25(OH)D-PGS was not associated with new lesion accrual, lesion volume or other imaging-based outcomes (whole brain, gray, white matter volume loss or GCIPL thinning). The results were similarly null in analyses using otherpvalue thresholds or those applying MR.DiscussionGenetically determined lower 25(OH)D levels were not associated with worse disease outcomes in PwMS and raises questions about the plausibility of a treatment effect of vitamin D in established MS.
Collapse
|
65
|
Dimitriou NG, Meuth SG, Martinez-Lapiscina EH, Albrecht P, Menge T. Treatment of Patients with Multiple Sclerosis Transitioning Between Relapsing and Progressive Disease. CNS Drugs 2023; 37:69-92. [PMID: 36598730 PMCID: PMC9829585 DOI: 10.1007/s40263-022-00977-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating and neurodegenerative disease of the central nervous system with a wide variety of clinical phenotypes. In spite of the phenotypic classification of MS patients, current data provide evidence that diffuse neuroinflammation and neurodegeneration coexist in all MS forms, the latter gaining increasing clinical relevance in progressive phases. Given that the transition phase of relapsing-remitting MS (RRMS) to secondary progressive MS (SPMS) is not well defined, and widely accepted criteria for SPMS are lacking, randomised controlled trials (RCTs) specifically designed for the transition phase have not been conducted. This review summarizes primary and secondary analyses and reports derived from phase III prospective clinical RCTs listed in PubMed of compounds authorised through the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for the treatment of MS. The best data are available for interferon beta-1a (IFNb-1a) subcutaneous (s.c.), IFNb-1b s.c., mitoxantrone and siponimod, the latter being the most modern compound with likely the best risk-to-effect ratio. Moreover, there is a labels discrepancy for many disease-modifying treatments (DMTs) between the FDA and EMA, which have to be taken into consideration when opting for a specific DMT.
Collapse
Affiliation(s)
- Nikolaos G. Dimitriou
- grid.411327.20000 0001 2176 9917Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sven G. Meuth
- grid.411327.20000 0001 2176 9917Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Elena H. Martinez-Lapiscina
- grid.10403.360000000091771775Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain ,grid.452397.eOffice of Therapies for Neurological and Psychiatric Disorders, Human Medicines Division, European Medicines Agency, Amsterdam, The Netherlands
| | - Philipp Albrecht
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany. .,Department of Neurology, Maria Hilf Clinic, Mönchengladbach, Germany.
| | - Til Menge
- grid.411327.20000 0001 2176 9917Department of Neurology, LVR-Klinikum Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
66
|
Torbus M, Niewiadomska E, Dobrakowski P, Papuć E, Rybus-Kalinowska B, Szlacheta P, Korzonek-Szlacheta I, Kubicka-Bączyk K, Łabuz-Roszak B. The Usefulness of Optical Coherence Tomography in Disease Progression Monitoring in Younger Patients with Relapsing-Remitting Multiple Sclerosis: A Single-Centre Study. J Clin Med 2022; 12:jcm12010093. [PMID: 36614893 PMCID: PMC9821099 DOI: 10.3390/jcm12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The purpose of the study was to assess the usefulness of optical coherence tomography (OCT) in the detection of the neurodegenerative process in younger patients with multiple sclerosis (MS). The study group consisted of 61 patients with a relapsing remitting course of MS (mean age 36.4 ± 6.7 years) divided into two groups: short (≤5 years) and long (>10 years) disease duration. OCT, P300 evoked potential, Montreal Cognitive Assessment, and performance subtests (Picture Completion and Digit Symbol) of the Wechsler Adult Intelligence Scale were performed in all patients. Mean values of most parameters assessed in OCT (pRNFL Total, pRNFL Inferior, pRNFL Superior, pRNFL Temporalis, mRNFL, GCIPL, mRNFL+GCIPL) were significantly lower in MS patients in comparison to controls. And in patients with longer disease duration in comparison to those with shorter. Most OCT parameters negatively correlated with the EDSS score (p < 0.05). No significant correlation was found between OCT results and both P300 latency and the results of psychometric tests. OCT, as a simple, non-invasive, quick, and inexpensive method, could be useful for monitoring the progression of disease in MS patients.
Collapse
Affiliation(s)
- Magdalena Torbus
- Institute of Psychology, Humanitas University in Sosnowiec, 41-200 Sosnowiec, Poland
| | - Ewa Niewiadomska
- Department of Biostatistics, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Paweł Dobrakowski
- Institute of Psychology, Humanitas University in Sosnowiec, 41-200 Sosnowiec, Poland
| | - Ewa Papuć
- Department of Neurology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Barbara Rybus-Kalinowska
- Department of Basic Medical Sciences, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Patryk Szlacheta
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Ilona Korzonek-Szlacheta
- Department of Prevention of Metabolic Diseases, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Kubicka-Bączyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Beata Łabuz-Roszak
- Department of Neurology, Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland
- Correspondence:
| |
Collapse
|
67
|
Xia X, Qin Q, Peng Y, Wang M, Yin Y, Tang Y. Retinal Examinations Provides Early Warning of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1341-1357. [PMID: 36245377 DOI: 10.3233/jad-220596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with Alzheimer's disease have difficulty maintaining independent living abilities as the disease progresses, causing an increased burden of care on family caregivers and the healthcare system and related financial strain. This patient group is expected to continue to expand as life expectancy climbs. Current diagnostics for Alzheimer's disease are complex, unaffordable, and invasive without regard to diagnosis quality at early stages, which urgently calls for more technical improvements for diagnosis specificity. Optical coherence tomography or tomographic angiography has been shown to identify retinal thickness loss and lower vascular density present earlier than symptom onset in these patients. The retina is an extension of the central nervous system and shares anatomic and functional similarities with the brain. Ophthalmological examinations can be an efficient tool to offer a window into cerebral pathology with the merit of easy operation. In this review, we summarized the latest observations on retinal pathology in Alzheimer's disease and discussed the feasibility of retinal imaging in diagnostic prediction, as well as limitations in current retinal examinations for Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Xinyi Xia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yankun Peng
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
68
|
Kenney R, Liu M, Hasanaj L, Joseph B, Al-Hassan AA, Balk L, Behbehani R, Brandt AU, Calabresi PA, Frohman EM, Frohman T, Havla J, Hemmer B, Jiang H, Knier B, Korn T, Leocani L, Martínez-Lapiscina EH, Papadopoulou A, Paul F, Petzold A, Pisa M, Villoslada P, Zimmermann H, Ishikawa H, Schuman JS, Wollstein G, Chen Y, Saidha S, Thorpe LE, Galetta SL, Balcer LJ. Normative Data and Conversion Equation for Spectral-Domain Optical Coherence Tomography in an International Healthy Control Cohort. J Neuroophthalmol 2022; 42:442-453. [PMID: 36049213 PMCID: PMC10350791 DOI: 10.1097/wno.0000000000001717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Spectral-domain (SD-) optical coherence tomography (OCT) can reliably measure axonal (peripapillary retinal nerve fiber layer [pRNFL]) and neuronal (macular ganglion cell + inner plexiform layer [GCIPL]) thinning in the retina. Measurements from 2 commonly used SD-OCT devices are often pooled together in multiple sclerosis (MS) studies and clinical trials despite software and segmentation algorithm differences; however, individual pRNFL and GCIPL thickness measurements are not interchangeable between devices. In some circumstances, such as in the absence of a consistent OCT segmentation algorithm across platforms, a conversion equation to transform measurements between devices may be useful to facilitate pooling of data. The availability of normative data for SD-OCT measurements is limited by the lack of a large representative world-wide sample across various ages and ethnicities. Larger international studies that evaluate the effects of age, sex, and race/ethnicity on SD-OCT measurements in healthy control participants are needed to provide normative values that reflect these demographic subgroups to provide comparisons to MS retinal degeneration. METHODS Participants were part of an 11-site collaboration within the International Multiple Sclerosis Visual System (IMSVISUAL) consortium. SD-OCT was performed by a trained technician for healthy control subjects using Spectralis or Cirrus SD-OCT devices. Peripapillary pRNFL and GCIPL thicknesses were measured on one or both devices. Automated segmentation protocols, in conjunction with manual inspection and correction of lines delineating retinal layers, were used. A conversion equation was developed using structural equation modeling, accounting for clustering, with healthy control data from one site where participants were scanned on both devices on the same day. Normative values were evaluated, with the entire cohort, for pRNFL and GCIPL thicknesses for each decade of age, by sex, and across racial groups using generalized estimating equation (GEE) models, accounting for clustering and adjusting for within-patient, intereye correlations. Change-point analyses were performed to determine at what age pRNFL and GCIPL thicknesses exhibit accelerated rates of decline. RESULTS The healthy control cohort (n = 546) was 54% male and had a wide distribution of ages, ranging from 18 to 87 years, with a mean (SD) age of 39.3 (14.6) years. Based on 346 control participants at a single site, the conversion equation for pRNFL was Cirrus = -5.0 + (1.0 × Spectralis global value). Based on 228 controls, the equation for GCIPL was Cirrus = -4.5 + (0.9 × Spectralis global value). Standard error was 0.02 for both equations. After the age of 40 years, there was a decline of -2.4 μm per decade in pRNFL thickness ( P < 0.001, GEE models adjusting for sex, race, and country) and -1.4 μm per decade in GCIPL thickness ( P < 0.001). There was a small difference in pRNFL thickness based on sex, with female participants having slightly higher thickness (2.6 μm, P = 0.003). There was no association between GCIPL thickness and sex. Likewise, there was no association between race/ethnicity and pRNFL or GCIPL thicknesses. CONCLUSIONS A conversion factor may be required when using data that are derived between different SD-OCT platforms in clinical trials and observational studies; this is particularly true for smaller cross-sectional studies or when a consistent segmentation algorithm is not available. The above conversion equations can be used when pooling data from Spectralis and Cirrus SD-OCT devices for pRNFL and GCIPL thicknesses. A faster decline in retinal thickness may occur after the age of 40 years, even in the absence of significant differences across racial groups.
