51
|
Sidler M, Aitken KJ, Jiang JX, Sotiropoulos C, Aggarwal P, Anees A, Chong C, Siebenaller A, Thanabalasingam T, White JM, Choufani S, Weksberg R, Sangiorgi B, Wrana J, Delgado-Olguin P, Bägli DJ. DNA Methylation Reduces the Yes-Associated Protein 1/WW Domain Containing Transcription Regulator 1 Pathway and Prevents Pathologic Remodeling during Bladder Obstruction by Limiting Expression of BDNF. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2177-2194. [DOI: 10.1016/j.ajpath.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/25/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
|
52
|
Abstract
BACKGROUND Longitudinal data and repeated measurements in epigenome-wide association studies (EWAS) provide a rich resource for understanding epigenetics. We summarize 7 analytical approaches to the GAW20 data sets that addressed challenges and potential applications of phenotypic and epigenetic data. All contributions used the GAW20 real data set and employed either linear mixed effect (LME) models or marginal models through generalized estimating equations (GEE). These contributions were subdivided into 3 categories: (a) quality control (QC) methods for DNA methylation data; (b) heritability estimates pretreatment and posttreatment with fenofibrate; and (c) impact of drug response pretreatment and posttreatment with fenofibrate on DNA methylation and blood lipids. RESULTS Two contributions addressed QC and identified large statistical differences with pretreatment and posttreatment DNA methylation, possibly a result of batch effects. Two contributions compared epigenome-wide heritability estimates pretreatment and posttreatment, with one employing a Bayesian LME and the other using a variance-component LME. Density curves comparing these studies indicated these heritability estimates were similar. Another contribution used a variance-component LME to depict the proportion of heritability resulting from a genetic and shared environment. By including environmental exposures as random effects, the authors found heritability estimates became more stable but not significantly different. Two contributions investigated treatment response. One estimated drug-associated methylation effects on triglyceride levels as the response, and identified 11 significant cytosine-phosphate-guanine (CpG) sites with or without adjusting for high-density lipoprotein. The second contribution performed weighted gene coexpression network analysis and identified 6 significant modules of at least 30 CpG sites, including 3 modules with topological differences pretreatment and posttreatment. CONCLUSIONS Four conclusions from this GAW20 working group are: (a) QC measures are an important consideration for EWAS studies that are investigating multiple time points or repeated measurements; (b) application of heritability estimates between time points for individual CpG sites is a useful QC measure for DNA methylation studies; (c) drug intervention demonstrated strong epigenome-wide DNA methylation patterns across the 2 time points; and (d) new statistical methods are required to account for the environmental contributions of DNA methylation across time. These contributions demonstrate numerous opportunities exist for the analysis of longitudinal data in future epigenetic studies.
Collapse
Affiliation(s)
- Haakon E. Nustad
- Department of Medical Genetics, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, Klaus Torgårds vei 3, 0372 Oslo, Norway
- PharmaTox Strategic Research Initiative, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd., STDOI Modular Building #100, Brownsville, TX 78520 USA
| | - Angelo J. Canty
- Department of Mathematics and Statistics, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1 Canada
| | - Marissa LeBlanc
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Klaus Torgårds vei 3, 0372 Oslo, Norway
| | - Christian M. Page
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Klaus Torgårds vei 3, 0372 Oslo, Norway
- Department of Non-communicable disease, Norwegian Institute of Public Health, Marcus Thranes Gate 6, 0473 Oslo, Norway
| | - Phillip E. Melton
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Pharmacy and Biomedical Sciences, Curtin University and the University of Western Australia, 35 Stirling Hwy. (M409), Crawley, WA 6009 Australia
| |
Collapse
|
53
|
Ramaiyan B, Talahalli RR. Dietary Unsaturated Fatty Acids Modulate Maternal Dyslipidemia-Induced DNA Methylation and Histone Acetylation in Placenta and Fetal Liver in Rats. Lipids 2018; 53:581-588. [PMID: 30203512 DOI: 10.1002/lipd.12074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
The present study assessed the role of dietary unsaturated fatty acids in maternal dyslipidemia-induced DNA methylation and histone acetylation in placenta and fetal liver and accumulation of lipids in the fetal liver. Weanling female Wistar rats were fed control and experimental diets for 2 months, mated, and continued on their diets during pregnancy. At gestation days of 18-20, rats were euthanized to isolate placenta and fetal liver. DNA methylation, DNA methyl transferase-1 (DNMT1) activity, acetylation of histones (H2A and H2B), and histone acyl transferase (HAT) activity were evaluated in placenta and fetal liver. Fetal liver lipid accumulation and activation of peroxisome proliferator-activated receptor-α (PPAR-α) were assessed. Maternal dyslipidemia caused significant epigenetic changes in placenta and fetal liver. In the placenta, (1) global DNA methylation increased by 37% and DNMT1 activity by 86%, (2) acetylated H2A and H2B levels decreased by 46% and 24% respectively, and (3) HAT activity decreased by 39%. In fetal liver, (1) global DNA methylation increased by 52% and DNMT1 activity by 78%, (2) acetylated H2A and H2B levels decreased by 28% and 26% respectively, and (3) HAT activity decreased by 37%. Maternal dyslipidemia caused a 4.75-fold increase in fetal liver triacylglycerol accumulation with a 78% decrease in DNA-binding ability of PPAR-α. Incorporation of dietary unsaturated fatty acids in the maternal high-fat diet significantly (p < 0.05) modulated dyslipidemia-induced effects in placenta and fetal liver. Eicosapentaenoic acid (EPA, 20:5n-3) + docosahexaenoic acid (DHA, 22:6n-3) exhibited a profound effect followed by alpha-linolenic acid (ALA, 18:3n-3) than linoleic acid (LNA, 18:2n-6) in modulating the epigenetic parameters in placenta and fetal liver.
Collapse
Affiliation(s)
- Breetha Ramaiyan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | | |
Collapse
|
54
|
Farivar S, Aghamaleki FS. Effects of Major Epigenetic Factors on Systemic Lupus Erythematosus. IRANIAN BIOMEDICAL JOURNAL 2018; 22:294-302. [PMID: 29803202 PMCID: PMC6058186 DOI: 10.29252/ibj.22.5.294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is influenced by both genetic factors and epigenetic modifications; the latter is a result of exposure to various environmental factors. Epigenetic modifications affect gene expression and alter cellular functions without modifying the genomic sequences. CpG-DNA methylation, histone modifications, and miRNAs are the main epigenetic factors of gene regulation. In SLE, global and gene-specific DNA methylation changes have been demonstrated to occur in CD4+ T-cells. Moreover, histone acetylation and deacetylation inhibitors reverse the expression of multiple genes involved in SLE, indicating histone modification in SLE. Autoreactive T-cells and B-cells have been shown to alter the patterns of epigenetic changes in SLE patients. Understanding the molecular mechanisms involved in the pathogenesis of SLE is critical for the introduction of effective, target-directed and tolerated therapies. In this review, we summarize the recent findings that highlight the importance of epigenetic modifications and their mechanisms in SLE.
Collapse
Affiliation(s)
- Shirin Farivar
- Dept. of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C. Tehran, Iran
| | - Fateme Shaabanpour Aghamaleki
- Dept. of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C. Tehran, Iran
| |
Collapse
|
55
|
Ding J, Bar-Joseph Z. MethRaFo: MeDIP-seq methylation estimate using a Random Forest Regressor. Bioinformatics 2018; 33:3477-3479. [PMID: 29036558 DOI: 10.1093/bioinformatics/btx449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/10/2017] [Indexed: 01/17/2023] Open
Abstract
Motivation Profiling of genome wide DNA methylation is now routinely performed when studying development, cancer and several other biological processes. Although Whole genome Bisulfite Sequencing provides high-quality methylation measurements at the resolution of nucleotides, it is relatively costly and so several studies have used alternative methods for such profiling. One of the most widely used low cost alternatives is MeDIP-Seq. However, MeDIP-Seq is biased for CpG enriched regions and thus its results need to be corrected in order to determine accurate methylation levels. Results Here we present a method for correcting MeDIP-Seq results based on Random Forest regression. Applying the method to real data from several different tissues (brain, cortex, penis) we show that it achieves almost 4 fold decrease in run time while increasing accuracy by as much as 20% over prior methods developed for this task. Availability and implementation MethRaFo is freely available as a python package (with a R wrapper) at https://github.com/phoenixding/methrafo. Contact zivbj@cs.cmu.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jun Ding
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
56
|
Jenkins TG, Aston KI, Carrell DT. Sperm epigenetics and aging. Transl Androl Urol 2018; 7:S328-S335. [PMID: 30159239 PMCID: PMC6087840 DOI: 10.21037/tau.2018.06.10] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/20/2018] [Indexed: 01/22/2023] Open
Abstract
Advanced paternal age has very real consequences in fertility, embryogenesis, and even offspring health. Specifically, advanced paternal age has been linked to delayed time to pregnancy and in some studies even appears to be linked to a decreased likelihood of achieving a pregnancy. Epidemiological and animal model evidence also suggests that the offspring of older fathers are at an elevated risk for neuropsychiatric disease. For these reasons it is essential that we have a comprehensive understanding of what actually occurs in the gametes of the aging male. Available data suggest that there are very clear patterns of aging in the sperm epigenome that can be directly detected in DNA methylation patterns. Importantly, these alterations are so consistent that a predictive model has been successfully generated to predict an individual's age based only on sperm DNA methylation signatures. Because this metric is the most direct way to detect aging in sperm, it is logical that these signatures may offer predictive value for the offspring abnormalities that are also correlated with advanced paternal age and as such may offer a unique opportunity to generate diagnostic tools that can identify personalized risks for each couple hoping to achieve a pregnancy. While a great deal of work still needs to be performed to understand the real diagnostic utility of sperm epigenetic marks, the potential is real and warrants further investigation particularly in the context of advanced paternal age.
