51
|
Abstract
Nucleotide excision repair (NER) is the primary DNA repair pathway that removes helix-distorting DNA strand damage induced by ultraviolet light irradiation or chemical carcinogens to ensure genome integrity. While the core NER proteins that carry out damage recognition, excision, and repair reactions have been identified and extensively characterized, and the NER pathway has been reconstituted in vitro, the regulatory pathways that govern the threshold levels of NER have not been fully elucidated. This mini-review focuses on recently discovered transcriptional and post-translational mechanisms that specify the capacity of NER, and suggests the potential implications of modulating NER activity in cancer prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Liren Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, New York 10065, USA
| | | | | |
Collapse
|
52
|
Palomera-Sanchez Z, Bucio-Mendez A, Valadez-Graham V, Reynaud E, Zurita M. Drosophila p53 is required to increase the levels of the dKDM4B demethylase after UV-induced DNA damage to demethylate histone H3 lysine 9. J Biol Chem 2010; 285:31370-9. [PMID: 20675387 DOI: 10.1074/jbc.m110.128462] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chromatin undergoes a variety of changes in response to UV-induced DNA damage, including histone acetylation. In human and Drosophila cells, this response is affected by mutations in the tumor suppressor p53. In this work, we report that there is a global decrease in trimethylated Lys-9 in histone H3 (H3K9me3) in salivary gland cells in wild type flies in response to UV irradiation. In contrast, flies with mutations in the Dmp53 gene have reduced basal levels of H3K9me3, which are then increased after UV irradiation. The reduction of H3K9me3 in response to DNA damage occurs preferentially in heterochromatin. Our experiments demonstrate that UV irradiation enhances the levels of Lys-9 demethylase (dKDM4B) transcript and protein in wild type flies, but not in Dmp53 mutant flies. Dmp53 binds to a DNA element in the dKdm4B gene as a response to UV irradiation. Furthermore, heterozygous mutants for the dKdm4B gene are more sensitive to UV irradiation; they are deficient in the removal of cyclobutane-pyrimidine dimers, and the decrease of H3K9me3 levels following DNA damage is not observed in dKdm4B mutant flies. We propose that in response to UV irradiation, Dmp53 enhances the expression of the dKDM4B histone demethylase, which demethylates H3K9me3 preferentially in heterochromatin regions. This mechanism appears to be essential for the proper function of the nucleotide excision repair system.
Collapse
Affiliation(s)
- Zoraya Palomera-Sanchez
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 62250, Cuernavaca Morelos, México
| | | | | | | | | |
Collapse
|
53
|
Elevated pressure, a novel cancer therapeutic tool for sensitizing cisplatin-mediated apoptosis in A549. Biochem Biophys Res Commun 2010; 399:91-7. [PMID: 20643104 DOI: 10.1016/j.bbrc.2010.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/14/2010] [Indexed: 12/31/2022]
Abstract
Intensive cancer therapy strategies have thus far focused on sensitizing cancer cells to anticancer drug-mediated apoptosis to overcome drug resistance, and this strategy has led to more effective cancer therapeutics. Cisplatin (cis-diamminedichloroplatinum(II), CDDP) is an effective anticancer drug used to treat many types of cancer, including non-small cell lung carcinoma (NSCLC), and can be used in combination with various chemicals to enhance cancer cell apoptosis. Here, we introduce the use of elevated pressure (EP) in combination with CDDP for cancer treatment and explore the effects of EP on CDDP-mediated apoptosis in NSCLC cells. Our findings demonstrate that preconditioning NSCLC cells with EP sensitizes cells for CDDP-induced apoptosis. Enhanced apoptosis was dependent on p53 and HO-1 expression, and was associated with increased DNA damage and down-regulation of genes involved in nucleotide excision repair. The transcriptional levels of transporter proteins indicated that the mechanism by which EP-induced CDDP sensitization was intracellular drug accumulation. The protein levels of some antioxidants, such as hemeoxygenase-1 (HO-1), glutathione (GSH) and glutathione peroxidase (Gpx), were decreased in A549 cells exposed to EP via the down-regulation of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Furthermore, normal human fibroblasts were resistant to EP treatment, with no elevated DNA damage or apoptosis. Collectively, these data show that administration of EP is a potential adjuvant tool for CDDP-based chemosensitivity of lung cancer cells that may reduce drug resistance.
Collapse
|
54
|
Zhao H, Traganos F, Darzynkiewicz Z. Kinetics of the UV-induced DNA damage response in relation to cell cycle phase. Correlation with DNA replication. Cytometry A 2010; 77:285-93. [PMID: 20014310 DOI: 10.1002/cyto.a.20839] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It has been reported that exposure to UV light triggers DNA damage response (DDR) seen as induction of gammaH2AX not only in S- but also in G(1)-phase cells. In the present study, in addition to gammaH2AX, we assessed other markers of DDR, namely phosphorylation of ATM on Ser1981, of ATM/ATR substrate on Ser/Thr at SQ/TQ cluster domains and of the tumor suppressor p53 on Ser15, in human pulmonary carcinoma A549 cells irradiated with 50 J/m(2) of UV-B. Phosphorylation of these proteins detected with phospho-specific Abs and measured by laser scanning cytometry in relation the cell cycle phase was found to be selective to S-phase cells. The kinetics of phosphorylation of ATM was strikingly similar to that of ATM/ATR substrate, peaking at 30 min after UV irradiation and followed by rapid dephosphorylation. The peak of H2AX phosphorylation was seen at 2 h and the peak of p53 phosphorylation at 4 h after exposure to UV light. Local high spatial density of these phospho-proteins reported by intensity of maximal pixel of immunofluorescence in the DDR nuclear foci was distinctly more pronounced in the early compared to late portion of S-phase. Exposure of cells to UV following 1 h pulse-labeling of their DNA with 5-ethynyl-2'deoxyuridine (EdU) made it possible to correlate the extent of DNA replication during the pulse with the extent of the UV-induced H2AX phosphorylation within the same cells. This correlation was very strong (R(2) = 0.98) and the cells that did not incorporate EdU showed no evidence of H2AX phosphorylation. The data are consistent with the mechanism in which stalling of DNA replication forks upon collision with the primary UV-induced DNA lesions and likely formation of double-strand DNA breaks triggers DDR. The prior reports (including our own) on induction of gammaH2AX in G(1) cells by UV may have erroneously identified cells initiating DNA replication following UV exposure as G(1) cells due to the fact that their DNA content did not significantly differ from that of G(1) cells that had not initiated DNA replication.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
55
|
Ouattara DA, Abou-Jaoudé W, Kaufman M. From structure to dynamics: Frequency tuning in the p53-Mdm2 network. II. J Theor Biol 2010; 264:1177-89. [DOI: 10.1016/j.jtbi.2010.03.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/16/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
|
56
|
Vasileiou Z, Barlos K, Gatos D. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain. J Pept Sci 2010; 15:824-31. [PMID: 19824037 DOI: 10.1002/psc.1182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis.