Collapse
Affiliation(s)
- Rachel Kenney
- Departments of Neurology (RK, LH, BJ, SLG, LJB) and Population Health (RK, ML, YC, LET, LJB), New York University Grossman School of Medicine, New York, New York; Al-Bahar Ophthalmology Center (AAA-H, RB), Ibn Sina Hospital, Kuwait City, Kuwait; Centre for Research on Sports in Society (LB), Mulier Institute, Utrecht, Netherlands; Experimental and Clinical Research Center (AUB, AP, FP, HZ), Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology (AUB), University of California, Irvine, California; Department of Neurology (PAC, SS), Johns Hopkins University, Baltimore, Maryland; Laboratory of Neuroimmunology (EMF, TF), Stanford University School of Medicine, Palo Alto, California; Institute of Clinical Neuroimmunology (JH), LMU Hospital, Ludwig Maximilians Universität München, Munich, Germany; Data Integration for Future Medicine consortium (DIFUTURE) (JH), Ludwig-Maximilians University, Munich, Germany; Department of Neurology (BH, BK, TK), Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy) (BH, TK), Munich, Germany; Department of Neurology (HJ), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Vita-Salute University & Hospital San Raffaele (LL, MP), Milano, Italy; Center of Neuroimmunology and Department of Neurology (EHM-L, PV), Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Neurologic Clinic and Policlinic (AP), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RCN2NB) Basel, University Hospital Basel and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (FP, HZ), Charité-Universitätsmedizin Berlin, Berlin, Germany; Moorfields Eye Hospital (AP), London, United Kingdom ; The National Hospital for Neurology and Neurosurgery (AP), Queen Square, UCL Institute of Neurology, London, United Kingdom; Dutch Neuro-Ophthalmology Expertise Centre (AP), Amsterdam UMC, Amsterdam, the Netherlands; Oregon Health and Science University (HI), Portland, Oregon; Department of Ophthalmology (JSS, GW, SLG, LJB), New York University Grossman School of Medicine, New York, New York; Departments of Biomedical Engineering and Electrical and Computer Engineering (JSS), Tandon School of Engineering, New York University, Brooklyn, New York; Center for Neural Science (JSS), NYU, New York, New York; and Neuroscience Institute (JSS), NYU Langone Health, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Noll C, Hiltensperger M, Aly L, Wicklein R, Afzali AM, Mardin C, Gasperi C, Berthele A, Hemmer B, Korn T, Knier B. Association of the retinal vasculature, intrathecal immunity, and disability in multiple sclerosis. Front Immunol 2022; 13:997043. [PMID: 36439131 PMCID: PMC9695398 DOI: 10.3389/fimmu.2022.997043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/20/2022] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Optical coherence tomography angiography (OCT-A) is a novel technique allowing non-invasive assessment of the retinal vasculature. During relapsing remitting multiple sclerosis (RRMS), retinal vessel loss occurs in eyes suffering from acute optic neuritis and recent data suggest that retinal vessel loss might also be evident in non-affected eyes. We investigated whether alterations of the retinal vasculature are linked to the intrathecal immunity and whether they allow prognostication of the future disease course. MATERIAL AND METHODS This study includes two different patient cohorts recruited at a tertiary German academic multiple sclerosis center between 2018 and 2020 and a cohort of 40 healthy controls. A total of 90 patients with RRMS undergoing lumbar puncture and OCT-A analysis were enrolled into a cross-sectional cohort study to search for associations between the retinal vasculature and the intrathecal immune compartment. We recruited another 86 RRMS patients into a prospective observational cohort study who underwent clinical examination, OCT-A and cerebral magnetic resonance imaging at baseline and during annual follow-up visits to clarify whether alterations of the retinal vessels are linked to RRMS disease activity. Eyes with a history of optic neuritis were excluded from the analysis. RESULTS Rarefication of the superficial vascular complex occured during RRMS and was linked to higher frequencies of activated B cells and higher levels of the pro-inflammatory cytokines interferon-γ, tumor necrosis factor α and interleukin-17 in the cerebrospinal fluid. During a median follow-up of 23 (interquartile range 14 - 25) months, vessel loss within the superficial (hazard ratio [HR] 1.6 for a 1%-point decrease in vessel density, p=0.01) and deep vascular complex (HR 1.6 for a 1%-point decrease, p=0.05) was associated with future disability worsening. DISCUSSION Optic neuritis independent rarefication of the retinal vasculature might be linked to neuroinflammatory processes during RRMS and might predict a worse disease course. Thus, OCT-A might be a novel biomarker to monitor disease activity and predict future disability.
Collapse
Affiliation(s)
- Christina Noll
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Hiltensperger
- Institute for Experimental Neuroimmunology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Lilian Aly
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Rebecca Wicklein
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ali Maisam Afzali
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Experimental Neuroimmunology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Christian Mardin
- Department of Ophthalmology, University Hospital of Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Gasperi
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Experimental Neuroimmunology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
70
|
El Ayoubi NK, Sabbagh HM, Bou Rjeily N, Hannoun S, Khoury SJ. Rate of Retinal Layer Thinning as a Biomarker for Conversion to Progressive Disease in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200030. [PMID: 36229190 PMCID: PMC9562042 DOI: 10.1212/nxi.0000000000200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
Abstract
Background and Objectives The diagnosis of secondary progressive multiple sclerosis (SPMS) is often delayed because of the lack of objective clinical tools, which increases the diagnostic uncertainty and hampers the therapeutic development in progressive multiple sclerosis (MS). Optical coherence tomography (OCT) has been proposed as a promising biomarker of progressive neurodegeneration. To explore longitudinal changes in the thicknesses of retinal layers on OCT in individuals with relapsing-remitting MS (RRMS) who converted to SPMS vs matched patients with RRMS who did not convert to SPMS. Our hypothesis is that the 2 cohorts exhibit different rates of retinal thinning. Methods From our prospective observational cohort of patients with MS at the American University of Beirut, we selected patients with RRMS who converted to SPMS during the observation period and patients with RRMS, matched by age, disease duration, and Expanded Disability Status Scale (EDSS) at the first visit. Baseline retinal measurements were obtained using spectral domain OCT, and all patients underwent clinical and OCT evaluation every 6–12 months on average throughout the study period (mean = 4 years). Mixed-effect regression models were used to assess the annualized rates of retinal changes and the differences between the 2 groups and between converters to SPMS before and after their conversion. Results A total of 61 participants were selected (21 SPMS and 40 RRMS). There were no differences in baseline characteristics and retinal measurements between the 2 groups. The annualized rates of thinning of all retinal layers, except for macular volume, were greater in converters before conversion compared with nonconverters by 112% for peripapillary retinal nerve fiber layer (p = 0.008), 344% for tRNFL (p < 0.0001), and 82% for cell-inner plexiform layer (GCIPL) (p = 0.002). When comparing the annualized rate of thinning for the same patients with SPMS before and after conversion, no significant differences were found except for tRNFL and GCIPL with slower thinning rates postconversion (46% and 68%, respectively). Discussion Patients who converted to SPMS exhibited faster retinal thinning as reflected on OCT. Longitudinal assessment of retinal thinning could confirm the transition to SPMS and help with the therapeutic decision making for patients with MS with clinical suspicion of disease progression.
Collapse
|
71
|
Cordano C, Nourbakhsh B, Yiu HH, Papinutto N, Caverzasi E, Abdelhak A, Oertel FC, Beaudry-Richard A, Santaniello A, Sacco S, Bennett DJ, Gomez A, Sigurdson CJ, Hauser SL, Magliozzi R, Cree BA, Henry RG, Green AJ. Differences in Age-related Retinal and Cortical Atrophy Rates in Multiple Sclerosis. Neurology 2022; 99:e1685-e1693. [PMID: 36038272 PMCID: PMC9559941 DOI: 10.1212/wnl.0000000000200977] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The timing of neurodegeneration in multiple sclerosis (MS) remains unclear. It is critical to understand the dynamics of neuroaxonal loss if we hope to prevent or forestall permanent disability in MS. We therefore used a deeply phenotyped longitudinal cohort to assess and compare rates of neurodegeneration in retina and brain throughout the MS disease course. METHODS We analyzed 597 patients with MS who underwent longitudinal optical coherence tomography imaging annually for 4.5 ± 2.4 years and 432 patients who underwent longitudinal MRI scans for 10 ± 3.4 years, quantifying macular ganglion cell-inner plexiform layer (GCIPL) volume and cortical gray matter (CGM) volume. The association between the slope of decline in the anatomical structure and the age of entry in the cohort (categorized by the MRI cohort's age quartiles) was assessed by hierarchical linear models. RESULTS The rate of CGM volume loss declined with increasing age of study entry (1.3% per year atrophy for the age of entry in the cohort younger than 35 years; 1.1% for older than 35 years and younger than 41; 0.97% for older than 41 years and younger than 49; 0.9% for older than 49 years) while the rate of GCIPL thinning was highest in patients in the youngest quartile, fell by more than 50% in the following age quartile, and then stabilized (0.7% per year thinning for the age of entry in the cohort younger than 35 years; 0.29% for age older than 35 and younger than 41 years; 0.34% for older than 41 and younger than 49 years; 0.33% for age older than 49 years). DISCUSSION An age-dependent reduction in retinal and cortical volume loss rates during relapsing-remitting MS suggests deceleration in neurodegeneration in the earlier period of disease and further indicates that the period of greatest adaptive immune-mediated inflammatory activity is also the period with the greatest neuroaxonal loss.