Collapse
Affiliation(s)
- Timothy G. Jenkins
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kenneth I. Aston
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Douglas T. Carrell
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
57
|
Gu Y, Zhang CWH, Wang L, Zhao Y, Wang H, Ye Q, Gao S. Association Analysis between Body Mass Index and Genomic DNA Methylation across 15 Major Cancer Types. J Cancer 2018; 9:2532-2542. [PMID: 30026852 PMCID: PMC6036895 DOI: 10.7150/jca.23535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 05/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer incidence and mortality increase with increasing body mass index (BMI), but BMI-associated epigenetic alterations in cancer remain elusive. We hypothesized that BMI would be associated with DNA methylation alterations in cancers. To test this hypothesis, here, we estimated the associations between DNA methylation and BMI through two different methods across 15 cancer types, at approximately 485,000 CpG sites and 2415 samples using data from The Cancer Genome Atlas. After comparing the DNA methylation levels in control BMI and high BMI individuals, we found differentially methylated CpG sites (DMSs) in cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), and uterine corpus endometrial carcinoma (UCEC) (False Discovery Rate < 0.05). The DMSs of COAD or UCEC were enriched in several obesity-induced and cancer-related pathways. Next, when BMI was used as a continuous variable, we identified BMI-associated methylated CpG sites (BMS) (P (Bonferroni) < 0.05) in CHOL (BMS = 1), COAD (BMS = 1), and UCEC (BMS = 4) using multivariable linear regression. In UCEC, three of the BMSs can predict the clinical outcomes and survival of patients with the tumors. Overall, we observed associations between DNA methylation and high BMI in CHOL, COAD, and UCEC. Furthermore, three BMI-associated CpGs were identified as potential biomarkers for UCEC prognosis.
Collapse
Affiliation(s)
- Yinmin Gu
- University of Science and Technology of China, Hefei 230026, China.,CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | | | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Medical College, Guizhou University, Guiyang 550025, China
| |
Collapse
|
58
|
Lu S, Niu Z, Chen Y, Tu Q, Zhang Y, Chen W, Tong W, Zhang Z. Repetitive Element DNA Methylation is Associated with Menopausal Age. Aging Dis 2018; 9:435-443. [PMID: 29896431 PMCID: PMC5988598 DOI: 10.14336/ad.2017.0810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022] Open
Abstract
To investigate associations between the age of menopause and the DNA methylation levels of two repetitive elements, Alu and LINE-1, we performed plasma DNA extraction on 161 subjects and serum cell-free DNA extraction on 120 subjects. We grouped women by menopausal age as follows: ≤ 48 years (earlier menopause), ≥ 52 years (later menopause), and 48-52 years (control). The DNA methylation levels of Alu and LINE-1 were measured by MethyLight PCR. The results showed that the DNA methylation levels of both Alu and LINE-1 were inversely correlated with menopausal age in the plasma DNA cohort (r = 0.079, P < 0.001 for Alu; r = 0.045, P = 0.007 for LINE-1) as well as in the serum DNA cohort (r = 0.087, P = 0.001 for Alu; r = 0.041, P = 0.026 for LINE-1). Alu methylation levels in both the plasma and serum DNA cohorts and LINE-1 methylation levels in the plasma cohort were remarkably higher in the earlier menopause group than in the later menopause and control groups (P < 0.01 and P < 0.05, respectively). In the serum DNA cohort, the LINE-1 methylation levels in the later menopause group were significantly lower than that in the earlier menopause group and control group (P < 0.05). Therefore, methylation levels of Alu and LINE-1 were significantly associated with menopausal age. Women with earlier menopause showed hypermethylation in both repetitive elements, while women with later menopause showed hypomethylation. These findings suggest that altered DNA methylation in leukocytes and serum cell-free DNA may represent a biomarker of menopausal age.
Collapse
Affiliation(s)
- Sha Lu
- 1Department of Obstetrics and Gynecology, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China.,2Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Zheng Niu
- 1Department of Obstetrics and Gynecology, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China
| | - Yueming Chen
- 3Laboratory of Gene Diagnosis, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China
| | - Qiaofeng Tu
- 3Laboratory of Gene Diagnosis, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China
| | - Yue Zhang
- 2Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Wenli Chen
- 4Department of Obstetrics and Gynecology, the Second People's Hospital of Tonglu, Hangzhou, China
| | - Wenjuan Tong
- 3Laboratory of Gene Diagnosis, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China
| | - Zhifen Zhang
- 1Department of Obstetrics and Gynecology, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China.,2Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
59
|
Sziráki A, Tyshkovskiy A, Gladyshev VN. Global remodeling of the mouse DNA methylome during aging and in response to calorie restriction. Aging Cell 2018; 17:e12738. [PMID: 29575528 PMCID: PMC5946071 DOI: 10.1111/acel.12738] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 01/08/2023] Open
Abstract
Aging is characterized by numerous molecular changes, such as accumulation of molecular damage and altered gene expression, many of which are linked to DNA methylation. Here, we characterize the blood DNA methylome across 16 age groups of mice and report numerous global, region‐ and site‐specific features, as well as the associated dynamics of methylation changes. Transition of the methylome throughout lifespan was not uniform, with many sites showing accelerated changes in late life. The associated genes and promoters were enriched for aging‐related pathways, pointing to a fundamental link between DNA methylation and control of the aging process. Calorie restriction both shifted the overall methylation pattern and was accompanied by its gradual age‐related remodeling, the latter contributing to the lifespan‐extending effect. With age, both highly and poorly methylated sites trended toward intermediate levels, and aging was accompanied by an accelerated increase in entropy, consistent with damage accumulation. However, the entropy effects differed for the sites that increased, decreased and did not change methylation with age. Many sites trailed behind, whereas some followed or even exceeded the entropy trajectory and altered the developmental DNA methylation pattern. The patterns we observed in certain genomic regions were conserved between humans and mice, suggesting common principles of functional DNA methylome remodeling and its critical role in aging. The highly resolved DNA methylome remodeling provides an excellent model for understanding systemic changes that characterize the aging process.
Collapse
Affiliation(s)
- András Sziráki
- Division of Genetics; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| | - Alexander Tyshkovskiy
- Division of Genetics; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
- Center for Data-Intensive Biomedicine and Biotechnology; Skolkovo Institute of Science and Technology; Moscow Russia
| | - Vadim N. Gladyshev
- Division of Genetics; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| |
Collapse
|
60
|
Li J, Zhu X, Yu K, Jiang H, Zhang Y, Wang B, Liu X, Deng S, Hu J, Deng Q, Sun H, Guo H, Zhang X, Chen W, Yuan J, He M, Bai Y, Han X, Liu B, Liu C, Guo Y, Zhang B, Zhang Z, Hu FB, Gao W, Li L, Lathrop M, Laprise C, Liang L, Wu T. Exposure to Polycyclic Aromatic Hydrocarbons and Accelerated DNA Methylation Aging. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:067005. [PMID: 29906262 PMCID: PMC6108582 DOI: 10.1289/ehp2773] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Aging is related to an increased risk of morbidity and mortality and is affected by environmental factors. Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with adverse health outcomes; but the association of such exposure with DNA methylation aging, a novel aging marker, is unclear. OBJECTIVES Our aim was to investigate the association of PAH exposure with methylation aging. METHODS We trained and validated a methylation age predictor suitable for Chinese populations using whole blood methylation data in 989 Chinese and 160 Caucasians. We defined two aging indicators: δage, as methylation age minus chronological age; and aging rate, the ratio of methylation to chronological age. The association of PAH exposure with aging indicators was evaluated using linear regressions in three panels of healthy Chinese participants (N=539, among the aforementioned 989 Chinese participants) whose exposure levels were assessed by 10 urinary monohydroxy-PAH metabolites. RESULTS We developed a methylation age predictor providing accurate predictions in both Chinese individuals and Caucasian persons (R=0.94-0.96, RMSE=3.8-4.3). Among the 10 urinary metabolites that we measured, 1-hydroxypyrene and 9-hydroxyphenanthrene were associated with methylation aging independently of other OH-PAHs and risk factors; 1-unit increase in 1-hydroxypyrene was associated with a 0.53-y increase in Δage [95% confidence interval (CI): 0.18, 0.88; false discovery rate (FDR) FDR=0.004] and 1.17% increase in aging rate (95% CI: 0.36, 1.98; FDR=0.02), whereas for 9-hydroxyphenanthrene, the increase was 0.54-y for Δage (95% CI: 0.17, 0.91; FDR=0.004), and 1.15% for aging rate (95% CI: 0.31, 1.99; FDR=0.02). The association direction was consistent across the three Chinese panels with the association magnitude correlating with the panels' exposure levels; the association was validated by methylation data of purified leukocytes. Several cytosine-phosphoguanines, including those located on FHL2 and ELOVL2, were found associated with both aging indicators and monohydroxy-PAH levels. CONCLUSIONS We developed a methylation age predictor specific for Chinese populations but also accurate for Caucasian populations. Our findings suggest that exposure to PAHs may be associated with an adverse impact on human aging and epigenetic alterations in Chinese populations. https://doi.org/10.1289/EHP2773.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Xiaoyan Zhu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangshu, China
| | - Kuai Yu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haijing Jiang
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yizhi Zhang
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Biqi Wang
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Xuezhen Liu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siyun Deng
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Hu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifei Deng
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huizhen Sun
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yansen Bai
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Han
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Liu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanyao Liu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjun Guo
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Zhang
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhihong Zhang
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
| | - Mark Lathrop
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Catherine Laprise
- Department of Fundamental Sciences, Université du Québec, Chicoutimi, Québec, Canada
- Centre intégré universitaire de santé et services sociaux du Saguenay–Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tangchun Wu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
61
|
Richardson B. The interaction between environmental triggers and epigenetics in autoimmunity. Clin Immunol 2018; 192:1-5. [PMID: 29649575 DOI: 10.1016/j.clim.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 11/27/2022]
Abstract
Systemic lupus erythematosus flares when genetically predisposed people encounter environmental agents that cause oxidative stress, such as infections and sunlight. How these modify the immune system to initiate flares is unclear. Drug induced lupus models demonstrate that CD4+ T cells epigenetically altered with DNA methylation inhibitors cause lupus in animal models, and similar T cells are found in patients with active lupus. How infections and sun exposure inhibit T cell DNA methylation is unclear. DNA methylation patterns are replicated each time a cell divides in a process that requires DNA methyltransferase one (Dnmt1), which is upregulated as cells enter mitosis, as well as the methyl donor S-adenosylmethionine, created from dietary sources. Reactive oxygen species that inhibit Dnmt1 upregulation, and a diet poor in methyl donors, combine to cause lupus in animal models. Similar changes are found in patients with active lupus, indicating a mechanism contributing to lupus flares.