Collapse
Affiliation(s)
- Zoe Vasileiou
- Department of Chemistry, University of Patras, Patras, Greece
| | | | | |
Collapse
|
57
|
Singh PK, Kumar R, Sharma A, Arora R, Chawla R, Jain SK, Sharma RK. Podophyllum hexandrum Fraction (REC-2006) Shows Higher Radioprotective Efficacy in the p53-Carrying Hepatoma Cell Line: A Role of Cell Cycle Regulatory Proteins. Integr Cancer Ther 2009; 8:261-72. [DOI: 10.1177/1534735409343589] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study was carried out to evaluate the radioprotective efficacy of Podophyllum hexandrum fraction (REC-2006) in hepatoma cell lines having different p53 statuses. Higher radioresistance was observed in the HepG2 (p53++) cell line in comparison to the Hep3B (p53--) cell line, indicating a plausible role of p53 in radioresistance. REC-2006 exhibited nearly twice the survival in p53-expressing HepG2 cells compared with p53-negative Hep3B cells. REC-2006 treatment alone induced p53 expression as compared with untreated controls. However, REC-2006 reduced p53 expression when treated 2 hours before irradiation as compared with the irradiated HepG2 controls, indicating that REC-2006 modulates the expression of p53 to mitigate its apoptotic effect. Induction of p21 in the REC-2006 + radiation treatment group downregulated the expression of cyclin E and CDK2, leading to a delay in the G1 phase of HepG2 cells, which provided time for DNA repair or related processes. However, no significant difference in CDC2 expression in both cell lines suggested that G2 phase arrest might not be the only responsible factor for REC-2006-mediated radioprotection. Significant induction of PCNA and GADD45 expression in HepG2 cells suggested that REC-2006 increased the percentage survival of HepG2 cells by increasing the span of time as well as efficacy for repair processes. In conclusion, REC-2006 modulated the expression of p53 and thereby promoted cell cycle arrest in the G1 phase, encouraging cell proliferation and DNA repair and thus providing significantly higher protection against acute γ-radiation in the HepG2 cell line.
Collapse
Affiliation(s)
| | - Raj Kumar
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ashok Sharma
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Rajesh Arora
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raman Chawla
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | |
Collapse
|
58
|
Takahashi A, Ohnishi T. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat. JOURNAL OF RADIATION RESEARCH 2009; 50:385-393. [PMID: 19525615 DOI: 10.1269/jrr.09048s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Viable organisms recognize and respond to environmental changes or stresses. When these environmental changes and their responses by organisms are extreme, they can limit viability. However, organisms can adapt to these different stresses by utilizing different possible responses via signal transduction pathways when the stress is not lethal. In particular, prior mild stresses can provide some aid to prepare organisms for subsequent more severe stresses. These adjustments or adaptations for future stresses have been called adaptive responses. These responses are present in bacteria, plants and animals. The following review covers recent research which can help describe or postulate possible mechanisms which may be active in producing adaptive responses to radiation, ultraviolet light, and heat.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Department of Biology, School of Medicine, Nara Medical University, Nara, Japan
| | | |
Collapse
|
59
|
Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 1: post-translational regulation. J Cell Mol Med 2009; 13:3006-18. [PMID: 19522845 PMCID: PMC4516461 DOI: 10.1111/j.1582-4934.2009.00824.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA repair is a fundamental cellular function, indispensable for cell survival, especially in conditions of exposure to environmental or pharmacological effectors of DNA damage. The regulation of this function requires a flexible machinery to orchestrate the reversal of harmful DNA lesions by making use of existing proteins as well as inducible gene products. The accumulation of evidence for the involvement of ubiquitin-proteasome system (UPS) in DNA repair pathways, that is reviewed here, has expanded its role from a cellular waste disposal basket to a multi-dimensional regulatory system. This review is the first of two that attempt to illustrate the nature and interactions of all different DNA repair pathways where UPS is demonstrated to be involved, with special focus on cancer- and chemotherapy-related DNA-damage repair. In this first review, we will be presenting the proteolytic and non-proteolytic roles of UPS in the post-translational regulation of DNA repair proteins, while the second review will focus on the UPS-dependent transcriptional response of DNA repair after DNA damage and stress.
Collapse
|
60
|
From structure to dynamics: Frequency tuning in the p53–Mdm2 network. J Theor Biol 2009; 258:561-77. [DOI: 10.1016/j.jtbi.2009.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/19/2009] [Accepted: 02/11/2009] [Indexed: 11/19/2022]
|
61
|
Schreck I, Chudziak D, Schneider S, Seidel A, Platt KL, Oesch F, Weiss C. Influence of aryl hydrocarbon- (Ah) receptor and genotoxins on DNA repair gene expression and cell survival of mouse hepatoma cells. Toxicology 2009; 259:91-6. [DOI: 10.1016/j.tox.2009.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/13/2009] [Accepted: 02/13/2009] [Indexed: 01/15/2023]
|
62
|
Yi F, Saha A, Murakami M, Kumar P, Knight JS, Cai Q, Choudhuri T, Robertson ES. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities. Virology 2009; 388:236-47. [PMID: 19394062 DOI: 10.1016/j.virol.2009.03.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/09/2009] [Accepted: 03/21/2009] [Indexed: 01/17/2023]
Abstract
The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3C with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF(Skp2), cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53(-/-)) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.