Collapse
Affiliation(s)
- Christian Cordano
- From the Department of Neurology (C.C., N.P., E.C., A.A., F.C.O., A.B.-R., A.S., S.S., D.J.B., A.G., S.L.H., B.A.C.C., R.G.H., A.J.G.), UCSF Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (B.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biology (H.H.Y.), University of Maryland, College Park; Department of Pathology (C.J.S.), University of California, San Diego, La Jolla; and Department of Neurosciences (R.M.), Biomedicine and Movement Sciences, University of Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Van Wijmeersch B, Hartung HP, Vermersch P, Pugliatti M, Pozzilli C, Grigoriadis N, Alkhawajah M, Airas L, Linker R, Oreja-Guevara C. Using personalized prognosis in the treatment of relapsing multiple sclerosis: A practical guide. Front Immunol 2022; 13:991291. [PMID: 36238285 PMCID: PMC9551305 DOI: 10.3389/fimmu.2022.991291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical course of multiple sclerosis (MS) is highly variable among patients, thus creating important challenges for the neurologist to appropriately treat and monitor patient progress. Despite some patients having apparently similar symptom severity at MS disease onset, their prognoses may differ greatly. To this end, we believe that a proactive disposition on the part of the neurologist to identify prognostic “red flags” early in the disease course can lead to much better long-term outcomes for the patient in terms of reduced disability and improved quality of life. Here, we present a prognosis tool in the form of a checklist of clinical, imaging and biomarker parameters which, based on consensus in the literature and on our own clinical experiences, we have established to be associated with poorer or improved clinical outcomes. The neurologist is encouraged to use this tool to identify the presence or absence of specific variables in individual patients at disease onset and thereby implement sufficiently effective treatment strategies that appropriately address the likely prognosis for each patient.
Collapse
Affiliation(s)
- Bart Van Wijmeersch
- Universitair Multiple Sclerosis (MS) Centrum, Hasselt-Pelt, Belgium
- Noorderhart, Revalidatie & Multiple Sclerosis (MS), Pelt, Belgium
- REVAL & BIOMED, Hasselt University, Hasselt, Belgium
- *Correspondence: Bart Van Wijmeersch,
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czechia
| | - Patrick Vermersch
- University Lille, Inserm U1172 LilNCog, Centre Hospitalier Universitaire (CHU) Lille, Fédératif Hospitalo-Universitaire (FHU) Precise, Lille, France
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Unit of Clinical Neurology, San Anna University Hospital, Ferrara, Italy
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Nikolaos Grigoriadis
- B’ Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mona Alkhawajah
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Laura Airas
- Turku University Hospital and University of Turku, Turku, Finland
| | - Ralf Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Cliínico San Carlos (IDISSC), Madrid, Spain
- Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
73
|
Grudziecka Pyrek M, Selmaj K. Optical coherence tomography assessment of axonal and neuronal damage of the retina in patients with familial and sporadic multiple sclerosis. Front Neurol 2022; 13:953188. [PMID: 36188381 PMCID: PMC9524155 DOI: 10.3389/fneur.2022.953188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To assess axonal and neuronal damage of the retina in patients with familial (fMS) and sporadic multiple sclerosis (sMS). Methods 87 relapsing-remitting MS patients (45 patients with sMS, 42 patients with fMS) and 30 healthy controls were included in the study. Optical coherence tomography (OCT) was performed with the spectral domain optical coherence tomography (SD-OCT, Heidelberg Engineering, Germany). The peripapillary retinal nerve fiber layer (pRNFL) thickness, ganglion cell-inner plexiform layer (GCIPL) thickness, total macular volume (TMV) and the inner nuclear layer (INL) thickness were measured. Results A significant reduction of the pRNFL thickness was detected in sMS and fMS compared to the control group (86.29 (+/- 16.13) μm in sMS, 84.78 (+/- 12.92) μm in fMS, 98.93 (+/- 6.71) μm in control group; p < 0.001). There was no significant difference in the pRNFL thickness between sMS and fMS (p = 0.5239). The GCIPL thickness was significantly decreased in sMS and fMS compared to the control group [66.0581 (+/- 11.2674) μm in sMS, 63.8386 (+/-10.004) μm in fMS, 76.5074 (+/- 5.0004) μm in control group; p < 0.001]. A significant reduction of the TMV was shown in sMS and fMS compared to the control group [8.4541(+/- 0.4727) mm3 in sMS, 8.3612 (+/- 0.4448) mm3 in fMS, 8.8387 (+/- 0.314) mm3 in control group; p < 0.0011]. No difference in the GCIPL thickness and TMV between sMS and fMS was found (p = 0.3689 and p = 0.3758, respectively). The INL thickness in sMS and fMS did not differ compared to the control group [34.2323 (+/- 2.7006) μm in sMS, 34.5159 (+/- 2.9780) μm in fMS, 33.6148 (+/- 2.0811) μm in control group; p = 0.5971 and p = 0.1870, respectively] and between the two forms (p = 0.4894). Conclusion We confirmed the presence of axonal and neuronal damage of the retina in sMS and fMS. Both forms of MS did not differ significantly from each other with respect to RFNL, GCIPL, MV and INL. ON induced significant reduction of the pRNFL, GCIPL and MV in both groups of pwMS.
Collapse
Affiliation(s)
| | - Krzysztof Selmaj
- Department of Neurology, University of Warmia and Mazury, Olsztyn, Poland
- Centrum of Neurology, Lodz, Poland
- *Correspondence: Krzysztof Selmaj
| |
Collapse
|
74
|
Gernert JA, Zimmermann H, Oswald E, Christmann T, Kümpfel T, Havla J. Clinical onset of CNS demyelinating disease after COVID-19 vaccination: denovo disease? Mult Scler Relat Disord 2022; 67:104175. [PMID: 36126540 PMCID: PMC9464312 DOI: 10.1016/j.msard.2022.104175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Clinical onset of multiple sclerosis (MSpostvacc) and myelin-oligodendrocyte-glycoprotein-antibody-associated disease (MOGADpostvacc) has been reported in association with SARS-CoV-2-vaccination. There is uncertainty as to whether this is causality (denovo disease) or temporal coincidence (manifestation of a preexisting, subclinical neuroinflammation). OBJECTIVES Comparing the clinical characteristics of MSpostvacc-patients versus patients with MS (PwMS) whose clinical onset occurred independently of vaccination (MSreference). METHODS Consecutive patients with clinical onset ≤30 days after SARS-CoV-2-vaccination were included. Clinical data, cerebrospinal fluid (CSF) parameters and magnetic resonance imaging (MRI) as well as optical coherence tomography (OCT) data were compared to an age- and sex-matched MSreference-cohort. RESULTS We identified 5 MSpostvacc and 1 MOGADpostvacc patients who developed their clinical onset ≤ 30 days after SARS-CoV-2-vaccination. Clinical characteristics, CSF, MRI and OCT parameters from MSpostvacc patients were comparable to the MSreference cohort and showed evidence of preexisting subclinical CNS disease. The single case with MOGADpostvacc clearly differed from PwMS in higher CSF cell counts, remission of MRI lesions during follow-up, and absence of oligoclonal bands. CONCLUSIONS Our case series indicates that MSpostvacc patients showed a rather typical initial manifestation in temporal association with SARS-CoV-2-vaccination and harbored preexisting subclinical neuroinflammation. This argues against the denovo development of MS in this cohort.
Collapse
Affiliation(s)
- J A Gernert
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany; Department of Neurology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany
| | - H Zimmermann
- Institute of Neuroradiology, LMU Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - E Oswald
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - T Christmann
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - T Kümpfel
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany; Biomedical Center and University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - J Havla
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany; Biomedical Center and University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Data Integration for Future Medicine (DIFUTURE) Consortium, LMU Hospital, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
75
|
Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis. Healthcare (Basel) 2022; 10:healthcare10081386. [PMID: 35893208 PMCID: PMC9394264 DOI: 10.3390/healthcare10081386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative, potentially disabling disease of the central nervous system. OCT (Optical Coherence Tomography) and OCT-A (Optical Coherence Tomography with Angiography) are imaging techniques for the retina and choroid that are used in the diagnosis and monitoring of ophthalmological conditions. Their use has recently expanded the study of several autoimmune disorders, including MS. Although their application in MS remains unclear, the results seem promising. This review aimed to provide insight into the most recent OCT and OCT-A findings in MS and may function as a reference point for future research. According to the current literature, the retinal nerve fibre layer (RNFL) and ganglion cell-inner plexiform complex (GC-IPL) are significantly reduced in people with MS and are inversely correlated with disease duration. The use of OCT might help distinguish between MS and neuromyelitis optica spectrum disorders (NMOSD), as the latter presents with more pronounced thinning in both the RNFL and GC-IPL. The OCT-A findings in MS include reduced vessel density in the macula, peripapillary area, or both, and the enlargement of the foveal avascular zone (FAZ) in the setting of optic neuritis. Additionally, OCT-A might be able to detect damage in the very early stages of the disease as well as disease progression in severe cases.
Collapse
|
76
|
Abstract
Schizophrenia is increasingly recognized as a systemic disease, characterized by dysregulation in multiple physiological systems (eg, neural, cardiovascular, endocrine). Many of these changes are observed as early as the first psychotic episode, and in people at high risk for the disorder. Expanding the search for biomarkers of schizophrenia beyond genes, blood, and brain may allow for inexpensive, noninvasive, and objective markers of diagnosis, phenotype, treatment response, and prognosis. Several anatomic and physiologic aspects of the eye have shown promise as biomarkers of brain health in a range of neurological disorders, and of heart, kidney, endocrine, and other impairments in other medical conditions. In schizophrenia, thinning and volume loss in retinal neural layers have been observed, and are associated with illness progression, brain volume loss, and cognitive impairment. Retinal microvascular changes have also been observed. Abnormal pupil responses and corneal nerve disintegration are related to aspects of brain function and structure in schizophrenia. In addition, studying the eye can inform about emerging cardiovascular, neuroinflammatory, and metabolic diseases in people with early psychosis, and about the causes of several of the visual changes observed in the disorder. Application of the methods of oculomics, or eye-based biomarkers of non-ophthalmological pathology, to the treatment and study of schizophrenia has the potential to provide tools for patient monitoring and data-driven prediction, as well as for clarifying pathophysiology and course of illness. Given their demonstrated utility in neuropsychiatry, we recommend greater adoption of these tools for schizophrenia research and patient care.