Collapse
Affiliation(s)
- Bruce Richardson
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, SRB 3007, 109 Zina Pitcher Pl., Ann Arbor, MI 48109-2200, United States.
| |
Collapse
|
62
|
Alvarez-Ponce D, Torres-Sánchez M, Feyertag F, Kulkarni A, Nappi T. Molecular evolution of DNMT1 in vertebrates: Duplications in marsupials followed by positive selection. PLoS One 2018; 13:e0195162. [PMID: 29621315 PMCID: PMC5886458 DOI: 10.1371/journal.pone.0195162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is mediated by a conserved family of DNA methyltransferases (Dnmts). The human genome encodes three active Dnmts (Dnmt1, Dnmt3a and Dnmt3b), the tRNA methyltransferase Dnmt2, and the regulatory protein Dnmt3L. Despite their high degree of conservation among different species, genes encoding Dnmts have been duplicated and/or lost in multiple lineages throughout evolution, indicating that the DNA methylation machinery has some potential to undergo evolutionary change. However, little is known about the extent to which this machinery, or the methylome, varies among vertebrates. Here, we study the molecular evolution of Dnmt1, the enzyme responsible for maintenance of DNA methylation patterns after replication, in 79 vertebrate species. Our analyses show that all studied species exhibit a single copy of the DNMT1 gene, with the exception of tilapia and marsupials (tammar wallaby, koala, Tasmanian devil and opossum), each of which displays two apparently functional DNMT1 copies. Our phylogenetic analyses indicate that DNMT1 duplicated before the radiation of major marsupial groups (i.e., at least ~75 million years ago), thus giving rise to two DNMT1 copies in marsupials (copy 1 and copy 2). In the opossum lineage, copy 2 was lost, and copy 1 recently duplicated again, generating three DNMT1 copies: two putatively functional genes (copy 1a and 1b) and one pseudogene (copy 1ψ). Both marsupial copies (DNMT1 copies 1 and 2) are under purifying selection, and copy 2 exhibits elevated rates of evolution and signatures of positive selection, suggesting a scenario of neofunctionalization. This gene duplication might have resulted in modifications in marsupial methylomes and their dynamics.
Collapse
Affiliation(s)
- David Alvarez-Ponce
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| | - María Torres-Sánchez
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Felix Feyertag
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Asmita Kulkarni
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Taylen Nappi
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
63
|
Gasparini B, Valadão M, Miranda-Filho A, Silva CMFPD. [Analysis of the age-period-cohort effect on mortality from colorectal cancer in Rio de Janeiro State, Brazil, from 1980 to 2014]. CAD SAUDE PUBLICA 2018; 34:e00038017. [PMID: 29538496 DOI: 10.1590/0102-311x00038017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/09/2017] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to estimate the contribution of the effect of age, period, and birth cohort on mortality from colorectal cancer. The study analyzed data on deaths from this cancer in individuals over 35 years of age in Rio de Janeiro State, Brazil, obtained from the Mortality Information System (SIM) from 1980 to 2014. Mortality rates were calculated by gender and age bracket. The effect of age, period, and birth cohort was estimated by the method that uses estimable functions: deviations, curves, and drift in the Epi library of the R software. Standardized mortality rates from colorectal cancer were 27.37/100,000 men and 21.83/100,000 women in 2014. The data showed an increase in mortality from this cancer from 1980 to 2014, and mortality rates were higher in men than in women after the 1990s. Age effect was observed with an increase in the rates and aging. Generational analysis showed lower risk of death in older versus younger cohorts, possibly related to the adoption of the Western lifestyle. This scenario underscores the need for screening strategies aimed at early diagnosis and treatment of precursor lesions.
Collapse
Affiliation(s)
- Brenda Gasparini
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de janeiro, Brasil
- Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, Brasil
| | - Marcus Valadão
- Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, Brasil
| | | | | |
Collapse
|
64
|
Iwaya C, Kitajima H, Yamamoto K, Maeda Y, Sonoda N, Shibata H, Inoguchi T. DNA methylation of the Klf14 gene region in whole blood cells provides prediction for the chronic inflammation in the adipose tissue. Biochem Biophys Res Commun 2018; 497:908-915. [DOI: 10.1016/j.bbrc.2017.12.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
|
65
|
Ebner NC, Lin T, Muradoglu M, Weir DH, Plasencia GM, Lillard TS, Pournajafi-Nazarloo H, Cohen RA, Sue Carter C, Connelly JJ. Associations between oxytocin receptor gene (OXTR) methylation, plasma oxytocin, and attachment across adulthood. Int J Psychophysiol 2018; 136:22-32. [PMID: 29410310 DOI: 10.1016/j.ijpsycho.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/23/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
The neuropeptide oxytocin (OT) has been implicated in a wide range of affiliative processes. OT exerts its functions via OT receptors, which are encoded by the oxytocin receptor gene (OXTR). Epigenetic modification of OXTR through the process of DNA methylation has been associated with individual differences in behavioral phenotypes. Specifically, lower levels of OXTR methylation have been linked to better social and affective functioning. However, research on epigenetic mechanisms of OXTR is scarce in non-clinical populations, and even less is known about epigenetic variability across adulthood. The present study assessed methylation levels at OXTR CpG site -934 and plasma OT levels in 22 young (20-31 years, M = 23.6) and 34 older (63-80 years, M = 71.4) participants. Lower levels of OXTR methylation and higher plasma OT levels were associated with less self-reported attachment anxiety in young but not older participants, with largely independent contributions of OXTR methylation and plasma OT levels. In contrast, in the overall sample, lower levels of OXTR methylation were associated with higher self-reported attachment avoidance. Age analysis suggested that these results were largely driven by young adults. Plasma OT levels were unrelated to attachment avoidance. Taken together, these findings support the emerging notion in the literature that epigenetic properties of OXTR, in addition to endogenous OT levels, are related to adult attachment. Further, the age effects observed in the associations between OXTR methylation, plasma OT, and adult attachment emphasize the importance of adopting a developmental perspective when studying properties of the OT system and their relation to affiliative processes. Findings contribute to growing evidence suggesting that epigenetic modification of genes regulating OT pathways and endogenous OT levels are associated with the way people form and maintain intimate social relationships.
Collapse
Affiliation(s)
- Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA; Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Melis Muradoglu
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Devon H Weir
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Gabriela M Plasencia
- Stritch School of Medicine, Loyola University of Chicago, 2160 S 1st Ave, Maywood, IL 60153, USA
| | - Travis S Lillard
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | | | - Ronald A Cohen
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
66
|
da Silva VK, de Freitas BS, Dornelles VC, Kist LW, Bogo MR, Silva MC, Streck EL, Hallak JE, Zuardi AW, Crippa JAS, Schröder N. Novel insights into mitochondrial molecular targets of iron-induced neurodegeneration: Reversal by cannabidiol. Brain Res Bull 2018; 139:1-8. [PMID: 29374603 DOI: 10.1016/j.brainresbull.2018.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/06/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
Abstract
Evidence has demonstrated iron accumulation in specific brain regions of patients suffering from neurodegenerative disorders, and this metal has been recognized as a contributing factor for neurodegeneration. Using an experimental model of brain iron accumulation, we have shown that iron induces severe memory deficits that are accompanied by oxidative stress, increased apoptotic markers, and decreased synaptophysin in the hippocampus of rats. The present study aims to characterize iron loading effects as well as to determine the molecular targets of cannabidiol (CBD), the main non-psychomimetic compound of Cannabis sativa, on mitochondria. Rats received iron in the neonatal period and CBD for 14 days in adulthood. Iron induced mitochondrial DNA (mtDNA) deletions, decreased epigenetic modulation of mtDNA, mitochondrial ferritin levels, and succinate dehydrogenase activity. CBD rescued mitochondrial ferritin and epigenetic modulation of mtDNA, and restored succinate dehydrogenase activity in iron-treated rats. These findings provide new insights into molecular targets of iron neurotoxicity and give support for the use of CBD as a disease modifying agent in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vanessa Kappel da Silva
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Victória Campos Dornelles
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Milena Carvalho Silva
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), 88806-000 Criciúma, SC, Brazil
| | - Emílio Luiz Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), 88806-000 Criciúma, SC, Brazil
| | - Jaime Eduardo Hallak
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, 14048-900 São Paulo, SP, Brazil
| | - Antônio Waldo Zuardi
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, 14048-900 São Paulo, SP, Brazil
| | - José Alexandre S Crippa
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, 14048-900 São Paulo, SP, Brazil
| | - Nadja Schröder
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil.