Collapse
Affiliation(s)
- Fuming Yi
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 201E Johnson Pavilion, 3610 Hamilton Walk, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Lin PS, McPherson LA, Chen AY, Sage J, Ford JM. The role of the retinoblastoma/E2F1 tumor suppressor pathway in the lesion recognition step of nucleotide excision repair. DNA Repair (Amst) 2009; 8:795-802. [PMID: 19376752 DOI: 10.1016/j.dnarep.2009.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 01/27/2023]
Abstract
The retinoblastoma Rb/E2F tumor suppressor pathway plays a major role in the regulation of mammalian cell cycle progression. The pRb protein, along with closely related proteins p107 and p130, exerts its anti-proliferative effects by binding to the E2F family of transcription factors known to regulate essential genes throughout the cell cycle. We sought to investigate the role of the Rb/E2F1 pathway in the lesion recognition step of nucleotide excision repair (NER) in mouse embryonic fibroblasts (MEFs). Rb-/-, p107-/-, p130-/- MEFs repaired both cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) at higher efficiency than did wildtype cells following UV-C irradiation. The expression of damaged DNA binding gene DDB2 involved in the DNA lesion recognition step was elevated in the Rb family-deficient MEFs. To determine if the enhanced DNA repair in the absence of the Rb gene family is due to the derepression of E2F1, we assayed the ability of E2F1-deficient cells to repair damaged DNA and demonstrated that E2F1-/- MEFs are impaired for the removal of both CPDs and 6-4PPs. Furthermore, wildtype cells induced a higher expression of DDB2 and xeroderma pigmentosum gene XPC transcript levels than did E2F1-/- cells following UV-C irradiation. Using an E2F SiteScan algorithm, we uncovered a putative E2F-responsive element in the XPC promoter upstream of the transcription start site. We showed with chromatin immunoprecipitation assays the binding of E2F1 to the XPC promoter in a UV-dependent manner, suggesting that E2F1 is a transcriptional regulator of XPC. Our study identifies a novel E2F1 gene target and further supports the growing body of evidence that the Rb/E2F1 tumor suppressor pathway is involved in the regulation of the DNA lesion recognition step of nucleotide excision repair.
Collapse
Affiliation(s)
- Patrick S Lin
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305-5151, United States
| | | | | | | | | |
Collapse
|
64
|
Sandrini JZ, Trindade GS, Nery LEM, Marins LF. Time-course Expression of DNA Repair-related Genes in Hepatocytes of Zebrafish (Danio rerio) After UV-B Exposure. Photochem Photobiol 2009; 85:220-6. [DOI: 10.1111/j.1751-1097.2008.00422.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
65
|
Andressoo JO, Hoeijmakers JHJ, de Waard H. Nucleotide excision repair and its connection with cancer and ageing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 570:45-83. [PMID: 18727498 DOI: 10.1007/1-4020-3764-3_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jaan-Olle Andressoo
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
66
|
Kassam SN, Rainbow AJ. UV-inducible base excision repair of oxidative damaged DNA in human cells. Mutagenesis 2008; 24:75-83. [DOI: 10.1093/mutage/gen054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
67
|
Subramaniam RP, Chen C, Crump KS, Devoney D, Fox JF, Portier CJ, Schlosser PM, Thompson CM, White P. Uncertainties in biologically-based modeling of formaldehyde-induced respiratory cancer risk: identification of key issues. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2008; 28:907-23. [PMID: 18564991 PMCID: PMC2719764 DOI: 10.1111/j.1539-6924.2008.01083.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In a series of articles and a health-risk assessment report, scientists at the CIIT Hamner Institutes developed a model (CIIT model) for estimating respiratory cancer risk due to inhaled formaldehyde within a conceptual framework incorporating extensive mechanistic information and advanced computational methods at the toxicokinetic and toxicodynamic levels. Several regulatory bodies have utilized predictions from this model; on the other hand, upon detailed evaluation the California EPA has decided against doing so. In this article, we study the CIIT model to identify key biological and statistical uncertainties that need careful evaluation if such two-stage clonal expansion models are to be used for extrapolation of cancer risk from animal bioassays to human exposure. Broadly, these issues pertain to the use and interpretation of experimental labeling index and tumor data, the evaluation and biological interpretation of estimated parameters, and uncertainties in model specification, in particular that of initiated cells. We also identify key uncertainties in the scale-up of the CIIT model to humans, focusing on assumptions underlying model parameters for cell replication rates and formaldehyde-induced mutation. We discuss uncertainties in identifying parameter values in the model used to estimate and extrapolate DNA protein cross-link levels. The authors of the CIIT modeling endeavor characterized their human risk estimates as "conservative in the face of modeling uncertainties." The uncertainties discussed in this article indicate that such a claim is premature.
Collapse
Affiliation(s)
- Ravi P Subramaniam
- NCEA, ORD, U.S. Environmental Protection Agency, Pennsylvania Ave. NW, Washington, DC 20460, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Chen D, Yu Z, Zhu Z, Lopez CD. E2F1 regulates the base excision repair gene XRCC1 and promotes DNA repair. J Biol Chem 2008; 283:15381-9. [PMID: 18348985 PMCID: PMC2397471 DOI: 10.1074/jbc.m710296200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/12/2008] [Indexed: 11/06/2022] Open
Abstract
The E2F1 transcription factor activates S-phase-promoting genes, mediates apoptosis, and stimulates DNA repair through incompletely understood mechanisms. XRCC1 (x-ray repair cross-complementing group 1) protein is important for efficient single strand break/base excision repair. Although both damage and proliferative signals increase XRCC1 levels, the mechanisms regulating XRCC1 transcription remain unclear. To study these upstream mechanisms, the XRCC1 promoter was cloned into a luciferase reporter. Ectopic expression of wild-type E2F1, but not an inactive mutant E2F1(132E), activated the XRCC1 promoter-luciferase reporter, and deletion of predicted E2F1 binding sites in the promoter attenuated E2F1-induced activation. Endogenous XRCC1 expression increased in cells conditionally expressing wild-type, but not mutant E2F1, and methyl methanesulfonate-induced DNA damage stimulated XRCC1 expression in E2F1(+/+) but not E2F1(-/-) mouse embryo fibroblasts (MEFs). Additionally, E2F1(-/-) MEFs displayed attenuated DNA repair after methyl methanesulfonate-induced damage compared with E2F1(+/+) MEFs. Moreover, Chinese hamster ovary cells with mutant XRCC1 (EM9) were more sensitive to E2F1-induced apoptosis compared with Chinese hamster ovary cells with wild-type XRCC1 (AA8). These results provide new mechanistic insight into the role of the E2F pathway in maintaining genomic stability.
Collapse
Affiliation(s)
| | | | | | - Charles D. Lopez
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
69
|
Lee YM, Rhee JS, Hwang DS, Kim IC, Raisuddin S, Lee JS. p53 gene expression is modulated by endocrine disrupting chemicals in the hermaphroditic fish, Kryptolebias marmoratus. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:150-7. [PMID: 17950039 DOI: 10.1016/j.cbpc.2007.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 11/20/2022]
Abstract
The full-length of cDNA of tumour suppressor gene p53 from the self-fertilizing fish Kryptolebias marmoratus (Km-p53) was determined using molecular cloning and rapid amplification of cDNA ends (RACE). The Complete cDNA sequences of K. marmoratus (Km-p53) gene was 1.8 kb in length. K. marmoratus p53 amino acid sequence showed a high degree of homology with the sequences from fishes, amphibians, and mammals. Although basal level of expression of Km-p53 mRNA was low, all the studied tissues showed some level of expression. After exposure of K. marmoratus to endocrine disrupting chemicals (EDCs) such as bisphenol A, 4-nonylphenol, and 4-tert-octylphenol, Km-p53 expression was significantly increased within 3 h of exposure in juveniles. However, expression was down-regulated by exposure to most of the EDCs when measured at 96 h in adult fish. In adult fish, suppressive effect of EDCs was more pronounced in liver as compared to other tissues. These findings suggest that Km-p53 gene would be involved in cellular defense mechanism in early stage of exposure to EDCs and long-term exposure may suppress its expression. It may be possible that the suppression of p53 by EDCs may predispose the host to environmental chemical carcinogenesis.