Collapse
Affiliation(s)
- Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Joy J Choi
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Kyle M Green
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Rajeev S Ramchandran
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
77
|
Analysis of optical coherence tomography of the optic nerve head and of the retinal macular area in multiple sclerosis patients. OPHTHALMOLOGY JOURNAL 2022. [DOI: 10.17816/ov105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND: Multiple sclerosis is a chronic autoimmune demyelinating disease of the central nervous system. Early diagnosis of the disease is extremely important for the just-in-time start of specific therapy. Optical coherence tomography (OCT) of the optic nerve head and retina can become an early marker of the neurodegenerative process in multiple sclerosis.
AIM: To determine OCT-changes in the retinal nerve fiber layer (RNFL) thickness and retinal thickness in the macular area being most specific for multiple sclerosis.
MATERIALS AND METHODS: 197 patients were examined, the study group consisted of 136 patients (274 eyes) with an established diagnosis of multiple sclerosis and the disease duration of at least 6 months. The control group included 61 healthy people (122 eyes). All patients underwent a standard ophthalmological examination, OCT was performed on Spectralis OCT (Heidelberg Engineering, Germany) using 2 scanning protocols: ONH-RC-Scan (Optic Nerve Head-Radial Circle Scan) and PPAA (Posterior Pole Asymmetry Analysis)
RESULTS: Only 11 patients (8.1%) had a history of retrobulbar neuritis, the best corrected visual acuity was 0.7 and higher in 83 (81%) patients with multiple sclerosis, while the optic nerve head and retinal nerve fiber layer OCT-changes typical for multiple sclerosis were found in 118 patients (87%). The most prominent thinning of the retinal nerve fiber layer in group with multiple sclerosis was revealed in the temporal part of the optic nerve head (59.9 14.8 in the study group versus 76.6 12.0 in the control group; p 0.001), the least thinning was in the nasal half (66.6 14.3 in the study group versus 69.3 12.4 in the control group; p = 0.013). The retina in the macular area in multiple sclerosis patients was thinned over the entire area, the most significant changes were in the Outer Nasal 7 zone (303.3 20.4 in the study group versus 324.3 10.0 in the control group; p 0.001). Cluster analysis found 6 new retinal zones for mapping the macular area using the scanning protocol PPAA. In order to determine the prognostic value of the obtained zones, a logistic regression model was constructed, which with a sensitivity of 87.1% and a specificity of 81.6% allows concluding on the probability of having multiple sclerosis.
CONCLUSION: OCT data using the proposed mapping of the macular area with the mathematical model analysis could be used to diagnose specific optic nerve atrophy, to reveal typical thinning of the retinal nerve fiber layer associated with multiple sclerosis, and in the long run, to become an additional criterion for establishing the diagnosis of multiple sclerosis.
Collapse
|
78
|
Berek K, Hegen H, Hocher J, Auer M, Di Pauli F, Krajnc N, Angermann R, Barket R, Zinganell A, Riedl K, Deisenhammer F, Berger T, Bsteh G. Retinal layer thinning as a biomarker of long-term disability progression in multiple sclerosis. Mult Scler 2022; 28:1871-1880. [PMID: 35652366 DOI: 10.1177/13524585221097566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Peripapillary retinal nerve fibre layer and macular ganglion cell plus inner plexiform layer thinning are markers of neuroaxonal degeneration in multiple sclerosis. OBJECTIVE We aimed to investigate the value of peripapillary retinal nerve fibre layer and ganglion cell plus inner plexiform layer thinning for prediction of long-term disability. METHODS This is a 6-year prospective longitudinal study on 93 multiple sclerosis patients. Optical coherence tomography scans were performed at baseline, after 1, 2 and 6 years. Primary endpoint was disability progression after 6 years, defined as expanded disability status scale worsening and/or cognitive deterioration. Univariate and multivariate analysis was used to investigate the value of peripapillary retinal nerve fibre layer and ganglion cell plus inner plexiform layer to predict the primary endpoint. RESULTS A total of 57 (61.3%) patients had disability worsening, 40 (43.0%) expanded disability status scale worsening and 34 (36.6%) cognitive deterioration. Mean peripapillary retinal nerve fibre layer and ganglion cell plus inner plexiform layer baseline thickness were 93.0 and 75.2 µm, and mean annualised peripapillary retinal nerve fibre layer and ganglion cell plus inner plexiform layer thinning rates over 6 years were 1.3 and 1.6 µm, respectively. Univariate and multivariate analysis revealed lower peripapillary retinal nerve fibre layer and ganglion cell plus inner plexiform layer baseline thickness and higher annualised thinning rates in patients with disability progression after 6 years. Effects were more pronounced for ganglion cell plus inner plexiform layer and expanded disability status scale worsening than for peripapillary retinal nerve fibre layer models and cognitive deterioration. CONCLUSION Ganglion cell plus inner plexiform layer and peripapillary retinal nerve fibre layer measurements depict neurodegeneration and predict disability progression in multiple sclerosis.
Collapse
Affiliation(s)
- Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hocher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Angermann
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Barket
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Riedl
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
79
|
Masala A, Mola ID, Cellerino M, Pera V, Vagge A, Uccelli A, Christian C, Traverso CE, Iester M. Choroidal Thickness in Multiple Sclerosis: An Optical Coherence Tomography Study. J Clin Neurol 2022; 18:334-342. [PMID: 35589321 PMCID: PMC9163936 DOI: 10.3988/jcn.2022.18.3.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose To identify changes in the choroidal thickness (CT) in multiple sclerosis (MS) patients with and without optic neuritis (ON) using enhanced-depth-imaging optical coherence tomography (EDI-OCT). Methods This cross-sectional study included 96 eyes with MS and 28 eyes of healthy controls. All participants underwent an ophthalmologic examination and EDI-OCT scanning (Spectralis, Heidelberg Engineering, Germany) to assess the CT and the retinal nerve fiber layer (RNFL) thickness. MS patients were divided into two groups: 1) with and 2) without a history of ON. The CT was evaluated in the fovea and at six horizontal and six vertical points at 500, 1,000, and 1,500 µm from the fovea. Paired t-tests were used to compare the groups, and p-value<0.05 was considered as significant. Results At all 13 measurements points, the CT was thicker in MS patients than in the healthy controls and was thinner in eyes with ON than in the contralateral eyes, but these differences were not statistically significant. However, the CT was always larger in all points in eyes with a history of ON than in the control eyes. The RNFL was significantly thinner (p<0.05) in both MS and ON eyes than in the control eyes. Conclusions The CT did not differ between MS and control eyes, but it was significantly larger in patients with a history of ON, in whom the RNFL was thinner. Further studies are necessary to establish the possible role of the choroid in MS.
Collapse
Affiliation(s)
- Alessandro Masala
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy
| | - Ilaria Di Mola
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy
| | - Maria Cellerino
- Neurologic Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Valentina Pera
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy
| | - Aldo Vagge
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy
| | - Antonio Uccelli
- San Martino IRCCS Policlinic Hospital, Genoa, Italy.,Neurologic Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Cordano Christian
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Carlo E Traverso
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy
| | - Michele Iester
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,San Martino IRCCS Policlinic Hospital, Genoa, Italy.
| |
Collapse
|
80
|
Ahmed J, Stephens S, Ly M, Longoni G, Yeh E. Structural visual metrics associate with moderate to vigorous physical activity in youth with pediatric onset neuroinflammatory disorders. Mult Scler Relat Disord 2022; 60:103745. [DOI: 10.1016/j.msard.2022.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/27/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
|
81
|
Garlı M, Kurna SA, Alış A, Akın Çakır E, Yükselen NP, Açıkalın B. Evaluation of peripapillary and subfoveal choroidal vascularity index in patients with multiple sclerosis. Photodiagnosis Photodyn Ther 2022; 38:102810. [PMID: 35304309 DOI: 10.1016/j.pdpdt.2022.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate the changes in the peripapillary choroidal vascularity index (PCVI) and subfoveal choroidal vascularity index (SFCVI) in multiple sclerosis (MS) patients and healthy subjects METHODS: A total of 145 eyes of 73 patients were investigated in this cross-sectional study. 78 eyes of 39 MS patients (Group 1) and 67 eyes of 34 healthy subjects (Group 2) were evaluated. MS patients with a history of optic neuritis (ON) constituted Group 1a, those without a history of ON constituted Group 1b. RESULTS The mean PCVI was significantly lower in Group 1 than Group 2 (61,39±3,00 % vs 64,49±2,29 % respectively, p<0.001). The mean SFCVI scores of Group 1 was significantly lower than Group 2 (64,01±2,66 % vs. 66,87±2,14 % respectively, p<0.001). The mean PCVI of Group 1a (59,26±2,85 %) was significantly lower compared to Group 1b (62,87±2,08 %) and Group 2 (64,49±2,29 %, p1<0.001, p2<0.001). The mean SFCVI of Group 1a was significantly lower than Group 2 (64.26±2.75 % vs. 66.87±2.14 % respectively, p<0.001). CONCLUSION PCVI and SFCVI scores were significantly lower in MS patients compared to healthy controls. PCVI scores of MS patients who had a history of ON were significantly lower than those of patients without a previous ON attack, as were SFCVI scores. We consider that evaluation of PCVI and SFCVI might be useful for monitoring ocular involvement in patients with MS.