| |
Collapse
|
67
|
Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, Caporossi D. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics 2017; 18:802. [PMID: 29143608 PMCID: PMC5688489 DOI: 10.1186/s12864-017-4193-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modification refers to heritable changes in gene function that cannot be explained by alterations in the DNA sequence. The current literature clearly demonstrates that the epigenetic response is highly dynamic and influenced by different biological and environmental factors such as aging, nutrient availability and physical exercise. As such, it is well accepted that physical activity and exercise can modulate gene expression through epigenetic alternations although the type and duration of exercise eliciting specific epigenetic effects that can result in health benefits and prevent chronic diseases remains to be determined. This review highlights the most significant findings from epigenetic studies involving physical activity/exercise interventions known to benefit chronic diseases such as metabolic syndrome, diabetes, cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Grazioli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Guan Wang
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Yannis Pitsiladis
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.,FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
68
|
Lin H, Lunetta KL, Zhao Q, Rong J, Benjamin EJ, Mendelson MM, Joehanes R, Levy D, Larson MG, Murabito JM. Transcriptome-wide association study of inflammatory biologic age. Aging (Albany NY) 2017; 9:2288-2301. [PMID: 29135455 PMCID: PMC5723687 DOI: 10.18632/aging.101321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/02/2017] [Indexed: 05/16/2023]
Abstract
Chronic low grade inflammation is a fundamental mechanism of aging. We estimated biologic age using nine biomarkers from diverse inflammatory pathways and we hypothesized that genes associated with inflammatory biological age would provide insights into human aging. In Framingham Offspring Study participants at examination 8 (2005 to 2008), we used the Klemera-Doubal method to estimate inflammatory biologic age and we computed the difference (∆Age) between biologic age and chronologic age. Gene expression in whole blood was measured using the Affymetrix Human Exon 1.0 ST Array. We used linear mixed effect models to test associations between inflammatory ∆Age and gene expression (dependent variable) adjusting for age, sex, imputed cell counts, and technical covariates. Our study sample included 2386 participants (mean age 67A±9 years, 55% women). There were 448 genes significantly were associated with inflammatory ∆Age (P<2.8x10-6), 302 genes were positively associated and 146 genes were negatively associated. Pathway analysis among the identified genes highlighted the NOD-like receptor signaling and ubiquitin mediated proteolysis pathways. In summary, we identified 448 genes that were significantly associated with inflammatory biologic age. Future functional characterization may identify molecular interventions to delay aging and prolong healthspan in older adults.
Collapse
Affiliation(s)
- Honghuang Lin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kathryn L. Lunetta
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Qiang Zhao
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jian Rong
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Emelia J. Benjamin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Section of Cardiovascular Medicine and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Michael M. Mendelson
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Roby Joehanes
- Hebrew SeniorLife, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Levy
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin G. Larson
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Joanne M. Murabito
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
69
|
Anstine LJ, Horne TE, Horwitz EM, Lincoln J. Contribution of Extra-Cardiac Cells in Murine Heart Valves is Age-Dependent. J Am Heart Assoc 2017; 6:e007097. [PMID: 29054843 PMCID: PMC5721893 DOI: 10.1161/jaha.117.007097] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Heart valves are dynamic structures that open and close over 100 000 times a day to maintain unidirectional blood flow during the cardiac cycle. Function is largely achieved by highly organized layers of extracellular matrix that provide the necessary biomechanical properties. Homeostasis of valve extracellular matrix is mediated by valve endothelial and interstitial cell populations, and although the embryonic origins of these cells are known, it is not clear how they are maintained after birth. The goal of this study is to examine the contribution of extracardiac cells to the aortic valve structure with aging using lineage tracing and bone marrow transplantation approaches. METHODS AND RESULTS Immunohistochemistry and fate mapping studies using CD45-Cre mice show that the contribution of hematopoietic-derived cells to heart valve structures begins during embryogenesis and increases with age. Short-term (6 weeks), CD45-derived cells maintain CD45 expression and the majority coexpress monocyte markers (CD11b), whereas coexpression with valve endothelial (CD31) and interstitial (Vimentin) cell markers were infrequent. Similar molecular phenotypes are observed in heart valves of irradiated donor mice following transplantation of whole bone marrow cells, and engraftment efficiency in this tissue is age-dependent. CONCLUSIONS Findings from this study demonstrate that the percentage of CD45-positive extracardiac cells reside within endothelial and interstitial regions of heart valve structures increases with age. In addition, bone transplantation studies show that engraftment is dependent on the age of the donor and age of the tissue environment of the recipient. These studies create a foundation for further work defining the role of extracardiac cells in homeostatic and diseased heart valves.
Collapse
Affiliation(s)
- Lindsey J Anstine
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
- The Heart Center, Nationwide Children's Hospital, Columbus, OH
| | - Tori E Horne
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
- The Heart Center, Nationwide Children's Hospital, Columbus, OH
| | - Edwin M Horwitz
- Department of Pediatrics, The Ohio State University, Columbus, OH
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, OH
| | - Joy Lincoln
- Department of Pediatrics, The Ohio State University, Columbus, OH
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
- The Heart Center, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
70
|
Serotonin transporter gene promoter methylation status correlates with in vivo prefrontal 5-HTT availability and reward function in human obesity. Transl Psychiatry 2017; 7:e1167. [PMID: 28675387 PMCID: PMC5538116 DOI: 10.1038/tp.2017.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/08/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022] Open
Abstract
A polymorphism in the promoter region of the human serotonin transporter (5-HTT)-coding SLC6A4 gene (5-HTTLPR) has been implicated in moderating susceptibility to stress-related psychopathology and to possess regulatory functions on human in vivo 5-HTT availability. However, data on a direct relation between 5-HTTLPR and in vivo 5-HTT availability have been inconsistent. Additional factors such as epigenetic modifications of 5-HTTLPR might contribute to this association. This is of particular interest in the context of obesity, as an association with 5-HTTLPR hypermethylation has previously been reported. Here, we tested the hypothesis that methylation rates of 14 cytosine-phosphate-guanine (CpG) 5-HTTLPR loci, in vivo central 5-HTT availability as measured with [11C]DASB positron emission tomography (PET) and body mass index (BMI) are related in a group of 30 obese (age: 36±10 years, BMI>35 kg/m2) and 14 normal-weight controls (age 36±7 years, BMI<25 kg/m2). No significant association between 5-HTTLPR methylation and BMI overall was found. However, site-specific elevations in 5-HTTLPR methylation rates were significantly associated with lower 5-HTT availability in regions of the prefrontal cortex (PFC) specifically within the obese group when analyzed in isolation. This association was independent of functional 5-HTTLPR allelic variation. In addition, negative correlative data showed that CpG10-associated 5-HTT availability determines levels of reward sensitivity in obesity. Together, our findings suggest that epigenetic mechanisms rather than 5-HTTLPR alone influence in vivo 5-HTT availability, predominantly in regions having a critical role in reward processing, and this might have an impact on the progression of the obese phenotype.
Collapse
|
71
|
Yoon A, Tammen SA, Park S, Han SN, Choi SW. Genome-wide hepatic DNA methylation changes in high-fat diet-induced obese mice. Nutr Res Pract 2017; 11:105-113. [PMID: 28386383 PMCID: PMC5376528 DOI: 10.4162/nrp.2017.11.2.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/04/2016] [Accepted: 12/06/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND/OBJECTIVES A high-fat diet (HFD) induces obesity, which is a major risk factor for cardiovascular disease and cancer, while a calorie-restricted diet can extend life span by reducing the risk of these diseases. It is known that health effects of diet are partially conveyed through epigenetic mechanism including DNA methylation. In this study, we investigated the genome-wide hepatic DNA methylation to identify the epigenetic effects of HFD-induced obesity. MATERIALS AND METHODS Seven-week-old male C57BL/6 mice were fed control diet (CD), calorie-restricted control diet (CRCD), or HFD for 16 weeks (after one week of acclimation to the control diet). Food intake, body weight, and liver weight were measured. Hepatic triacylglycerol and cholesterol levels were determined using enzymatic colorimetric methods. Changes in genome-wide DNA methylation were determined by a DNA methylation microarray method combined with methylated DNA immunoprecipitation. The level of transcription of individual genes was measured by real-time PCR. RESULTS The DNA methylation statuses of genes in biological networks related to lipid metabolism and hepatic steatosis were influenced by HFD-induced obesity. In HFD group, a proinflammatory Casp1 (Caspase 1) gene had hypomethylated CpG sites at the 1.5-kb upstream region of its transcription start site (TSS), and its mRNA level was higher compared with that in CD group. Additionally, an energy metabolism-associated gene Ndufb9 (NADH dehydrogenase 1 beta subcomplex 9) in HFD group had hypermethylated CpG sites at the 2.6-kb downstream region of its TSS, and its mRNA level was lower compared with that in CRCD group. CONCLUSIONS HFD alters DNA methylation profiles in genes associated with liver lipid metabolism and hepatic steatosis. The methylation statuses of Casp1 and Ndufb9 were particularly influenced by the HFD. The expression of these genes in HFD differed significantly compared with CD and CRCD, respectively, suggesting that the expressions of Casp1 and Ndufb9 in liver were regulated by their methylation statuses.