Collapse
Affiliation(s)
- Young-Mi Lee
- Department of Chemistry, and the National Research Lab of Marine Molecular and Environmental Bioscience, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | |
Collapse
|
70
|
Hsieh WJ, Hsieh SC, Chen CC, Wang FF. Human DDA3 is an oncoprotein down-regulated by p53 and DNA damage. Biochem Biophys Res Commun 2008; 369:567-72. [PMID: 18291097 DOI: 10.1016/j.bbrc.2008.02.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 02/13/2008] [Indexed: 02/03/2023]
Abstract
Mouse DDA3 (mDDA3) is a microtubule-associated protein that promotes cell growth. mDDA3 contains an intronic p53 binding motif that is absent in human DDA3 (hDDA3), and is transcriptionally activated during DNA damage in a p53-dependent way. We now report that hDDA3 mRNA and protein levels were suppressed by p53, as well as in DNA damaged cells harboring wild type, but not mutant-p53 expression. We have located three consensus El-Deiry decamers at -1478/-1403 of the hDDA3 gene, and shown by chromatin immunoprecipitation that p53 bound to the region. Luciferase analysis showed that the hDDA3 promoter containing the putative p53 binding motif was responsible for p53-mediated repression. Expression of hDDA3 decreased the cell's requirement for serum, furthermore, overexpression of hDDA3 mRNA was detected in hepatoma tissues. Together our results show that hDDA3 is a p53- and DNA-damage down-regulated target that exhibits oncogenic characteristics.
Collapse
Affiliation(s)
- Wang-Ju Hsieh
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155 Li-Nong Street, Section 2, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
71
|
Schavinsky-Khrapunsky Y, Priel E, Aboud M. Dose-dependent dual effect of HTLV-1 tax oncoprotein on p53-dependent nucleotide excision repair in human T-cells. Int J Cancer 2008; 122:305-16. [PMID: 17918160 DOI: 10.1002/ijc.23091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study we investigated the effect of Tax on nucleotide excision repair (NER) in human T-cell lines by using the host cell repair analysis of UVC-irradiated reporter plasmid. This analysis revealed a p53-dependent NER activity in wild type (w.t.) p53-containing T-cells and p53-independent NER in w.t. p53-lacking T-cells. Notably, in the w.t. p53-containing cells Tax exerted a dose-dependent dual effect on NER. While low Tax doses markedly stimulated this repair, high Tax doses strongly reduced it. Further experiments demonstrated that the low Tax doses enhanced, in these cells, the level and the transcriptional function of their w.t. p53 protein. On the other hand, although the high Tax doses further increased the level of p53, they functionally inactivated its accumulating molecules. Both of these Tax effects on p53 proved to be mediated by Tax-induced NF-kappaB-related mechanisms. Together, these data suggest that by NF-kappaB activation Tax elevates the level of the cellular w.t. p53. However, while at low Tax doses the elevating w.t. p53 molecules are functionally active and capable of stimulating NER, intensifying further the NF-kappaB activation by the high Tax doses concomitantly evokes certain mechanism(s) which functionally inactivates the accumulating p53 protein. In contrast to this dual effect on the p53-dependent NER, Tax displayed only an inhibitory effect on the p53-independent NER by its high doses, whereas its low doses had no effect on this repair. The mechanisms of the NF-kappaB-associated effects on the level and function of the cellular w.t.p53 and of the p53-independent NER noted in our experimental systems are further investigated in our laboratory.
Collapse
Affiliation(s)
- Yana Schavinsky-Khrapunsky
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and Cancer Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | |
Collapse
|
72
|
Khanolkar A, Badovinac VP, Harty JT. CD8 T cell memory development: CD4 T cell help is appreciated. Immunol Res 2008; 39:94-104. [PMID: 17917058 DOI: 10.1007/s12026-007-0081-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/25/2022]
Abstract
An important goal of vaccination strategies is to elicit long term, effective immunity. Therefore it is imperative to define the parameters that regulate the development and preservation of the numbers and functional quality of cells that confer this property to the host. CD8 T cells are a key component of the host adaptive immune response that helps eradicate invading viruses and other cell-associated pathogens. Once the primary infection is controlled, the CD8 T cells transition from being effector cells into memory cells that act as sentinels of the immune system capable of rapidly purging the host of recurrent infections by the same pathogen. The factors that regulate and orchestrate this transition from effector CD8 T cells into functionally robust memory CD8 T cells are poorly understood. In recent years it has been determined that CD4 T cells play a vital role in the survival and functional responsiveness of memory CD8 T cells. However, the mechanism(s) of this interaction are still unclear.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Microbiology, University of Iowa, 3-512 Bowen Science Building, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
73
|
Abstract
Convergent studies demonstrated that p53 regulates homologous recombination (HR) independently of its classic tumour-suppressor functions in transcriptionally transactivating cellular target genes that are implicated in growth control and apoptosis. In this review, we summarise the analyses of the involvement of p53 in spontaneous and double-strand break (DSB)-triggered HR and in alternative DSB repair routes. Molecular characterisation indicated that p53 controls the fidelity of Rad51-dependent HR and represses aberrant processing of replication forks after stalling at unrepaired DNA lesions. These findings established a genome stabilising role of p53 in counteracting error-prone DSB repair. However, recent work has also unveiled a stimulatory role for p53 in topoisomerase I-induced recombinative repair events that may have implications for a gain-of-function phenotype of cancer-related p53 mutants. Additional evidence will be discussed which suggests that p53 and/or p53-regulated gene products also contribute to nucleotide excision, base excision, and mismatch repair.