Collapse
Affiliation(s)
- Murat Garlı
- Department of Ophthalmology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey.
| | - Sevda Aydın Kurna
- Department of Ophthalmology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| | - Abdülkadir Alış
- Department of Ophthalmology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| | - Esra Akın Çakır
- Department of Ophthalmology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| | - Nihan Parasız Yükselen
- Department of Neurology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| | - Banu Açıkalın
- Department of Ophthalmology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| |
Collapse
|
82
|
Kleerekooper I, Chua S, Foster PJ, Trip SA, Plant GT, Petzold A, Patel P. Associations of Alcohol Consumption and Smoking With Disease Risk and Neurodegeneration in Individuals With Multiple Sclerosis in the United Kingdom. JAMA Netw Open 2022; 5:e220902. [PMID: 35238934 PMCID: PMC8895260 DOI: 10.1001/jamanetworkopen.2022.0902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE Understanding the effects of modifiable risk factors on risk for multiple sclerosis (MS) and associated neurodegeneration is important to guide clinical counseling. OBJECTIVE To investigate associations of alcohol use, smoking, and obesity with odds of MS diagnosis and macular ganglion cell layer and inner plexiform layer (mGCIPL) thickness. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study analyzed data from the community-based UK Biobank study on health behaviors and retinal thickness (measured by optical coherence tomography in both eyes) in individuals aged 40 to 69 years examined from December 1, 2009, to December 31, 2010. Risk factors were identified with multivariable logistic regression analyses. To adjust for intereye correlations, multivariable generalized estimating equations were used to explore associations of alcohol use and smoking with mGCIPL thickness. Finally, interaction models explored whether the correlations of alcohol and smoking with mGCIPL thickness differed for individuals with MS. Data were analyzed from February 1 to July 1, 2021. EXPOSURES Smoking status (never, previous, or current), alcohol intake (never or special occasions only [low], once per month to ≤4 times per week [moderate], or daily/almost daily [high]), and body mass index. MAIN OUTCOMES AND MEASURES Multiple sclerosis case status and mGCIPL thickness. RESULTS A total of 71 981 individuals (38 685 women [53.7%] and 33 296 men [46.3%]; mean [SD] age, 56.7 [8.0] years) were included in the analysis (20 065 healthy control individuals, 51 737 control individuals with comorbidities, and 179 individuals with MS). Modifiable risk factors significantly associated with MS case status were current smoking (odds ratio [OR], 3.05 [95% CI, 1.95-4.64]), moderate alcohol intake (OR, 0.62 [95% CI, 0.43-0.91]), and obesity (OR, 1.72 [95% CI, 1.15-2.56]) compared with healthy control individuals. Compared with the control individuals with comorbidities, only smoking was associated with case status (OR, 2.30 [95% CI, 1.48-3.51]). High alcohol intake was associated with a thinner mGCIPL in individuals with MS (adjusted β = -3.09 [95% CI, -5.70 to -0.48] μm; P = .02). In the alcohol interaction model, high alcohol intake was associated with thinner mGCIPL in control individuals (β = -0.93 [95% CI, -1.07 to -0.79] μm; P < .001), but there was no statistically significant association in individuals with MS (β = -2.27 [95% CI, -4.76 to 0.22] μm; P = .07). Smoking was not associated with mGCIPL thickness in MS. However, smoking was associated with greater mGCIPL thickness in control individuals (β = 0.89 [95% CI, 0.74-1.05 μm]; P < .001). CONCLUSIONS AND RELEVANCE These findings suggest that high alcohol intake was associated with retinal features indicative of more severe neurodegeneration, whereas smoking was associated with higher odds of being diagnosed with MS.
Collapse
Affiliation(s)
- Iris Kleerekooper
- Queen Square MS Centre, Department of Neuroinflammation, UCL (University College London) Institute of Neurology, London, United Kingdom
- Department of Neuro-ophthalmology, Moorfields Eye Hospital, London, United Kingdom
| | - Sharon Chua
- NIHR (National Institute for Health Research) Biomedical Research Centre, Moorfields Eye Hospital, NHS (National Health Service) Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Paul J. Foster
- NIHR (National Institute for Health Research) Biomedical Research Centre, Moorfields Eye Hospital, NHS (National Health Service) Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - S. Anand Trip
- Queen Square MS Centre, Department of Neuroinflammation, UCL (University College London) Institute of Neurology, London, United Kingdom
| | - Gordon T. Plant
- Queen Square MS Centre, Department of Neuroinflammation, UCL (University College London) Institute of Neurology, London, United Kingdom
| | - Axel Petzold
- Queen Square MS Centre, Department of Neuroinflammation, UCL (University College London) Institute of Neurology, London, United Kingdom
- Department of Neuro-ophthalmology, Moorfields Eye Hospital, London, United Kingdom
- Dutch Expertise Centre for Neuro-ophthalmology and MS (Multiple Sclerosis) Centre, Departments of Neurology and Ophthalmology, Amsterdam University Medical College, Amsterdam, the Netherlands
| | - Praveen Patel
- NIHR (National Institute for Health Research) Biomedical Research Centre, Moorfields Eye Hospital, NHS (National Health Service) Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
83
|
Kumar Das N, Das M. Structural changes in retina (Retinal nerve fiber layer) following mild traumatic brain injury and its association with development of visual field defects. Clin Neurol Neurosurg 2021; 212:107080. [PMID: 34883282 DOI: 10.1016/j.clineuro.2021.107080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/26/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI)is the most common form of traumatic brain injury accounting for 70-80% of all brain injuries annually. There is increasing evidence that long lasting morphological and functional consequence can be present in visual system following mTBI. Among all the visual manifestation, awareness of Visual field defects is important because it may compromise the social, personal or professional life of any individual. Retinal structural changes such as thinning of Retinal nerve fiber layer (RFNL)captured using optical coherence tomography have emerged as a possible biomarker in many neurological diseases however very little is known in cases with mTBI OBJECTIVE: (I) To demonstrate the structural changes/morphological changes in retina if any following mTBI. (II) Whether the structural changes in retina have any association with the development of Visual field deficits leading to Visual function impairment following mTBI (III) Clinical relevance of structural changes in retina as a possible biomarker for visual function impairment due to visual field deficits. MATERIALS AND METHODS Our study included 60 patients with mTBI who fulfilled the inclusion criteria. All patients underwent a detailed ophthalmic evaluation with special focus on temporal recording of Retinal nerve layer thickness using SD- Optical Coherence Tomography and Visual field (Visual field Index) by Humphrey Automated Field Analyser. RESULTS 30% of eyes had significant thinning of RFNL (> 30% of the base line thickness) at 6 months following mTBI. Visual function impairment due to visual field deficits (VFI < 80%) at 6 months was seen in 40% of the eyes. The structural changes and visual function impairment peaked at 6 months' post injury. A strong Association was noted between RFNL thinning and manifestation of Visual field deficits (VFI < 80%) leading to visual function impairment (P < 0.001). The Correlation Co-efficient between thinning of RFNL and Visual field deficits had a positive correlation(p < 0.001). CONCLUSION This novel study has demonstrated that visual functional impairment due to Visual field deficits is a real possibility following mTBI. Monitoring of retinal parameter such as thinning of Retinal nerve fiber layer, using Optical coherence tomography, can be a biomarker for early detection or development of visual field defects in mTBI.
Collapse
Affiliation(s)
- Narendra Kumar Das
- Department of Neurosurgery, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Patia, Bhubaneswar, Odisha, India.
| | - Matuli Das
- Department of Ophthalmology, Member-Medical Education Unit, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Patia, Bhubaneswar, Odisha, India.
| |
Collapse
|
84
|
Piedrabuena R, Bittar M. Optical coherence tomography and visual evoked potential and its relationship with neurological disability in patients with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2021; 57:103420. [PMID: 34906813 DOI: 10.1016/j.msard.2021.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION To evaluate the relationship between retinal nerve fiber layer involvement and visual evoked potential with the neurological disability scale in relapsing remitting multiple sclerosis. METHODS Fifty-two patients diagnosed with relapsing-remitting multiple sclerosis were evaluated for the study. Optical coherence tomography (retinal nerve fiber layer or RNFL and macular volume or MV), pattern visual evoked potential or VEP (latency and P100 wave amplitude), and neurological disability scale (EDSS) were performed. A baseline evaluation was carried out and it was repeated after one year and two years. RESULTS The baseline values in the retinal nerve fiber layer were 82.5 (75-93.5), the latency and amplitude of the VEP of 116 (108-125.5) and 9 (7-11), respectively, while the EDSS was 2 (1.5-3). A correlation was found between higher EDSS with prolonged latency and decreased amplitude of the P100 wave. There was an association between a higher EDSS with the prolongation of the latency of the P100 wave and a longer time of evolution of MS. No relationship was found between EDSS and macular volume. A higher EDSS was associated with a significant decrease in RNFL. When the discriminative performance of disability was evaluated, the latency of the VEP presented an area under the curve of 0.79 (CI95% 0.67- 0.92), the amplitude of the VEP an area under the curve of 0.71 (CI95% 0.56 - 0.87) and RNFL a area under the curve of 0.76 (95% CI 0.62 - 0.90. When comparing RNFL, MV and PEV in eyes without and with previous optic neuritis with RNFL values of 88 (81-97) and 76 (71-81) (p 0.0007), MV of 246 (232-261) and 241 (229-251) (p 0.2541), PEV latency of 109 (105-117) and 125 (118-129) (p 0.0001), VEP amplitude of 9 (7-10) and 9 (7-11) (p 0.9391), respectively, which shows a statistically significant correlation between decrease in RNFL and prolongation of VEP latency in eyes with previous optic neuritis. In the 2-year follow-up there were no significant differences between the values of RNFL, VEP and EDSS. DISCUSSION In our study, a relationship was evidenced between retinal nerve fiber thickness, PEV and the degree of disability measured by EDSS in patients with relapsing MS - remissions in their baseline values. A lower RNFL thickness was correlated with prolonged latency and decreased amplitude in the PEV and was associated with a higher EDSS. This relationship was more significant in eyes with previous optic neuritis in terms of decreased RNFL thickness and prolongation of PEV latency. No significant differences were found in the 2-year follow-up in the measurements made.