Collapse
Affiliation(s)
- AhRam Yoon
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Stephanie A Tammen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Soyoung Park
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.; Research Institute of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA.; Chaum Life Center, CHA University School of Medicine, Seoul 06062, Korea
| |
Collapse
|
72
|
Palomera-Ávalos V, Griñán-Ferré C, Izquierdo V, Camins A, Sanfeliu C, Pallàs M. Metabolic Stress Induces Cognitive Disturbances and Inflammation in Aged Mice: Protective Role of Resveratrol. Rejuvenation Res 2017; 20:202-217. [PMID: 27998210 DOI: 10.1089/rej.2016.1885] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammation and oxidative stress (OS) are key points in age progression. Both processes impact negatively in cognition and in brain functions. Resveratrol (RV) has been postulated as a potent antioxidant natural compound, with rejuvenating properties. Inducing a metabolic stress by high-fat (HF) diet in aged C56/BL6 (24 months) led to cognitive disturbances compared with control age mated and with young mice. These changes were prevented by RV. Molecular determinations demonstrated a significant increase in some inflammatory parameters (TNF-α, Cxcl10, IL-1, IL-6, and Ccl3) in old mice, but slight changes in OS machinery. RV mainly induced the recovery of the metabolically stressed animals. The study of key markers involved in senescence and rejuvenation (mitochondrial biogenesis and Sirt1-AMPK-PGC1-α) demonstrated that RV is also able to modulate the changes in these cellular metabolic pathways. Moreover, changes of epigenetic marks (methylation and acetylation) that are depending on OS were demonstrated. On the whole, results showed the importance of integrative role of different cellular mechanisms in the deleterious effects of age in cognition and the beneficial role of RV. The work presented in this study showed a wide range of processes modified in old age and by metabolic stress, weighting the importance of each one and the role of RV as a possible strategy for fighting against.
Collapse
Affiliation(s)
- Veronica Palomera-Ávalos
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Christian Griñán-Ferré
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Vanesa Izquierdo
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Antonio Camins
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Coral Sanfeliu
- 2 Institut d'Investigacions Biomèdiques de Barcelona (IIBB) , CSIC, and IDIBAPS, Barcelona, Spain
| | - Mercè Pallàs
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| |
Collapse
|
73
|
Heo JI, Kim W, Choi KJ, Bae S, Jeong JH, Kim KS. XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. Oncotarget 2017; 7:5118-30. [PMID: 26802028 PMCID: PMC4868675 DOI: 10.18632/oncotarget.6962] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/15/2016] [Indexed: 01/31/2023] Open
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is well known as an antagonist of XIAP-mediated caspase inhibition. Although XAF1 serves as a tumor-suppressor gene, the role of XAF1 in cellular senescence remains unclear. We found that XAF1 expression was increased by genotoxic agents, such as doxorubicin and ionizing radiation in pulmonary microvascular endothelial cells, consequently leading to premature senescence. Conversely, downregulation of XAF1 in premature senescent cells partially overcame endothelial cell senescence. p53 knockdown, but not p16 knockdown, abolished senescence phenotypes caused by XAF1 induction. XAF1 expression was transcriptionally regulated by Bromodomain 7 (BRD7). XAF1 induction with interferon-gamma (IFN-γ) treatment was abrogated by BRD7 knockdown, which resulted in blocking interferon-induced senescence. In lung cancer cells, XAF1 tumor suppressor activity was decreased by BRD7 knockdown, and inhibition of tumor growth by IFN-γ did not appear in BRD7-depleted xenograft tumors. These data suggest that XAF1 is involved in BRD7-associated senescence and plays an important role in the regulation of endothelial senescence through a p53-dependent pathway. Furthermore, regulation of the BRD7/XAF1 system might contribute to tissue or organismal aging and protection against cellular transformation.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Divisions of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Wonwoo Kim
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Kyu Jin Choi
- Divisions of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sangwoo Bae
- Divisions of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jae-Hoon Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Kwang Seok Kim
- Divisions of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
74
|
Bacalini MG, D'Aquila P, Marasco E, Nardini C, Montesanto A, Franceschi C, Passarino G, Garagnani P, Bellizzi D. The methylation of nuclear and mitochondrial DNA in ageing phenotypes and longevity. Mech Ageing Dev 2017; 165:156-161. [PMID: 28115210 DOI: 10.1016/j.mad.2017.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/29/2016] [Accepted: 01/16/2017] [Indexed: 12/28/2022]
Abstract
An increasing body of data is progressively indicating that the comprehension of the epigenetic landscape, actively integrated with the genetic elements, is crucial to delineate the molecular basis of the inter-individual complexity of ageing process. Indeed, it has emerged that DNA methylation changes occur during ageing, consisting mainly in a progressive process of genome demethylation, in a hypermethylation of gene-specific CpG dinucleotides, as well as in an inter-individual divergence of the epigenome due to stochastic events and environmental exposures throughout life, namely as epigenetic drift. Additionally, it has also come to light an implication of the mitochondrial genome in the regulation of the intracellular epigenetic landscape, as demonstrated by the being itself object of epigenetic modifications. An overview of DNA methylation changes occurring during ageing process at both nuclear and mitochondrial level will be described in this review, also taking into account the recent and promising data available on the 5-hydroxymethylcytosine.
Collapse
Affiliation(s)
- Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | | | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; Applied Biomedical Research Center, S.Orsola-Malpighi Polyclinic, 40138 Bologna, Italy; Interdepartmental Center "L. Galvani", Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
75
|
Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 2017; 5:16044. [PMID: 28149655 PMCID: PMC5240031 DOI: 10.1038/boneres.2016.44] [Citation(s) in RCA: 689] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of pain and disability in adult individuals. The etiology of OA includes joint injury, obesity, aging, and heredity. However, the detailed molecular mechanisms of OA initiation and progression remain poorly understood and, currently, there are no interventions available to restore degraded cartilage or decelerate disease progression. The diathrodial joint is a complicated organ and its function is to bear weight, perform physical activity and exhibit a joint-specific range of motion during movement. During OA development, the entire joint organ is affected, including articular cartilage, subchondral bone, synovial tissue and meniscus. A full understanding of the pathological mechanism of OA development relies on the discovery of the interplaying mechanisms among different OA symptoms, including articular cartilage degradation, osteophyte formation, subchondral sclerosis and synovial hyperplasia, and the signaling pathway(s) controlling these pathological processes.
Collapse
Affiliation(s)
- Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St Louis, MO, USA
| | - Weiwei Zhao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - John L Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
76
|
Abstract
Epigenetic mechanisms play important roles in properly occurring mammalian oogenesis. One of these mechanisms is DNA methylation adding a methyl group to the fifth carbon atom of the cytosine residues using S-adenosyl-L-methionine as a methyl donor. DNA methylation generally takes place at cytosine-phosphate-guanine (CpG) dinucleotide sites and rarely occurs at cytosine-phosphate-thymine (CpT), cytosine-phosphate-adenine (CpA), or cytosine-phosphate-cytosine sites, known as non-CpG sites. Basically, two different DNA methylation processes are identified: de novo methylation and maintenance methylation. While the de novo methylation functions in methylation of unmethylated DNA strands, maintenance methylation is capable of methylating hemi-methylated DNA strands following DNA replication. Both DNA methylation processes are catalyzed by special DNA methyltransferase (DNMT) enzymes. To date, five different DNMTs have been identified: DNMT1, DNMT3A, DNMT3B, DNMT3L, and DNMT2. In this chapter, we focus particularly on temporal and spatial expression of DNMTs in mammalian oocytes and granulosa cells.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
77
|
Rees AF, Alfaro-Shigueto J, Barata PCR, Bjorndal KA, Bolten AB, Bourjea J, Broderick AC, Campbell LM, Cardona L, Carreras C, Casale P, Ceriani SA, Dutton PH, Eguchi T, Formia A, Fuentes MMPB, Fuller WJ, Girondot M, Godfrey MH, Hamann M, Hart KM, Hays GC, Hochscheid S, Kaska Y, Jensen MP, Mangel JC, Mortimer JA, Naro-Maciel E, Ng CKY, Nichols WJ, Phillott AD, Reina RD, Revuelta O, Schofield G, Seminoff JA, Shanker K, Tomás J, van de Merwe JP, Van Houtan KS, Vander Zanden HB, Wallace BP, Wedemeyer-Strombel KR, Work TM, Godley BJ. Are we working towards global research priorities for management and conservation of sea turtles? ENDANGER SPECIES RES 2016. [DOI: 10.3354/esr00801] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
78
|
Menezo YJ, Silvestris E, Dale B, Elder K. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reprod Biomed Online 2016; 33:668-683. [DOI: 10.1016/j.rbmo.2016.09.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/27/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022]
|
79
|
Guest I, Ilic Z, Scrable H, Sell S. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice. Aging (Albany NY) 2016; 7:1212-23. [PMID: 26796640 PMCID: PMC4712343 DOI: 10.18632/aging.100867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.