Collapse
Affiliation(s)
- S A Gatz
- Universitätsklinik für Kinder- und Jugendmedizin, Eythstr. 24, 89075 Ulm, Germany
| | | |
Collapse
|
74
|
Shu KX, Li B, Wu LX. The p53 network: p53 and its downstream genes. Colloids Surf B Biointerfaces 2007; 55:10-8. [PMID: 17188467 DOI: 10.1016/j.colsurfb.2006.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/17/2006] [Accepted: 11/03/2006] [Indexed: 12/13/2022]
Abstract
The tumor-suppressor gene p53 and its downstream genes consist of a complicated gene network. p53 is a key molecular node in the network, which is activated in response to several cellular signals resulting in the maintenance of genetic stability. Several cellular signals may activate the p53 network. When the expression of P53 is elevated, P53-MDM2 module and the ubiquitin system can accurately regulate the expression level of P53. P53 can bind to specific DNA sequence, activate its downstream genes expression, and control cell-cycle arrest, DNA repair, and apoptosis. Elucidating the function of p53 gene network will help understand the interaction mechanisms of p53 and its downstream genes.
Collapse
Affiliation(s)
- Kun-Xian Shu
- College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | | | | |
Collapse
|
75
|
Kemeny L, Koreck A, Kis K, Kenderessy-Szabo A, Bodai L, Cimpean A, Paunescu V, Raica M, Ghyczy M. Endogenous phospholipid metabolite containing topical product inhibits ultraviolet light-induced inflammation and DNA damage in human skin. Skin Pharmacol Physiol 2007; 20:155-61. [PMID: 17230055 DOI: 10.1159/000098702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 11/21/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND N-palmitoylethanolamine (PEA) and organic osmolytes are endogenous components of the human epidermis and are generated from phospholipids in the stratum granulosum. PEA has been shown to exert potent antioxidant and anti-inflammatory activities. The endogenous organic osmolytes such as betaine and sarcosine control skin humidity, but have also been shown to inhibit ultraviolet (UV) light-induced oxidative stress in keratinocytes. OBJECTIVES To investigate the effect of a PEA- and organic osmolyte-containing topical product (Physiogel AI) on the development of UV light-induced erythema, thymine dimer formation and p53 tumor suppressor gene activation, as well as intercellular adhesion molecule 1 (ICAM-1) and Ki67 expression in normal human skin. METHODS The UV-induced erythema was measured by a spectrofluorometric method. Thymine dimers, p53, ICAM-1 and Ki67 were detected in skin biopsies using immunohistochemistry. RESULTS Physiogel AI cream significantly inhibited the development of UV light-induced erythema and thymine dimer formation in normal human skin, but did not alter the number of Ki67+ proliferating keratinocytes and the expression of p53 and ICAM-1. CONCLUSIONS Our results suggest that PEA and organic osmolytes might represent a new generation of compounds which suppress UV-induced photodamage.
Collapse
Affiliation(s)
- L Kemeny
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Clément V, Dunand-Sauthier I, Wiznerowicz M, Clarkson SG. UV-induced apoptosis in XPG-deficient fibroblasts involves activation of CD95 and caspases but not p53. DNA Repair (Amst) 2007; 6:602-14. [PMID: 17208056 DOI: 10.1016/j.dnarep.2006.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 12/22/2022]
Abstract
Mildly affected individuals from xeroderma pigmentosum complementation group G (XP-G) possess single amino acid substitutions in the XPG protein that adversely affects its 3' endonuclease function in nucleotide excision repair. More serious mutations in the XPG gene generate truncated or unstable XPG proteins and result in a particularly early and severe form of the combined XP/CS complex. Following UV irradiation, cells from such XP-G/CS patients enter apoptosis more readily than other DNA repair-deficient cells. Here, we explore the mechanisms by which UV triggers the apoptotic cell death program in XP-G and XP-G/CS primary fibroblasts. Activation of the CD95 signalling pathway occurs within minutes and it is the earliest detectable post-UV event in such cells. This is rapidly followed by activation of caspase-8 then caspase-3. Several hours later caspase-9 becomes activated and the mitochondrial membrane potential drops, but without any obvious prior release of cytochrome c. Although p53 accumulates in XPG-deficient cells after UV irradiation, use of RNA interference demonstrates that p53 is not required for their UV-induced apoptotic response. p53 ablation of wild-type fibroblasts reduces MDM2 mRNA levels, inhibits accumulation of the 90kDa/92kDa Mdm2 isoforms, and prevents the nuclear relocalisation of Mdm2 after UV treatment. The same post-UV effects occur in XPG-deficient cells that express normal p53 levels. These results emphasise the importance of the extrinsic apoptotic pathway and aberrant Mdm2 events for the severe UV-induced apoptosis of XPG-deficient primary fibroblasts. XP-G/CS cells constitutively overexpress the pro-apoptotic Bax protein and a long isoform of the E2F1 transcription factor that controls S phase entry, which may prime them to enter apoptosis very readily after UV irradiation.
Collapse
Affiliation(s)
- Virginie Clément
- Department of Microbiology and Molecular Medicine, University Medical Centre (CMU), 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
77
|
Wu YH, Cheng YW, Chang JT, Wu TC, Chen CY, Lee H. Reduced XPC messenger RNA level may predict a poor outcome of patients with nonsmall cell lung cancer. Cancer 2007; 110:215-23. [PMID: 17508409 DOI: 10.1002/cncr.22743] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Homologous deletion of the xeroderma pigmentosum complementary group C (XPC) repair gene frequently causes lung adenocarcinoma in mice, suggesting that an XPC defect may play a critical role in lung tumorigenesis. The current study attempted to determine whether reduced XPC mRNA levels predict the clinical outcome of lung cancer patients. METHODS XPC, p27(kip) (cdk inhibitory protein), and S-phase kinase-associated protein (skp2) levels were evaluated by Western blot analysis in a series of lung cancer cell lines with different invasive abilities. Migration and invasive abilities were measured using a modified Boyden chamber without and with Matrigel, respectively. To test whether XPC affects cell invasive ability, XPC gene protein expression was reduced in low invasive cells by RNA interference (RNAi) and assayed with Boyden chamber. XPC mRNA levels in 126 nonsmall cell lung cancers (NSCLCs) were examined by real-time-reverse-transcriptase polymerase chain reaction (RT-PCR). The prognostic value of XPC mRNA expression was statistically analyzed by the Kaplan-Meier method and Cox proportional hazards regression. RESULTS The expression of XPC was reduced with increasing invasive potential in CL1-series lung cancer cell lines. When the XPC level was reduced by RNAi, cell migration and invasiveness increased markedly; the increased invasiveness may be caused by decreased expression of p27(kip) and increased expression of skp2 and E2F transcription factor 1. To determine whether reduced XPC expression was correlated with tumor aggressiveness and poor patient survival, XPC mRNA levels were evaluated by real-time RT-PCR. Kaplan-Meier analysis demonstrated that the median survival of patients with lower XPC mRNA levels was shorter compared with patients with higher XPC mRNA levels (P = .0440). Cox regression analysis further indicated that XPC mRNA level may act as an independent prognostic factor for NSCLC patients (P = .014). CONCLUSIONS The results of the current study suggest that reduced XPC mRNA level may constitute an independent prognostic factor for NSCLC patients.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