Collapse
Affiliation(s)
| | - M Bittar
- Clinica de Ojos Reyes Giobellina, Córdoba, Argentina
| |
Collapse
|
85
|
Paul F, Calabresi PA, Barkhof F, Green AJ, Kardon R, Sastre-Garriga J, Schippling S, Vermersch P, Saidha S, Gerendas BS, Schmidt-Erfurth U, Agoropoulou C, Zhang Y, Seifer G, Petzold A. Optical coherence tomography in multiple sclerosis: A 3-year prospective multicenter study. Ann Clin Transl Neurol 2021; 8:2235-2251. [PMID: 34792863 PMCID: PMC8670323 DOI: 10.1002/acn3.51473] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To evaluate changes over 3 years in the thickness of inner retinal layers including the peripapillary retinal nerve fiber layer (pRNFL), and combined macular ganglion cell and inner plexiform layers (mGCIPL), in individuals with relapsing‐remitting multiple sclerosis (RRMS) versus healthy controls; to determine whether optical coherence tomography (OCT) is sufficiently sensitive and reproducible to detect small degrees of neuroaxonal loss over time that correlate with changes in brain volume and disability progression as measured by the Expanded Disability Status Scale (EDSS). Methods Individuals with RRMS from 28 centers (n = 333) were matched with 64 healthy participants. OCT scans were performed on Heidelberg Spectralis machines (at baseline; 1 month; 6 months; 6‐monthly thereafter). Results OCT measurements were highly reproducible between baseline and 1 month (intraclass correlation coefficient >0.98). Significant inner retinal layer thinning was observed in individuals with multiple sclerosis (MS) compared with controls regardless of previous MS‐associated optic neuritis––group differences (95% CI) over 3 years: pRNFL: −1.86 (−2.54, −1.17) µm; mGCIPL: −2.03 (−2.78, −1.28) µm (both p < 0.0001; effect sizes 0.39 and 0.34). Greater inner retinal layer atrophy was observed in individuals diagnosed with RRMS <3 years versus >5 years (pRNFL: p < 0.05; mGCIPL: p < 0.01). Brain volume decreased by 1.3% in individuals with MS over 3 years compared to 0.5% in control subjects (effect size 0.76). mGCIPL atrophy correlated with brain atrophy (p < 0.0001). There was no correlation of OCT data with disability progression. Interpretation OCT has potential to estimate rates of neurodegeneration in the retina and brain. The effect size for OCT, smaller than for magnetic resonance imaging based on Heidelberg Spectralis data acquired in this study, was increased in early disease.
Collapse
Affiliation(s)
- Friedemann Paul
- NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.,Institutes of Neurology & Centre for Medical Image Computing, University College London, London, UK
| | - Ari J Green
- Department of Neurology, Multiple Sclerosis Center, University of California San Francisco, San Francisco, Califonia, USA
| | - Randy Kardon
- Iowa City VA Center for Prevention and Treatment of Visual Loss, Department of Veterans Affairs Hospital Iowa City, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
| | - Jaume Sastre-Garriga
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research Section, University Hospital Zurich, Zurich, Switzerland
| | | | - Shiv Saidha
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bianca S Gerendas
- Department of Ophthalmology, Vienna Reading Center, Medical University of Vienna, Vienna, Austria
| | | | | | - Ying Zhang
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Axel Petzold
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery, London, UK.,Queen Square Institute of Neurology, University College London, London, UK.,MS Center Amsterdam, Amsterdam UMC (Locatie VUmc), Amsterdam, Netherlands
| |
Collapse
|
86
|
Dillenseger A, Weidemann ML, Trentzsch K, Inojosa H, Haase R, Schriefer D, Voigt I, Scholz M, Akgün K, Ziemssen T. Digital Biomarkers in Multiple Sclerosis. Brain Sci 2021; 11:brainsci11111519. [PMID: 34827518 PMCID: PMC8615428 DOI: 10.3390/brainsci11111519] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
For incurable diseases, such as multiple sclerosis (MS), the prevention of progression and the preservation of quality of life play a crucial role over the entire therapy period. In MS, patients tend to become ill at a younger age and are so variable in terms of their disease course that there is no standard therapy. Therefore, it is necessary to enable a therapy that is as personalized as possible and to respond promptly to any changes, whether with noticeable symptoms or symptomless. Here, measurable parameters of biological processes can be used, which provide good information with regard to prognostic and diagnostic aspects, disease activity and response to therapy, so-called biomarkers Increasing digitalization and the availability of easy-to-use devices and technology also enable healthcare professionals to use a new class of digital biomarkers-digital health technologies-to explain, influence and/or predict health-related outcomes. The technology and devices from which these digital biomarkers stem are quite broad, and range from wearables that collect patients' activity during digitalized functional tests (e.g., the Multiple Sclerosis Performance Test, dual-tasking performance and speech) to digitalized diagnostic procedures (e.g., optical coherence tomography) and software-supported magnetic resonance imaging evaluation. These technologies offer a timesaving way to collect valuable data on a regular basis over a long period of time, not only once or twice a year during patients' routine visit at the clinic. Therefore, they lead to real-life data acquisition, closer patient monitoring and thus a patient dataset useful for precision medicine. Despite the great benefit of such increasing digitalization, for now, the path to implementing digital biomarkers is widely unknown or inconsistent. Challenges around validation, infrastructure, evidence generation, consistent data collection and analysis still persist. In this narrative review, we explore existing and future opportunities to capture clinical digital biomarkers in the care of people with MS, which may lead to a digital twin of the patient. To do this, we searched published papers for existing opportunities to capture clinical digital biomarkers for different functional systems in the context of MS, and also gathered perspectives on digital biomarkers under development or already existing as a research approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tjalf Ziemssen
- Correspondence: ; Tel.: +49-351-458-5934; Fax: +49-351-458-5717
| |
Collapse
|
87
|
Siger M, Owidzka M, Świderek-Matysiak M, Omulecki W, Stasiołek M. Optical Coherence Tomography in the Differential Diagnosis of Patients with Multiple Sclerosis and Patients with MRI Nonspecific White Matter Lesions. SENSORS 2021; 21:s21217127. [PMID: 34770434 PMCID: PMC8588219 DOI: 10.3390/s21217127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
In the differential diagnosis of nonspecific white matter lesions (NSWMLs) detected on magnetic resonance imaging (MRI), multiple sclerosis (MS) should be taken into consideration. Optical coherence tomography (OCT) is a promising tool applied in the differential diagnostic process of MS. We tested whether OCT may be useful in distinguishing between MS and NSWMLs patients. In patients with MS (n = 41) and NSWMLs (n = 19), the following OCT parameters were measured: thickness of the peripapillary Retinal Nerve Fibre Layer (pRNFL) in superior, inferior, nasal, and temporal segments; thickness of the ganglion cell-inner plexiform layer (GCIPL); thickness of macular RNFL (mRNFL); and macular volume (MV). In MS patients, GCIPL was significantly lower than in NSWMLs patients (p = 0.024). Additionally, in MS patients, mRNFL was significantly lower than in NSWMLs patients (p = 0.030). The average segmental pRNFL and MV did not differ between MS and NSWMLs patients (p > 0.05). GCIPL and macular RNFL thinning significantly influenced the risk of MS (18.6% [95% CI 2.7%, 25.3%]; 27.4% [95% CI 4.5%, 62.3%]), and reduced GCIPL thickness appeared to be the best predictor of MS. We conclude that OCT may be helpful in the differential diagnosis of MS and NSWMLs patients in real-world settings.
Collapse
Affiliation(s)
- Małgorzata Siger
- Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland; (M.Ś.-M.); (M.S.)
- Correspondence:
| | - Marta Owidzka
- Department of Eye Disease, Medical University of Lodz, 90-419 Lodz, Poland; (M.O.); (W.O.)
| | | | - Wojciech Omulecki
- Department of Eye Disease, Medical University of Lodz, 90-419 Lodz, Poland; (M.O.); (W.O.)
| | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland; (M.Ś.-M.); (M.S.)
| |
Collapse
|
88
|
Mehmood A, Ali W, Song S, Din ZU, Guo RY, Shah W, Ilahi I, Yin B, Yan H, Zhang L, Khan M, Ali W, Zeb L, Safari H, Li B. Optical coherence tomography monitoring and diagnosing retinal changes in multiple sclerosis. Brain Behav 2021; 11:e2302. [PMID: 34520634 PMCID: PMC8553325 DOI: 10.1002/brb3.2302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
This study explores the use of optical coherence tomography (OCT) to monitor and diagnose multiple sclerosis (MS). The analysis of reduced total macular volume and peripapillary retinal nerve fiber layer thinning are shown. The severity of these defects increases as MS progresses, reflecting the progressive degeneration of nerve fibers and retinal ganglion cells. The OCT parameters are noninvasive, sensitive indicators that can be used to assess the progression of neurodegeneration and inflammation in MS.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, P. R. China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, Liaoning Province, P. R. China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Ikram Ilahi
- Department of Zoology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Bowen Yin
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China.,Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, P. R. China
| | - Hongjing Yan
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| | - Murad Khan
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Wajid Ali
- Green and Environmental Chemistry, Ecotoxicology and Ecology Laboratory, Department of Zoology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, P.R. China
| | - Hamidreza Safari
- Department of Immunology, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Hebei Province, P. R. China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
89
|
Turski CA, Turski GN, Faber J, Teipel SJ, Holz FG, Klockgether T, Finger RP. Microvascular Breakdown Due to Retinal Neurodegeneration in Ataxias. Mov Disord 2021; 37:162-170. [PMID: 34533237 DOI: 10.1002/mds.28791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Neurodegenerative ataxias are devastating disorders of the cerebellum and spinal cord, accompanied by death of retinal ganglion cells, leading to relentlessly progressive decline of motor coordination and permanent disability. Retinal microvascular affection has not yet been determined. OBJECTIVES The aim of this study is to assess whether retinal microvascular alterations occur and, if so, whether they are concurrent with or follow cell death in the retina in neurodegenerative diseases. METHODS This study involves the cross-sectional observational study of 43 patients with ataxia and 43 controls enrolled from August 1, 2018, to September 30, 2020. The extent of ataxia was determined by the Scale for the Assessment and Rating of Ataxia. Changes in retinal vasculature were examined by optical coherence tomography angiography (OCT-A) and retinal cell and fiber density by OCT in ataxias concurrently. RESULTS When comparing the ataxia cohort with healthy subjects, ataxia patients exhibited reduced vessel density in the radial peripapillary capillary (RPC) network (P = 0.005), capillary density inside the optic nerve head (cdONH) (P < 0.001), nasal superficial vascular plexus (P = 0.03) as well as reduced ganglion cell layer (GCL) volume (P = 0.04), and temporal peripapillary retinal nerve fiber layer thickness (P = 0.04). Mixed effect analysis modeling laterality confirmed these findings. CONCLUSIONS These findings demonstrate a distinct pattern of concurrent changes in vessel density of the retinal superficial vascular complex, encompassing the superficial vascular plexus, RPC network and cdONH, and retinal GCL volume, providing new insights into the ongoing degeneration in ataxias. Our findings may have relevance for design of novel therapeutic approaches for ataxias and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Christopher A Turski
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gabrielle N Turski
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
90
|
Özbilen KT, Gündüz T, Kartal SNÇ, Ceylan NA, Eraksoy M, Kürtüncü M. Detailed Evaluation of Macular Ganglion Cell Complex in Patients with Multiple Sclerosis. ACTA ACUST UNITED AC 2021; 58:176-183. [PMID: 34526838 PMCID: PMC8419730 DOI: 10.29399/npa.27531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
Introduction: Retinal nerve fiber layer thickness has been used for monitoring of disease activity in patients with multiple sclerosis (MS). Macular ganglion cell complex (GCC) layer of retina also can be measured by OCT and has been suggested as a potential biomarker in MS. In this study we investigated the macular GCC and its role as a potential biomarker in patients with Multiple Sclerosis (MS). Methods: A prospective cohort-study, subjects consisted of Relapsing-Remitting MS patients (n=62) and healthy controls (n=60). Eyes of MS patients were divided into two subgroups according to the history of the optic neuritis (ON). Standard peripapillary-RNFL and macular scan protocol, and retinal auto-segmentation of spectral-domain OCT were performed. Macular RNFL (mRNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL), and GCC (the sum of these former three layers) were recorded. The macula was divided into nine sectors using the ETDRS grid (4×9=36 variables). Results: In total, 50 eyes of 36 patients had previous ON attacks. 35/36 GCC parameters were thinner in MS patients and subgroups compared to the control group (p<0.05). When the eyes with and without a history of optic neuritis were compared, 25 of 36 parameters were thinner in those with ON. There were strong correlations between visual acuity-GCC parameters and EDSS scores in patients with a history of optic neuritis. However, no such relationship was found in those without an ON story. Conclusion: Ganglion cell complex gets thinner in patients with MS with a decreasing order of GCL, IPL, and mRNFL. The examination of GCC in detail could be a beneficial biomarker for MS.