Collapse
Affiliation(s)
- Ian Guest
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Zoran Ilic
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Heidi Scrable
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stewart Sell
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| |
Collapse
|
80
|
Griñan-Ferré C, Puigoriol-Illamola D, Palomera-Ávalos V, Pérez-Cáceres D, Companys-Alemany J, Camins A, Ortuño-Sahagún D, Rodrigo MT, Pallàs M. Environmental Enrichment Modified Epigenetic Mechanisms in SAMP8 Mouse Hippocampus by Reducing Oxidative Stress and Inflammaging and Achieving Neuroprotection. Front Aging Neurosci 2016; 8:241. [PMID: 27803663 PMCID: PMC5067530 DOI: 10.3389/fnagi.2016.00241] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022] Open
Abstract
With the increase in life expectancy, aging and age-related cognitive impairments are becoming one of the most important issues for human health. At the same time, it has been shown that epigenetic mechanisms are emerging as universally important factors in life expectancy. The Senescence Accelerated Mouse P8 (SAMP8) strain exhibits age-related deterioration evidenced in learning and memory abilities and is a useful model of neurodegenerative disease. In SAMP8, Environmental Enrichment (EE) increased DNA-methylation levels (5-mC) and reduced hydroxymethylation levels (5-hmC), as well as increased histone H3 and H4 acetylation levels. Likewise, we found changes in the hippocampal gene expression of some chromatin-modifying enzyme genes, such as Dnmt3b. Hdac1. Hdac2. Sirt2, and Sirt6. Subsequently, we assessed the effects of EE on neuroprotection-related transcription factors, such as the Nuclear regulatory factor 2 (Nrf2)-Antioxidant Response Element pathway and Nuclear Factor kappa Beta (NF-κB), which play critical roles in inflammation. We found that EE produces an increased expression of antioxidant genes, such as Hmox1. Aox1, and Cox2, and reduced the expression of inflammatory genes such as IL-6 and Cxcl10, all of this within the epigenetic context modified by EE. In conclusion, EE prevents epigenetic changes that promote or drive oxidative stress and inflammaging.
Collapse
Affiliation(s)
- Christian Griñan-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| | - David Pérez-Cáceres
- Animal Experimentation Unit, Faculty of Pharmacy, University of Barcelona Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| | - Antonio Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| | - Daniel Ortuño-Sahagún
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Mexico
| | - M Teresa Rodrigo
- Animal Experimentation Unit, Faculty of Pharmacy, University of Barcelona Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| |
Collapse
|
81
|
Contextual adversity, telomere erosion, pubertal development, and health: Two models of accelerated aging, or one? Dev Psychopathol 2016; 28:1367-1383. [DOI: 10.1017/s0954579416000900] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractTwo independent lines of inquiry suggest that growing up under conditions of contextual adversity (e.g., poverty and household chaos) accelerates aging and undermines long-term health. Whereas work addressing the developmental origins of health and disease highlights accelerated-aging effects of contextual adversity on telomere erosion, that informed by an evolutionary analysis of reproductive strategies highlights such effects with regard to pubertal development (in females). That both shorter telomeres early in life and earlier age of menarche are associated with poor health later in life raises the prospect, consistent with evolutionary life-history theory, that these two bodies of theory and research are tapping into the same evolutionary–developmental process whereby longer term health costs are traded off for increased probability of reproducing before dying via a process of accelerated aging. Here we make the case for such a claim, while highlighting biological processes responsible for these effects, as well as unknowns in the epigenetic equation that might instantiate these contextually regulated developmental processes.
Collapse
|
82
|
Venney CJ, Johansson ML, Heath DD. Inbreeding effects on gene-specific DNA methylation among tissues of Chinook salmon. Mol Ecol 2016; 25:4521-33. [PMID: 27480590 DOI: 10.1111/mec.13777] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/14/2023]
Abstract
Inbreeding depression is the loss of fitness resulting from the mating of genetically related individuals. Traditionally, the study of inbreeding depression focused on genetic effects, although recent research has identified DNA methylation as also having a role in inbreeding effects. Since inbreeding depression and DNA methylation change with age and environmental stress, DNA methylation is a likely candidate for the regulation of genes associated with inbreeding depression. Here, we use a targeted, multigene approach to assess methylation at 22 growth-, metabolic-, immune- and stress-related genes. We developed PCR-based DNA methylation assays to test the effects of intense inbreeding on intragenic gene-specific methylation in inbred and outbred Chinook salmon. Inbred fish had altered methylation at three genes, CK-1, GTIIBS and hsp70, suggesting that methylation changes associated with inbreeding depression are targeted to specific genes and are not whole-genome effects. While we did not find a significant inbreeding by age interaction, we found that DNA methylation generally increases with age, although methylation decreased with age in five genes, CK-1, IFN-ɣ, HNRNPL, hsc71 and FSHb, potentially due to environmental context and sexual maturation. As expected, we found methylation patterns differed among tissue types, highlighting the need for careful selection of target tissue for methylation studies. This study provides insight into the role of epigenetic effects on ageing, environmental response and tissue function in Chinook salmon and shows that methylation is a targeted and regulated cellular process. We provide the first evidence of epigenetically based inbreeding depression in vertebrates.
Collapse
Affiliation(s)
- Clare J Venney
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada.
| | - Mattias L Johansson
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada.,Department of Biological Sciences, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
83
|
Chalan P, van den Berg A, Kroesen BJ, Brouwer L, Boots A. Rheumatoid Arthritis, Immunosenescence and the Hallmarks of Aging. Curr Aging Sci 2016. [PMID: 26212057 PMCID: PMC5388800 DOI: 10.2174/1874609808666150727110744] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Age is the most important risk factor for the development of infectious diseases, cancer and chronic inflammatory diseases including rheumatoid arthritis (RA). The very act of living causes damage to cells. A network of molecular, cellular and physiological maintenance and repair systems creates a buffering capacity against these damages. Aging leads to progressive shrinkage of the buffering capacity and increases vulnerability. In order to better understand the complex mammalian aging processes, nine hallmarks of aging and their interrelatedness were recently put forward. RA is a chronic autoimmune disease affecting the joints. Although RA may develop at a young age, the incidence of RA increases with age. It has been suggested that RA may develop as a consequence of premature aging (immunosenescence) of the immune system. Alternatively, premature aging may be the consequence of the inflammatory state in RA. In an effort to answer this chicken and egg conundrum, we here outline and discuss the nine hallmarks of aging, their contribution to the pre-aged phenotype and the effects of treatment on the reversibility of immunosenescence in RA.
Collapse
Affiliation(s)
| | | | | | | | - Annemieke Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, P.O Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
84
|
Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 2016. [PMID: 27446239 DOI: 10.1186/s13072‐016‐0081‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Epigenetic inheritance plays a crucial role in many biological processes, such as gene expression in early embryo development, imprinting and the silencing of transposons. It has recently been established that epigenetic effects can be inherited from one generation to the next. Here, we review examples of epigenetic mechanisms governing animal phenotype and behaviour, and we discuss the importance of these findings in respect to animal studies, and livestock in general. Epigenetic parameters orchestrating transgenerational effects, as well as heritable disorders, and the often-overlooked areas of livestock immunity and stress, are also discussed. We highlight the importance of nutrition and how it is linked to epigenetic alteration. Finally, we describe how our understanding of epigenetics is underpinning the latest cancer research and how this can be translated into directed efforts to improve animal health and welfare.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Ioannis Ikonomopoulos
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Andrew J Bannister
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
85
|
Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 2016; 9:31. [PMID: 27446239 PMCID: PMC4955263 DOI: 10.1186/s13072-016-0081-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023] Open
Abstract
Epigenetic inheritance plays a crucial role in many biological processes, such as gene expression in early embryo development, imprinting and the silencing of transposons. It has recently been established that epigenetic effects can be inherited from one generation to the next. Here, we review examples of epigenetic mechanisms governing animal phenotype and behaviour, and we discuss the importance of these findings in respect to animal studies, and livestock in general. Epigenetic parameters orchestrating transgenerational effects, as well as heritable disorders, and the often-overlooked areas of livestock immunity and stress, are also discussed. We highlight the importance of nutrition and how it is linked to epigenetic alteration. Finally, we describe how our understanding of epigenetics is underpinning the latest cancer research and how this can be translated into directed efforts to improve animal health and welfare.
Collapse
Affiliation(s)
- Kostas A. Triantaphyllopoulos
- />Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Ioannis Ikonomopoulos
- />Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Andrew J. Bannister
- />Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
86
|
Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length. Forensic Sci Int Genet 2016; 24:33-43. [PMID: 27288716 DOI: 10.1016/j.fsigen.2016.05.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 11/22/2022]
Abstract
Establishing the age of unknown persons, or persons with unknown age, can provide important leads in police investigations, disaster victim identification, fraud cases, and in other legal affairs. Previous methods mostly relied on morphological features available from teeth or skeletal parts. The development of molecular methods for age estimation allowing to use human specimens that possess no morphological age information, such as bloodstains, is extremely valuable as this type of samples is commonly found at crime scenes. Recently, we introduced a DNA-based approach for human age estimation from blood based on the quantification of T-cell specific DNA rearrangements (sjTRECs), which achieves accurate assignment of blood DNA samples to one of four 20-year-interval age categories. Aiming at improving the accuracy of molecular age estimation from blood, we investigated different types of biomarkers. We started out by systematic genome-wide surveys for new age-informative mRNA and DNA methylation markers in blood from the same young and old individuals using microarray technologies. The obtained candidate markers were validated in independent samples covering a wide age range using alternative technologies together with previously proposed DNA methylation, sjTREC, and telomere length markers. Cross-validated multiple regression analysis was applied for estimating and validating the age predictive power of various sets of biomarkers within and across different marker types. We found that DNA methylation markers outperformed mRNA, sjTREC, and telomere length in age predictive power. The best performing model included 8 DNA methylation markers derived from 3 CpG islands reaching a high level of accuracy (cross-validated R(2)=0.88, SE±6.97 years, mean absolute deviation 5.07 years). However, our data also suggest that mRNA markers can provide independent age information: a model using a combined set of 5 DNA methylation markers and one mRNA marker could provide similarly high accuracy (cross-validated R(2)=0.86, SE±7.62 years, mean absolute deviation 4.60 years). Overall, our study provides new and confirms previously suggested molecular biomarkers for age estimation from blood. Moreover, our comparative study design revealed that DNA methylation markers are superior for this purpose over other types of molecular biomarkers tested. While the new and some previous findings are highly promising, before molecular age estimation can eventually meet forensic practice, the proposed biomarkers should be tested further in larger sets of blood samples from both healthy and unhealthy individuals, and markers and genotyping methods shall be validated to meet forensic standards.