78
|
Shin JW, Choi JH, Park IW, Yoo JH. Prognostication by Cluster Analysis of COX-2, MMP-9 and P53 Expression and by Clinico-pathologic Correlation Analysis in Non-small Cell Lung Cancer. Tuberc Respir Dis (Seoul) 2007. [DOI: 10.4046/trd.2007.63.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jong Wook Shin
- Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Ho Choi
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
| | - In Won Park
- Division of Allergy, Respiratory and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Hyung Yoo
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
79
|
Prost S, Lu P, Caldwell H, Harrison D. E2F regulates DDB2: consequences for DNA repair in Rb-deficient cells. Oncogene 2006; 26:3572-81. [PMID: 17173070 DOI: 10.1038/sj.onc.1210151] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DDB2, a gene mutated in XPE patients, is involved in global genomic repair especially the repair of cyclobutane pyrimidine dimers (CPDs), and is regulated by p53 in human cells. We show that DDB2 is expressed in mouse tissues and demonstrate, using primary mouse epithelial cells, that mouse DDB2 is regulated by E2F transcription factors. Retinoblastoma (Rb), a tumor suppressor critical for the control of cell cycle progression, regulates E2F activity. Using Cre-Lox technology to delete Rb in primary mouse hepatocytes, we show that DDB2 gene expression increases, leading to elevated DDB2 protein levels. Furthermore, we show that endogenous E2F1 and E2F3 bind to DDB2 promoter and that treatment with E2F1-antisense or E2F1-small interfering RNA (siRNA) decreases DDB2 transcription, demonstrating that E2F1 is a transcriptional regulator for DDB2. This has consequences for global genomic repair: in Rb-null cells, where E2F activity is elevated, global DNA repair is increased and removal of CPDs is more efficient than in wild-type cells. Treatment with DDB2-siRNA decreases DDB2 expression and abolishes the repair phenotype of Rb-null cells. In summary, these results identify a new regulatory pathway for DDB2 by E2F, which does not require but is potentiated by p53, and demonstrate that DDB2 is involved in global repair in mouse epithelial cells.
Collapse
Affiliation(s)
- S Prost
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
80
|
Abstract
Monomers are released from dental resin materials, and thus cause adverse biological effects in mammalian cells. Cytotoxicity and genotoxicity of some of these methacrylates have been identified in a vast number of investigations during the last decade. It has been well-established that the co-monomer triethylene glycol dimethacrylate (TEGDMA) causes gene mutations in vitro. The formation of micronuclei is indicative of chromosomal damage and the induction of DNA strand breaks detected with monomers like TEGDMA and 2-hydroxyethyl methacrylate (HEMA). As a consequence of DNA damage, the mammalian cell cycle was delayed in both G1 and G2/M phases, depending on the concentrations of the monomers. Yet, the mechanisms underlying the genetic and cellular toxicology of resin monomers have remained obscure until recently. New findings indicate that increased oxidative stress results in an impairment of the cellular pro- and anti-oxidant redox balance caused by monomers. It has been demonstrated that monomers reduced the levels of the natural radical scavenger glutathione (GSH), which protects cell structures from damage caused by reactive oxygen species (ROS). Depletion of the intracellular GSH pool may then significantly contribute to cytotoxicity, because a related increase in ROS levels can activate pathways leading to apoptosis. Complementary, cytotoxic, and genotoxic effects of TEGDMA and HEMA are inhibited in the presence of ROS scavengers like N-acetylcysteine (NAC), ascorbate, and Trolox (vitamin E). Elevated intracellular levels of ROS can also activate a complex network of redox-responsive macromolecules, including redox-sensitive transcription factors like nuclear factor kappaB (NF-kappaB). It has been shown that NF-kappaB is activated probably to counteract HEMA-induced apoptosis. The induction of apoptosis by TEGDMA in human pulp cells has been associated with an inhibition of the phosphatidylinositol 3-kinase (PI3-K) cell-survival signaling pathway. Although the details of the mechanisms leading to cell death, genotoxicity, and cell-cycle delay are not completely understood, resin monomers may be able to alter the functions of the cells of the oral cavity. Pathways regulating cellular homeostasis, dentinogenesis, or tissue repair may be modified by monomers at concentrations well below those which cause acute cytotoxicity.
Collapse
Affiliation(s)
- H Schweikl
- Department of Operative Dentistry and Periodontology, University of Regensburg, D-93042 Regensburg, Germany.
| | | | | |
Collapse
|
81
|
Rocha B, Tanchot C. The Tower of Babel of CD8+ T-cell memory: known facts, deserted roads, muddy waters, and possible dead ends. Immunol Rev 2006; 211:182-96. [PMID: 16824127 DOI: 10.1111/j.0105-2896.2006.00378.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adequate antigen stimulation can lead to permanent modifications of primed cells and to the generation of memory T cells that have astonishingly improved capacities to deal with antigen. The overall properties of memory T cells (increased survival, precocious and increased division capacities, and improved effector functions) can be used to identify this unique cell type. However, each immune response may lead to the generation of multiple primed types that do not necessarily possess all these characteristics. It is not known whether these different cell types are just side products of the immune reaction or whether they are involved in disease control. Control of different infections may involve different challenges and lead to the generation of different types of immune reactions. Our major challenge is to unravel this complexity, but we must overcome our handicapped experimental tests and our imperfect a priori definitions.
Collapse
Affiliation(s)
- Benedita Rocha
- INSERM U591, Institut Necker, Faculty of Medecine René Descartes Paris V, Paris, France.
| | | |
Collapse
|
82
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53 – ein natürlicher Krebskiller: Einsichten in die Struktur und Therapiekonzepte. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
83
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53—A Natural Cancer Killer: Structural Insights and Therapeutic Concepts. Angew Chem Int Ed Engl 2006; 45:6440-60. [PMID: 16983711 DOI: 10.1002/anie.200600611] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Every single day, the DNA of each cell in the human body is mutated thousands of times, even in absence of oncogenes or extreme radiation. Many of these mutations could lead to cancer and, finally, death. To fight this, multicellular organisms have evolved an efficient control system with the tumor-suppressor protein p53 as the central element. An intact p53 network ensures that DNA damage is detected early on. The importance of p53 for preventing cancer is highlighted by the fact that p53 is inactivated in more than 50 % of all human tumors. Thus, for good reason, p53 is one of the most intensively studied proteins. Despite the great effort that has been made to characterize this protein, the complex function and the structural properties of p53 are still only partially known. This review highlights basic concepts and recent progress in understanding the structure and regulation of p53, focusing on emerging new mechanistic and therapeutic concepts.