Collapse
Affiliation(s)
- Kemal Turgay Özbilen
- Istanbul University, Istanbul Faculty of Medicine, Department of Ophthalmology, Istanbul, Turkey
| | - Tuncay Gündüz
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | | | - Nihan Aksu Ceylan
- Istanbul University, Istanbul Faculty of Medicine, Department of Ophthalmology, Istanbul, Turkey
| | - Mefküre Eraksoy
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Murat Kürtüncü
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| |
Collapse
|
91
|
Krajnc N, Bsteh G, Berger T. Clinical and Paraclinical Biomarkers and the Hitches to Assess Conversion to Secondary Progressive Multiple Sclerosis: A Systematic Review. Front Neurol 2021; 12:666868. [PMID: 34512500 PMCID: PMC8427301 DOI: 10.3389/fneur.2021.666868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Conversion to secondary progressive (SP) course is the decisive factor for long-term prognosis in relapsing multiple sclerosis (MS), generally considered the clinical equivalent of progressive MS-associated neuroaxonal degeneration. Evidence is accumulating that both inflammation and neurodegeneration are present along a continuum of pathologic processes in all phases of MS. While inflammation is the prominent feature in early stages, its quality changes and relative importance to disease course decreases while neurodegenerative processes prevail with ongoing disease. Consequently, anti-inflammatory disease-modifying therapies successfully used in relapsing MS are ineffective in SPMS, whereas specific treatment for the latter is increasingly a focus of MS research. Therefore, the prevention, but also the (anticipatory) diagnosis of SPMS, is of crucial importance. The problem is that currently SPMS diagnosis is exclusively based on retrospectively assessing the increase of overt physical disability usually over the past 6–12 months. This inevitably results in a delay of diagnosis of up to 3 years resulting in periods of uncertainty and, thus, making early therapy adaptation to prevent SPMS conversion impossible. Hence, there is an urgent need for reliable and objective biomarkers to prospectively predict and define SPMS conversion. Here, we review current evidence on clinical parameters, magnetic resonance imaging and optical coherence tomography measures, and serum and cerebrospinal fluid biomarkers in the context of MS-associated neurodegeneration and SPMS conversion. Ultimately, we discuss the necessity of multimodal approaches in order to approach objective definition and prediction of conversion to SPMS.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
92
|
Measuring Treatment Response in Progressive Multiple Sclerosis-Considerations for Adapting to an Era of Multiple Treatment Options. Biomolecules 2021; 11:biom11091342. [PMID: 34572555 PMCID: PMC8470215 DOI: 10.3390/biom11091342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Disability in multiple sclerosis accrues predominantly in the progressive forms of the disease. While disease-modifying treatment of relapsing MS has drastically evolved over the last quarter-century, the development of efficient drugs for preventing or at least delaying disability in progressive MS has proven more challenging. In that way, many drugs (especially disease-modifying treatments) have been researched in the aspect of delaying disability progression in patients with a progressive course of the disease. While there are some disease-modifying treatments approved for progressive multiple sclerosis, their effect is moderate and limited mostly to patients with clinical and/or radiological signs of disease activity. Several phase III trials have used different primary outcomes with different time frames to define disease progression and to evaluate the efficacy of a disease-modifying treatment. The lack of sufficiently sensitive outcome measures could be a possible explanation for the negative clinical trials in progressive multiple sclerosis. On the other hand, even with a potential outcome measure that would be sensitive enough to determine disease progression and, thus, the efficacy or failure of a disease-modifying treatment, the question of clinical relevance remains unanswered. In this systematic review, we analyzed outcome measures and definitions of disease progression in phase III clinical trials in primary and secondary progressive multiple sclerosis. We discuss advantages and disadvantages of clinical and paraclinical outcome measures aiming for practical ways of combining them to detect disability progression more sensitively both in future clinical trials and current clinical routine.
Collapse
|
93
|
Cellerino M, Priano L, Bruschi N, Boffa G, Petracca M, Novi G, Lapucci C, Sbragia E, Uccelli A, Inglese M. Relationship Between Retinal Layer Thickness and Disability Worsening in Relapsing-Remitting and Progressive Multiple Sclerosis. J Neuroophthalmol 2021; 41:329-334. [PMID: 33399416 DOI: 10.1097/wno.0000000000001165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Data regarding the predictive value of optical coherence tomography (OCT)-derived measures are lacking, especially in progressive multiple sclerosis (PMS). Accordingly, we aimed at investigating whether a single OCT assessment can predict a disability risk in both relapsing-remitting MS (RRMS) and PMS. METHODS One hundred one patients with RRMS and 79 patients with PMS underwent Spectral-Domain OCT, including intraretinal layer segmentation. All patients had at least 1 Expanded Disability Status Scale (EDSS) measurement during the subsequent follow-up (FU). Differences in terms of OCT metrics and their association with FU disability were assessed by analysis of covariance and linear regression models, respectively. RESULTS The median FU was 2 years (range 1-5.5 years). The baseline peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell + inner plexiform layer (GCIPL) were thinner in PMS compared with RRMS (P = 0.02 and P = 0.003, respectively). In the RRMS population, multivariable models showed that the GCIPL significantly correlated with FU disability (0.04 increase in the EDSS for each 1-μm decrease in the baseline GCIPL, 95% confidence interval: 0.006-0.08; P = 0.02). The baseline GCIPL was thinner in patients with RRMS with FU-EDSS >4 compared with those with FU-EDSS ≤4, and individuals in the highest baseline GCIPL tertile had a significantly lower FU-EDSS score than those in the middle and lowest tertile (P = 0.01 and P = 0.001, respectively). These findings were not confirmed in analyses restricted to patients with PMS. CONCLUSIONS Among OCT-derived metrics, GCIPL thickness had the strongest association with short-medium term disability in patients with RRMS. The predictive value of OCT metrics in the longer term will have to be further investigated, especially in PMS.
Collapse
Affiliation(s)
- Maria Cellerino
- Department of Neuroscience (MC, LP, NB, GB, GN, CL, ES, AU, MI), Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy ; Departments of Neurology (MP, MI), Icahn School of Medicine at Mount Sinai, New York, New York; and Department of Neurology (AU, MI) Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Linker RA, Gold R. [Immunotherapy and personalized treatment of multiple sclerosis]. DER NERVENARZT 2021; 92:986-995. [PMID: 34427718 DOI: 10.1007/s00115-021-01176-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Personalized medicine requires a patient-oriented approach with the exact classification of the disease being determined by the underlying pathophysiological processes. In particular, the optimal treatment of multiple sclerosis (MS) requires personalized treatment that goes beyond the pure concept of precision medicine; however, due to the lack of robust biomarkers beyond cranial magnetic resonance imaging and a lacking detailed understanding of some aspects of MS pathogenesis, this approach is not yet fully implemented. Important questions for a better therapeutic stratification of MS patients are: (1) when does MS start? (2) Does the spectrum of MS really span multiple diseases? (3) When does the progressive phase of the disease begin? (4) In which phase of the disease is there a therapeutic window for immunotherapy? Recent findings indicate that MS represents a spectrum of diseases and that there is a therapeutic delay of several years, on which the optimal treatment effect of a disease-modifying treatment depends. For a personalized treatment of MS it is important to determine the exact disease stage of the patient and to react to the development or increase of focal inflammatory activity in a timely manner.