Collapse
|
87
|
Bell RE, Golan T, Sheinboim D, Malcov H, Amar D, Salamon A, Liron T, Gelfman S, Gabet Y, Shamir R, Levy C. Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res 2016; 26:601-11. [PMID: 26907635 PMCID: PMC4864467 DOI: 10.1101/gr.197194.115] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Abstract
During development, enhancers play pivotal roles in regulating gene expression programs; however, their involvement in cancer progression has not been fully characterized. We performed an integrative analysis of DNA methylation, RNA-seq, and small RNA-seq profiles from thousands of patients, including 25 diverse primary malignances and seven body sites of metastatic melanoma. We found that enhancers are consistently the most differentially methylated regions (DMR) as cancer progresses from normal to primary tumors and then to metastases, compared to other genomic features. Remarkably, identification of enhancer DMRs (eDMRs) enabled classification of primary tumors according to physiological organ systems, and in metastasis eDMRs are the most correlated with patient outcome. To further understand the eDMR role in cancer progression, we developed a model to predict genes and microRNAs that are regulated by enhancer and not promotor methylation, which shows high accuracy with chromatin architecture methods and was experimentally validated. Interestingly, among all metastatic melanoma eDMRs, the most correlated with patient survival were eDMRs that "switched" their methylation patterns back and forth between normal, primary, and metastases and target cancer drivers, e.g., KIT We further demonstrated that eDMR target genes were modulated in melanoma by the bone metastasis microenvironment, suggesting that eDMRs respond to microenvironmental cues in metastatic niches. Our findings that aberrant methylation in cancer cells mostly affects enhancers, which contribute to tumor progression and cancer cell plasticity, will facilitate development of epigenetic anticancer approaches.
Collapse
Affiliation(s)
- Rachel E Bell
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Danna Sheinboim
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hagar Malcov
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Amar
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Avi Salamon
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Liron
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sahar Gelfman
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
88
|
Ahmad Najar R, Rahat B, Hussain A, Thakur S, Kaur J, Kaur J, Hamid A. Gene specific epigenetic regulation of hepatic folate transport system is responsible for perturbed cellular folate status during aging and exogenous modulation. Mol Nutr Food Res 2016; 60:1501-13. [PMID: 26990146 DOI: 10.1002/mnfr.201500991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 01/11/2023]
Abstract
SCOPE The present study was designed to identify the molecular mechanism of folate modulation and aging on aberrant liver folate transporter system. METHODS AND RESULTS An in vivo rat model was used, in which weanling, young and adult rats were given folate deficient diet for 3 and 5 months and after 3 months of folate deficiency, one group received physiological folate repletion (2 mg/kg diet) and another group received over supplemented folate diet (8 mg/kg diet) for another 2 months. In adult group, 3 and 5 months of folate deficiency decreased serum and tissue folate levels with decreased uptake of folate, further associated with decreased expression levels of reduced folate carrier (RFC) and increased expression levels of folate exporter (ABCG2) at both mRNA and protein levels, which in turn regulated by promoter hypermethylation of RFC and promoter hypomethylation of ABCG2 gene. CONCLUSION Promoter hypermethylation of RFC and promoter hypomethylation of ABCG2 may be attributed to the down regulation of RFC and up regulation of ABCG2 at mRNA and protein levels in conditions of 3 and 5 months of folate deficiency in the adult group.
Collapse
Affiliation(s)
- Rauf Ahmad Najar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Department of Biochemistry, Panjab University, Chandigarh, India
| | - Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aashiq Hussain
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Shilpa Thakur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,CSIR-Academy of Scientific & Innovative Research, New Delhi, India
| |
Collapse
|
89
|
Xiao FH, Kong QP, Perry B, He YH. Progress on the role of DNA methylation in aging and longevity. Brief Funct Genomics 2016; 15:454-459. [PMID: 27032421 DOI: 10.1093/bfgp/elw009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aging is a major risk factor for individuals' health problems. Moreover, environmental signals have a widespread influence on the aging process. Epigenetic modification, e.g. DNA methylation, represents a link between genetic and environmental signals via the regulation of gene transcription. An abundance of literature indicates that aberrant epigenetic change occurs throughout the aging process at both the cellular and the organismal level. In particular, DNA methylation presents globally decreasing and site-specific increasing in aging. In this review, we focus on the crucial roles of DNA methylation in aging and age-related disease and highlight the great potential of DNA methylation as a therapeutic target in preventing age-related diseases and promoting healthy longevity.
Collapse
|
90
|
Truong TP, Sakata-Yanagimoto M, Yamada M, Nagae G, Enami T, Nakamoto-Matsubara R, Aburatani H, Chiba S. Age-Dependent Decrease of DNA Hydroxymethylation in Human T Cells. J Clin Exp Hematop 2016; 55:1-6. [PMID: 26105999 DOI: 10.3960/jslrt.55.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hydroxymethylcytosine (hmC) is a natural nucleobase, which is converted from methylcytosine (mC) by tet methylcytosine dioxygenase (TET) family (TET1-3) enzymes. Decrease of genomic hmC is postulated to confer a risk for myeloid-lineage as well as T-cell neoplasms, based on the fact that loss-of-function mutations in the TET2 gene were frequently identified in these diseases. The relationship between hmC and aging remains to be elucidated. Here, we demonstrated that hmC content decreased with age in the peripheral blood T cells of 53 human volunteers. We further identified that the mRNA expression levels of TET1 and TET3 decreased with age, while those of TET2 were not influenced by age. The genomic hmC content was correlated with the mRNA expression level of TET3, but not those of TET1 and TET2. Our study suggests the presence of new epigenetic regulatory mechanisms in aging T cells.
Collapse
Affiliation(s)
- Thien Phu Truong
- Department of Hematology, Graduate School of Comprehensive Human Science, University of Tsukuba
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Konar A, Singh P, Thakur MK. Age-associated Cognitive Decline: Insights into Molecular Switches and Recovery Avenues. Aging Dis 2016; 7:121-9. [PMID: 27114845 PMCID: PMC4809604 DOI: 10.14336/ad.2015.1004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022] Open
Abstract
Age-associated cognitive decline is an inevitable phenomenon that predisposes individuals for neurological and psychiatric disorders eventually affecting the quality of life. Scientists have endeavored to identify the key molecular switches that drive cognitive decline with advancing age. These newly identified molecules are then targeted as recovery of cognitive aging and related disorders. Cognitive decline during aging is multi-factorial and amongst several factors influencing this trajectory, gene expression changes are pivotal. Identifying these genes would elucidate the neurobiological underpinnings as well as offer clues that make certain individuals resilient to withstand the inevitable age-related deteriorations. Our laboratory has focused on this aspect and investigated a wide spectrum of genes involved in crucial brain functions that attribute to senescence induced cognitive deficits. We have recently identified master switches in the epigenome regulating gene expression alteration during brain aging. Interestingly, these factors when manipulated by chemical or genetic strategies successfully reverse the age-related cognitive impairments. In the present article, we review findings from our laboratory and others combined with supporting literary evidences on molecular switches of brain aging and their potential as recovery targets.
Collapse
Affiliation(s)
- Arpita Konar
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Padmanabh Singh
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Mahendra K Thakur
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
92
|
Prolonged Effects of Silver Nanoparticles on p53/p21 Pathway-Mediated Proliferation, DNA Damage Response, and Methylation Parameters in HT22 Hippocampal Neuronal Cells. Mol Neurobiol 2016; 54:1285-1300. [PMID: 26843106 PMCID: PMC5310673 DOI: 10.1007/s12035-016-9688-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
It is widely accepted that silver nanoparticles (AgNPs) are toxic to biological systems. However, little is known about their actions at molecular level and the cytophysiological effects after AgNP removal. As nanoparticles are suggested a promising tool to transport drugs to the brain for use in neurological conditions, we used HT22 mouse hippocampal neuronal cells as a model to study AgNP-mediated effects after their removal from the cell culture medium. We selected a relatively low concentration of AgNPs, 5 μg/ml, treated the cells for 48 h, and evaluated AgNP-induced cytophysiological effects after 96 h of AgNP removal. AgNP removal did not result in cytotoxicity. In contrast, AgNPs modulated HT22 cell cycle and proliferation and induced oxidative stress and 53BP1 recruitment, which were accompanied by elevated levels of p53 and p21. AgNP-associated diminution in lamin B1 pools did not significantly affect the structure of the nucleus. No disruption in F-actin dynamics was observed upon AgNP treatment. Moreover, we showed for the first time that AgNPs stimulated changes in DNA methylation: the augmentation in 5-methylcytosine (5-mC) and DNMT1, DNMT2, DNMT3a, and DNMT3b levels were observed. The upregulation of DNMT2 may be a part of cellular stress response to AgNP treatment. Taken together, AgNP removal resulted in p53/p21-mediated inhibition of cell proliferation, oxidant-based DNA damage response, and changes in DNA methylation patterns, which suggests that more attention should be paid to the possible outcomes in individuals exposed to nano-sized biomaterials.