Collapse
Affiliation(s)
- Lin Römer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
84
|
Yu J, Mallon MA, Zhang W, Freimuth RR, Marsh S, Watson MA, Goodfellow PJ, McLeod HL. DNA Repair Pathway Profiling and Microsatellite Instability in Colorectal Cancer. Clin Cancer Res 2006; 12:5104-11. [PMID: 16951227 DOI: 10.1158/1078-0432.ccr-06-0547] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The ability to maintain DNA integrity is a critical cellular function. DNA repair is conducted by distinct pathways of genes, many of which are thought to be altered in colorectal cancer. However, there has been little characterization of these pathways in colorectal cancer. METHOD By using the TaqMan real-time quantitative PCR, RNA expression profiling of 20 DNA repair pathway genes was done in matched tumor and normal tissues from 52 patients with Dukes' C colorectal cancer. RESULTS The relative mRNA expression level across the 20 DNA repair pathway genes varied considerably, and the individual variability was also quite large, with an 85.4 median fold change in the tumor tissue genes and a 127.2 median fold change in the normal tissue genes. Tumor-normal differential expression was found in 13 of 20 DNA repair pathway genes (only XPA had a lower RNA level in the tumor samples; the other 12 genes had significantly higher tumor levels, all P<0.01). Coordinated expression of ERCC6, HMG1, MSH2, and POLB (RS>or=0.60) was observed in the tumor tissues (all P<0.001). Apoptosis index was not correlated with expression of the 20 DNA repair pathway genes. MLH1 and XRCC1 RNA expression was correlated with microsatellite instability status (P=0.045 and 0.020, respectively). An inverse correlation was found between tumor MLH1 RNA expression and MLH1 DNA methylation (P=0.003). CONCLUSION Our study provides an initial characterization of the DNA repair pathways for understanding the cellular DNA damage/repair system in human colorectal cancer.
Collapse
Affiliation(s)
- Jinsheng Yu
- Department of Medicine, Washington University School of Medicine and Siteman Cancer Center, Saint Louis, Missouri 63110-1093, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Takeiri A, Mishima M, Tanaka K, Shioda A, Harada A, Watanabe K, Masumura KI, Nohmi T. A newly established GDL1 cell line from gpt delta mice well reflects the in vivo mutation spectra induced by mitomycin C. Mutat Res 2006; 609:102-15. [PMID: 16916616 DOI: 10.1016/j.mrgentox.2006.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/19/2006] [Accepted: 06/30/2006] [Indexed: 11/21/2022]
Abstract
In order to create a novel in vitro test system for detection of large deletions and point mutations, we developed an immortalized cell line. A SV40 large T antigen expression unit was introduced into fibroblasts derived from gpt delta mouse lung tissue and a selected clone was established as the gpt delta L1 (GDL1) cell line. The novel GDL1 cells were examined for mutant frequencies (MFs) and for molecular characterization of mutations induced by mitomycin C (MMC). The GDL1 cells were treated with MMC at doses of 0.025, 0.05, and 0.1 microg/mL for 24h and mutations were detected by Spi- and 6-thioguanine (6-TG) selections. The MFs of the MMC-treated cells increased up to 3.4-fold with Spi- selection and 3.5-fold with 6-TG selection compared to MFs of untreated cells. In the Spi- mutants, the number of large (up to 76 kilo base pair (kbp)) deletion mutations increased. A majority of the large deletion mutations had 1-4 base pairs (bp) of microhomology in the deletion junctions. A number of the rearranged deletion mutations were accompanied with deletions and insertions of up to 1.1 kbp. In the gpt mutants obtained from 6-TG selection, single base substitutions of G:C to T:A, tandem base substitutions occurring at the 5'-GG-3' or 5'-CG-3' sequence, and deletion mutations larger than 2 bp were increased. We compared the spectrum of MMC-induced mutations observed in vitro to that of in vivo using gpt delta mice, which we reported previously. Although a slight difference was observed in MMC-induced mutation spectra between in vitro and in vivo, the mutations detected in vitro included all of the types of mutations observed in vivo. The present study demonstrates that the newly established GDL1 cell line is a useful tool to detect and analyze various mutations including large deletions in mammalian cells.
Collapse
Affiliation(s)
- Akira Takeiri
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Murata T, Tsuboi M, Hikita K, Kaneda N. Protective Effects of Neurotrophic Factors on Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Apoptosis of Murine Adrenal Chromaffin Cell Line tsAM5D. J Biol Chem 2006; 281:22503-16. [PMID: 16772303 DOI: 10.1074/jbc.m602579200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously established the murine adrenal chromaffin cell line tsAM5D, which was immortalized with the temperature-sensitive simian virus 40 large T-antigen. tsAM5D cells have the capacity to differentiate into neuron-like cells in response to neurotrophic factors when the culture temperature is shifted from 33 to 39 degrees C. In this model system, the temperature shift in the absence of neurotrophic factors led to cell death. Hoechst staining analysis revealed that typical apoptotic nuclei appeared in a time-dependent manner after the temperature shift. Upon shifting to 39 degrees C, the degradation of T-antigen was accompanied by the transcriptional activation of p53 protein. Among the p53 target genes, death receptor 5 (DR5), which is the receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), showed the highest level of induction. Interestingly, TRAIL-neutralizing antibody protected tsAM5D cells from the temperature shift-induced apoptotic cell death by blocking the activation of caspase-8 and -3, indicating the involvement of TRAIL-mediated death signaling in the temperature shift-induced apoptosis. Glial cell line-derived neurotrophic factor (GDNF) inhibited the TRAIL-mediated activation of caspase-8 in tsAM5D cells exposed to 39 degrees C and cooperated with basic fibroblast growth factor and ciliary neurotrophic factor. Interestingly, the temperature shift induced oligomerization of DR5, which is the earliest process necessary for transduction of the death signal. This oligomerization was inhibited by treatment with GDNF plus ciliary neurotrophic factor but not by that with GDNF alone or GDNF plus basic fibroblast growth factor. These results are discussed with respect to the intracellular mechanism underlying the protective function of neurotrophic factors against TRAIL-mediated death signaling.