Collapse
Affiliation(s)
- Ralf A Linker
- Neurologische Klinik, Universitätsklinik Regensburg, Universität Regensburg, Universitätsstraße 84, 93053, Regensburg, Deutschland.
| | - Ralf Gold
- Neurologische Klinik, St. Josef-Hospital, Ruhr-Universität-Bochum, Bochum, Deutschland
| |
Collapse
|
95
|
Guerrieri S, Comi G, Leocani L. Optical Coherence Tomography and Visual Evoked Potentials as Prognostic and Monitoring Tools in Progressive Multiple Sclerosis. Front Neurosci 2021; 15:692599. [PMID: 34421520 PMCID: PMC8374170 DOI: 10.3389/fnins.2021.692599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the mechanisms underlying progression and developing new treatments for progressive multiple sclerosis (PMS) are among the major challenges in the field of central nervous system (CNS) demyelinating diseases. Over the last 10 years, also because of some technological advances, the visual pathways have emerged as a useful platform to study the processes of demyelination/remyelination and their relationship with axonal degeneration/protection. The wider availability and technological advances in optical coherence tomography (OCT) have allowed to add information on structural neuroretinal changes, in addition to functional information provided by visual evoked potentials (VEPs). The present review will address the role of the visual pathway as a platform to assess functional and structural damage in MS, focusing in particular on the role of VEPs and OCT, alone or in combination, in the prognosis and monitoring of PMS.
Collapse
Affiliation(s)
- Simone Guerrieri
- Experimental Neurophysiology Unit, San Raffaele Hospital, Institute of Experimental Neurology (INSPE), Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Vita-Salute San Raffaele University, Milan, Italy.,Casa di Cura del Policlinico, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, San Raffaele Hospital, Institute of Experimental Neurology (INSPE), Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
96
|
Marignier R, Hacohen Y, Cobo-Calvo A, Pröbstel AK, Aktas O, Alexopoulos H, Amato MP, Asgari N, Banwell B, Bennett J, Brilot F, Capobianco M, Chitnis T, Ciccarelli O, Deiva K, De Sèze J, Fujihara K, Jacob A, Kim HJ, Kleiter I, Lassmann H, Leite MI, Linington C, Meinl E, Palace J, Paul F, Petzold A, Pittock S, Reindl M, Sato DK, Selmaj K, Siva A, Stankoff B, Tintore M, Traboulsee A, Waters P, Waubant E, Weinshenker B, Derfuss T, Vukusic S, Hemmer B. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol 2021; 20:762-772. [PMID: 34418402 DOI: 10.1016/s1474-4422(21)00218-0] [Citation(s) in RCA: 325] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a recently identified autoimmune disorder that presents in both adults and children as CNS demyelination. Although there are clinical phenotypic overlaps between MOGAD, multiple sclerosis, and aquaporin-4 antibody-associated neuromyelitis optica spectrum disorder (NMOSD) cumulative biological, clinical, and pathological evidence discriminates between these conditions. Patients should not be diagnosed with multiple sclerosis or NMOSD if they have anti-MOG antibodies in their serum. However, many questions related to the clinical characterisation of MOGAD and pathogenetic role of MOG antibodies are still unanswered. Furthermore, therapy is mainly based on standard protocols for aquaporin-4 antibody-associated NMOSD and multiple sclerosis, and more evidence is needed regarding how and when to treat patients with MOGAD.
Collapse
Affiliation(s)
- Romain Marignier
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Bron, France; Centre des Neurosciences de Lyon, INSERM 1028 et CNRS UMR5292, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France.
| | - Yael Hacohen
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alvaro Cobo-Calvo
- Centre d'Esclerosi Múltiple de Catalunya, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anne-Katrin Pröbstel
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Orhan Aktas
- Medical Faculty, Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Pia Amato
- IRCCS Fondazione Don Carlo Gnocchi, University of Florence, Florence, Italy
| | - Nasrin Asgari
- Institute of Regional Health Research and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey Bennett
- Department of Neurology and Department of Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marco Capobianco
- Regional Multiple Sclerosis Centre, Department of Neurology, University Hospital San Luigi, Orbassano, Italy
| | - Tanuja Chitnis
- Department of Pediatric Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Kumaran Deiva
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre, Pediatric Neurology Department, National Referral Center for Rare Inflammatory Brain and Spinal Diseases, Université Paris-Sud, and UMR 1184-CEA-IDMIT, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre, France
| | - Jérôme De Sèze
- Department of Neurology, Strasbourg University Hospital and Clinical Investigation Center, INSERM 1434, Strasbourg, France
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine Koriyama, Japan; Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
| | - Anu Jacob
- Division of Multiple Sclerosis and Autoimmune Neurology, Neurological Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates; Walton Centre National Health Service Trust, Liverpool, UK
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ingo Kleiter
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg, Germany; Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Maria-Isabel Leite
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Germany
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Axel Petzold
- Moorfields Eye Hospital and National Hospital for Neurology and Neurosurgery, London, UK; University College London Queen Square Institute of Neurology, London, UK; National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Sean Pittock
- Department of Neurology and Laboratory Medicine and Pathology, and Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Douglas Kazutoshi Sato
- Brain Institute of Rio Grande do Sul and School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Krzysztof Selmaj
- University of Warmia and Mazury, Olsztyn, Poland; Center of Neurology, Łódź, Poland
| | - Aksel Siva
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm, and Saint Antoine Hospital, APHP, Paris, France
| | - Mar Tintore
- Centre d'Esclerosi Múltiple de Catalunya, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anthony Traboulsee
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Emmanuelle Waubant
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Brian Weinshenker
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tobias Derfuss
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandra Vukusic
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Bron, France; Centre des Neurosciences de Lyon, INSERM 1028 et CNRS UMR5292, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
97
|
Balıkçı A, Parmak Yener N, Seferoğlu M. Optical Coherence Tomography and Optical Coherence Tomography Angiography Findings in Multiple Sclerosis Patients. Neuroophthalmology 2021; 46:19-33. [DOI: 10.1080/01658107.2021.1963787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ayşe Balıkçı
- Department of Ophthalmology, Bursa Yüksek Ihtisas Education and Research Hospital, Bursa, Turkey
| | - Neslihan Parmak Yener
- Department of Ophthalmology, Bursa Yüksek Ihtisas Education and Research Hospital, Bursa, Turkey
| | - Meral Seferoğlu
- Department of Neurology, Bursa Yüksek Ihtisas Education and Research Hospital, Bursa, Turkey
| |
Collapse
|
98
|
Automatic Diagnosis of Bipolar Disorder Using Optical Coherence Tomography Data and Artificial Intelligence. J Pers Med 2021; 11:jpm11080803. [PMID: 34442447 PMCID: PMC8402059 DOI: 10.3390/jpm11080803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Background: The aim of this study is to explore an objective approach that aids the diagnosis of bipolar disorder (BD), based on optical coherence tomography (OCT) data which are analyzed using artificial intelligence. Methods: Structural analyses of nine layers of the retina were analyzed in 17 type I BD patients and 42 controls, according to the areas defined by the Early Treatment Diabetic Retinopathy Study (ETDRS) chart. The most discriminating variables made up the feature vector of several automatic classifiers: Gaussian Naive Bayes, K-nearest neighbors and support vector machines. Results: BD patients presented retinal thinning affecting most layers, compared to controls. The retinal thickness of the parafoveolar area showed a high capacity to discriminate BD subjects from healthy individuals, specifically for the ganglion cell (area under the curve (AUC) = 0.82) and internal plexiform (AUC = 0.83) layers. The best classifier showed an accuracy of 0.95 for classifying BD versus controls, using as variables of the feature vector the IPL (inner nasal region) and the INL (outer nasal and inner inferior regions) thickness. Conclusions: Our patients with BD present structural alterations in the retina, and artificial intelligence seem to be a useful tool in BD diagnosis, but larger studies are needed to confirm our findings.
Collapse
|
99
|
Liao C, Xu J, Chen Y, Ip NY. Retinal Dysfunction in Alzheimer's Disease and Implications for Biomarkers. Biomolecules 2021; 11:biom11081215. [PMID: 34439882 PMCID: PMC8394950 DOI: 10.3390/biom11081215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that manifests as cognitive deficits and memory decline, especially in old age. Several biomarkers have been developed to monitor AD progression. Given that the retina and brain share some similarities including features related to anatomical composition and neurological functions, the retina is closely associated with the progression of AD. Herein, we review the evidence of retinal dysfunction in AD, particularly at the early stage, together with the underlying molecular mechanisms. Furthermore, we compared the retinal pathologies of AD and other ophthalmological diseases and summarized potential retinal biomarkers measurable by existing technologies for detecting AD, providing insights for the future development of diagnostic tools.
Collapse
Affiliation(s)
- Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Jinying Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Division of Life Science, Molecular Neuroscience Center, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| |
Collapse
|
100
|
Abstract
Multiple sclerosis (MS) is a neurological inflammatory disorder known to attack the heavily myelinated regions of the nervous system including the optic nerves, cerebellum, brainstem and spinal cord. This review will discuss the clinical manifestations and investigations for MS and other similar neurological inflammatory disorders affecting vision, as well as the effects of MS treatments on vision. Assessment of visual pathways is critical, considering MS can involve multiple components of the visual pathway, including optic nerves, uvea, retina and occipital cortex. Optical coherence tomography is increasingly being recognised as a highly sensitive tool in detecting subclinical optic nerve changes. Magnetic resonance imaging (MRI) is critical in MS diagnosis and in predicting long-term disability. Optic neuritis in MS involves unilateral vision loss, with characteristic pain on eye movement. The visual loss in neuromyelitis optica spectrum disorder tends to be more severe with preferential altitudinal field loss, chiasmal and tract lesions are also more common. Other differential diagnoses include chronic relapsing inflammatory optic neuropathy and giant cell arteritis. Leber's hereditary optic neuropathy affects young males and visual loss tends to be painless and subacute, typically involving both optic nerves. MS lesions in the vestibulocerebellum, brainstem, thalamus and basal ganglia may lead to abnormalities of gaze, saccades, pursuit and nystagmus which can be identified on eye examination. Medial longitudinal fasciculus lesions can cause another frequent presentation of MS, internuclear ophthalmoplegia, with failure of ipsilateral eye adduction and contralateral eye abduction nystagmus. Treatments for MS include high-dose corticosteroids for acute relapses and disease-modifying medications for relapse prevention. These therapies may also have adverse effects on vision, including central serous retinopathy with corticosteroid therapy and macular oedema with fingolimod.
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- Prince of Wales Clinical School, University of New South Wales Sydney, Sydney, Australia
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales Sydney, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales Sydney, Sydney, Australia
| |
Collapse
|