Collapse
|
93
|
Taormina G, Mirisola MG. Longevity: epigenetic and biomolecular aspects. Biomol Concepts 2016; 6:105-17. [PMID: 25883209 DOI: 10.1515/bmc-2014-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
Many aging theories and their related molecular mechanisms have been proposed. Simple model organisms such as yeasts, worms, fruit flies and others have massively contributed to their clarification, and many genes and pathways have been associated with longevity regulation. Among them, insulin/IGF-1 plays a key and evolutionary conserved role. Interestingly, dietary interventions can modulate this pathway. Calorie restriction (CR), intermittent fasting, and protein and amino acid restriction prolong the lifespan of mammals by IGF-1 regulation. However, some recent findings support the hypothesis that the long-term effects of diet also involve epigenetic mechanisms. In this review, we describe the best characterized aging pathways and highlight the role of epigenetics in diet-mediated longevity.
Collapse
|
94
|
Metzger DCH, Schulte PM. Epigenomics in marine fishes. Mar Genomics 2016; 30:43-54. [PMID: 26833273 DOI: 10.1016/j.margen.2016.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
Epigenetic mechanisms are an underappreciated and often ignored component of an organism's response to environmental change and may underlie many types of phenotypic plasticity. Recent technological advances in methods for detecting epigenetic marks at a whole-genome scale have launched new opportunities for studying epigenomics in ecologically relevant non-model systems. The study of ecological epigenomics holds great promise to better understand the linkages between genotype, phenotype, and the environment and to explore mechanisms of phenotypic plasticity. The many attributes of marine fish species, including their high diversity, variable life histories, high fecundity, impressive plasticity, and economic value provide unique opportunities for studying epigenetic mechanisms in an environmental context. To provide a primer on epigenomic research for fish biologists, we start by describing fundamental aspects of epigenetics, focusing on the most widely studied and most well understood of the epigenetic marks: DNA methylation. We then describe the techniques that have been used to investigate DNA methylation in marine fishes to date and highlight some new techniques that hold great promise for future studies. Epigenomic research in marine fishes is in its early stages, so we first briefly discuss what has been learned about the establishment, maintenance, and function of DNA methylation in fishes from studies in zebrafish and then summarize the studies demonstrating the pervasive effects of the environment on the epigenomes of marine fishes. We conclude by highlighting the potential for ongoing research on the epigenomics of marine fishes to reveal critical aspects of the interaction between organisms and their environments.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
95
|
Zhao H, Yin H, Yang Y. Label-free electrochemical detection of DNA methyltransferase activity via a DNA tetrahedron-structured probe. RSC Adv 2016. [DOI: 10.1039/c6ra01845a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Label-free electrochemical detection of DNA methyltransferase activityviaDNA tetrahedron-structured probe.
Collapse
Affiliation(s)
- Hongyu Zhao
- The Second Hospital of Nanjing
- Affiliated to Medical School of Southeast University
- Nanjing
- China
| | - Hai Yin
- Chinese People's Liberation Army 454 Hospital
- Nanjing
- China
| | - Yongfeng Yang
- The Second Hospital of Nanjing
- Affiliated to Medical School of Southeast University
- Nanjing
- China
| |
Collapse
|
96
|
Su HJ, Zhang Y, Zhang L, Ma JL, Li JY, Pan KF, You WC. Methylation status of COX-2 in blood leukocyte DNA and risk of gastric cancer in a high-risk Chinese population. BMC Cancer 2015; 15:979. [PMID: 26674784 PMCID: PMC4682260 DOI: 10.1186/s12885-015-1962-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/30/2015] [Indexed: 01/27/2023] Open
Abstract
Background Methylation is a common epigenetic modification which may play a crucial role in cancer development. To investigate the association between methylation of COX-2 in blood leukocyte DNA and risk of gastric cancer (GC), a nested case–control study was conducted in Linqu County, Shandong Province, a high risk area of GC in China. Methods Association between blood leukocyte DNA methylation of COX-2 and risk of GC was investigated in 133 GCs and 285 superficial gastritis (SG)/ chronic atrophic gastritis (CAG). The temporal trend of COX-2 methylation level during GC development was further explored in 74 pre-GC and 95 post-GC samples (including 31 cases with both pre- and post-GC samples). In addition, the association of DNA methylation and risk of progression to GC was evaluated in 74 pre-GC samples and their relevant intestinal metaplasia (IM)/dysplasia (DYS) controls. Methylation level was determined by quantitative methylation-specific PCR (QMSP). Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated by unconditional logistic regression analysis. Results The medians of COX-2 methylation levels were 2.3 % and 2.2 % in GC cases and controls, respectively. No significant association was found between COX-2 methylation and risk of GC (OR, 1.15; 95 % CI: 0.70-1.88). However, the temporal trend analysis showed that COX-2 methylation levels were elevated at 1–4 years ahead of clinical GC diagnosis compared with the year of GC diagnosis (3.0 % vs. 2.2 %, p = 0.01). Further validation in 31 GCs with both pre- and post-GC samples indicated that COX-2 methylation levels were significantly decreased at the year of GC diagnosis compared with pre-GC samples (1.5 % vs. 2.5 %, p = 0.02). No significant association between COX-2 methylation and risk of progression to GC was found in subjects with IM (OR, 0.50; 95 % CI: 0.18–1.42) or DYS (OR, 0.70; 95 % CI: 0.23–2.18). Additionally, we found that elder people had increased risk of COX-2 hypermethylation (OR, 1.55; 95 % CI: 1.02–2.36) and subjects who ever infected with H. pylori had decreased risk of COX-2 hypermethylation (OR, 0.54; 95 % CI: 0.34–0.88). Conclusions COX-2 methylation exists in blood leukocyte DNA but at a low level. COX-2 methylation levels in blood leukocyte DNA may change during GC development.
Collapse
Affiliation(s)
- Hui-juan Su
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Lian Zhang
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Jun-ling Ma
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Ji-You Li
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Kai-feng Pan
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Wei-cheng You
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| |
Collapse
|
97
|
Zinovkina LA, Zinovkin RA. DNA methylation, mitochondria, and programmed aging. BIOCHEMISTRY (MOSCOW) 2015; 80:1571-7. [DOI: 10.1134/s0006297915120044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
98
|
Xiao G, Zuo X. Epigenetics in systemic lupus erythematosus. Biomed Rep 2015; 4:135-139. [PMID: 26893827 DOI: 10.3892/br.2015.556] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/04/2015] [Indexed: 01/06/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease, with mechanisms that remain to be elucidated. Previous studies have proposed that genes and environments are required for lupus to develop and flare. It has been found that epigenetics have a significant influence on SLE. The present review will concentrate on epigenetics in SLE. There are a number of studies reporting that autoreactive T cells and B cells in patients with SLE have evidence of altered patterns of DNA methylation, modifications of histones and microRNA (miRNA). Long noncoding RNAs (lncRNAs) are another type of noncoding RNAs, which have an important role in epigenetics. lncRNAs may possibly become a new hotspot in SLE.
Collapse
Affiliation(s)
- Gong Xiao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
99
|
Yang J, Yu L, Gaiteri C, Srivastava GP, Chibnik LB, Leurgans SE, Schneider JA, Meissner A, De Jager PL, Bennett DA. Association of DNA methylation in the brain with age in older persons is confounded by common neuropathologies. Int J Biochem Cell Biol 2015; 67:58-64. [PMID: 26003740 PMCID: PMC4564337 DOI: 10.1016/j.biocel.2015.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 11/18/2022]
Abstract
DNA methylation plays a crucial role in the regulation of gene expression, cell differentiation and development. Previous studies have reported age-related alterations of methylation levels in the human brain across the lifespan, but little is known about whether the observed association with age is confounded by common neuropathologies among older persons. Using genome-wide DNA methylation data from 740 postmortem brains, we interrogated 420,132 CpG sites across the genome in a cohort of individuals with ages from 66 to 108 years old, a range of ages at which many neuropathologic indices become quite common. We compared the association of DNA methylation prior to and following adjustment for common neuropathologies using a series of linear regression models. In the simplest model adjusting for technical factors including batch effect and bisulfite conversion rate, we found 8156 CpGs associated with age. The number of CpGs associated with age dropped by more than 10% following adjustment for sex. Notably, after adjusting for common neuropathologies, the total number of CpGs associated with age was reduced by approximately 40%, compared to the sex-adjusted model. These data illustrate that the association of methylation changes in the brain with age is inflated if one does not account for age-related brain pathologies. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Christopher Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Gyan P Srivastava
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Lori B Chibnik
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Alexander Meissner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
100
|
Uysal F, Akkoyunlu G, Ozturk S. Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie 2015; 116:103-13. [PMID: 26143007 DOI: 10.1016/j.biochi.2015.06.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/26/2015] [Indexed: 11/26/2022]
Abstract
Epigenetic mechanisms play critical roles in oogenesis and early embryo development in mammals. One of these epigenetic mechanisms, DNA methylation is accomplished through the activities of DNA methyltransferases (DNMTs), which are responsible for adding a methyl group to the fifth carbon atom of the cytosine residues within cytosine-phosphate-guanine (CpG) and non-CpG dinuclotide sites. Five DNMT enzymes have been identified in mammals including DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3L. They function in two different methylation processes: maintenance and de novo. For maintenance methylation, DNMT1 preferentially transfers methyl groups to the hemi-methylated DNA strands following DNA replication. However, for de novo methylation activities both DNMT3A and DNMT3B function in the methylation of the unmodified cytosine residues. Although DNMT3L indirectly contributes to de novo methylation process, DNMT2 enables the methylation of the cytosine 38 in the anticodon loop of aspartic acid transfer RNA and does not methylate DNA. In this review article, we have evaluated and discussed the existing published studies to characterize the spatial and temporal expression patterns of the DNMTs in mouse, bovine and human oocytes and early embryos. We have also reviewed the effects of in vitro culture conditions (serum abundance and glucose concentration), aging, superovulation, vitrification, and somatic cell nuclear transfer technology on the dynamics of DNMTs.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey.
| |
Collapse
|