Collapse
Affiliation(s)
- Tomiyasu Murata
- Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468-8503, Japan
| | | | | | | |
Collapse
|
87
|
Hussain SP, Harris CC. p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. J NIPPON MED SCH 2006; 73:54-64. [PMID: 16641528 DOI: 10.1272/jnms.73.54] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53 as a key molecular node in the stress response pathway, including inflammation. p53 is involved in several critical pathways including cell cycle arrest, apoptosis, DNA repair, and cellular senescence, which are essential for normal cellular homeostasis and maintaining genome integrity. The alteration of the TP53 gene or posttranslational modification in the p53 protein can alter its response to cellular stress. The molecular archaeology of the TP53 mutation spectrum generates hypotheses concerning the etiology and molecular pathogenesis of human cancer. The spectrum of somatic mutations in the TP53 gene implicates environmental carcinogens, and both endogenous agents and processes in the etiology of human cancer.
Collapse
Affiliation(s)
- S Perwez Hussain
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
88
|
Chen D, Yu Z, Zhu Z, Lopez CD. The p53 pathway promotes efficient mitochondrial DNA base excision repair in colorectal cancer cells. Cancer Res 2006; 66:3485-94. [PMID: 16585172 DOI: 10.1158/0008-5472.can-05-4103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor p53 plays a central role in the DNA damage response. p53 enhances base excision repair (BER), in part, through direct interaction with the repair complex. Mitochondrial DNA (mtDNA) is repaired by a mtBER pathway. Many colorectal cancers harbor mtDNA mutations that are associated with poor prognosis. In addition to modulating the apoptotic response, mitochondria-localized p53 also stimulates mtBER. However, the mechanisms by which p53 enhances colorectal cancer mtBER after stress remain unclear. To explore this, we used colorectal cancer cells isogenic for p53 (HCT116p53+/+ and HCT116p53-/-). p53+/+ cells more efficiently repaired H(2)O(2) damaged DNA in vivo as measured by semiquantitative mtDNA displacement loop PCR. Mitochondrial extracts from p53+/+ cells more efficiently stimulated (32)P-dCTP incorporation into a uracil-oligonucleotide. Recombinant p53 complemented p53-/- mitochondrial extract repair of uracil or 8-oxo-G-containing oligonucleotides. As a measure of DNA glycosylase activity, p53+/+ mitochondrial extracts more efficiently incised uracil or 8-oxo-G oligonucleotides, although recombinant p53 could not stimulate oligonucleotide incision. p53 did not influence mitochondrial apurinic/apyrimidinic endonuclease activity measured by incision of a tetrahydrofuran-oligonucleotide. p53+/+ mitochondrial extracts had higher DNA polymerase-gamma activity measured by (32)P-dCTP incorporation into a single-nucleotide gap oligonucleotide, and recombinant p53 complemented p53-/- mitochondrial extract DNA polymerase-gamma activity. mtDNA ligase activity was not affected by p53 status. p53 protein was detected in an inner mitochondrial membrane subfraction containing components of the mtBER complex. Our data suggest that an intact p53 pathway stimulates specific mtBER steps and provides mechanistic insight into the development of mtDNA mutations in colorectal cancer.
Collapse
Affiliation(s)
- Dexi Chen
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | |
Collapse
|
89
|
Bomgarden RD, Lupardus PJ, Soni DV, Yee MC, Ford JM, Cimprich KA. Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. EMBO J 2006; 25:2605-14. [PMID: 16675950 PMCID: PMC1478198 DOI: 10.1038/sj.emboj.7601123] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 04/07/2006] [Indexed: 11/08/2022] Open
Abstract
An essential component of the ATR (ataxia telangiectasia-mutated and Rad3-related)-activating structure is single-stranded DNA. It has been suggested that nucleotide excision repair (NER) can lead to activation of ATR by generating such a signal, and in yeast, DNA damage processing through the NER pathway is necessary for checkpoint activation during G1. We show here that ultraviolet (UV) radiation-induced ATR signaling is compromised in XPA-deficient human cells during S phase, as shown by defects in ATRIP (ATR-interacting protein) translocation to sites of UV damage, UV-induced phosphorylation of Chk1 and UV-induced replication protein A phosphorylation and chromatin binding. However, ATR signaling was not compromised in XPC-, CSB-, XPF- and XPG-deficient cells. These results indicate that damage processing is not necessary for ATR-mediated S-phase checkpoint activation and that the lesion recognition function of XPA may be sufficient. In contrast, XP-V cells deficient in the UV bypass polymerase eta exhibited enhanced ATR signaling. Taken together, these results suggest that lesion bypass and not lesion repair may raise the level of UV damage that can be tolerated before checkpoint activation, and that XPA plays a critical role in this activation.
Collapse
Affiliation(s)
- Ryan D Bomgarden
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Patrick J Lupardus
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Deena V Soni
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Muh-Ching Yee
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - James M Ford
- Departments of Medicine and Genetics, Division of Oncology, Stanford University, Stanford, CA, USA
| | - Karlene A Cimprich
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
- Department of Molecular Pharmacology, CCSR, Stanford University School of Medicine, 269 Campus Drive, Rm 3215a Stanford, CA 94305-5174, USA. Tel.: +1 650 498 4720; Fax: +1 650 725 4665; E-mail:
| |
Collapse
|
90
|
Yen WC, Lamph WW. A selective retinoid X receptor agonist bexarotene (LGD1069, Targretin) prevents and overcomes multidrug resistance in advanced prostate cancer. Prostate 2006; 66:305-16. [PMID: 16245282 DOI: 10.1002/pros.20347] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND We previously reported that a retinoid X receptor agonist bexarotene prevented and overcame acquired drug resistance in advanced breast cancer and non-small cell lung cancer. The present study was to evaluate the effect of bexarotene on the development of multidrug resistance in advanced prostate cancer. METHODS Human prostate cancer cells PC3 were repeatedly treated in culture with paclitaxel, doxorubicin, or cisplatin with or without bexarotene for 3 months. Thereafter, cells were isolated and characterized for their drug sensitivity. RESULTS Compared to parental cells, cells treated with a single therapeutic agent was resistant to the therapeutic agent, whereas cells treated with the combination remained chemosensitive. Cells with acquired drug resistance showed increased sensitivity to the cytotoxic agent when treated with the combination. Fluctuation analysis demonstrated that treatment with bexarotene decreased the rate of spontaneous development of drug resistance. These in vitro findings were further confirmed in the PC3 xenograft model. CONCLUSION Our results suggest a role of bexarotene in combination with chemotherapeutic agents in prevention and overcoming acquired drug resistance in advanced prostate cancer.
Collapse
Affiliation(s)
- Wan-Ching Yen
- Department of Molecular Oncology, Ligand Pharmaceuticals, Inc., San Diego, California 92121, USA.
| | | |
Collapse
|
91
|
Rosenke K, Samuel MA, McDowell ET, Toerne MA, Fortunato EA. An intact sequence-specific DNA-binding domain is required for human cytomegalovirus-mediated sequestration of p53 and may promote in vivo binding to the viral genome during infection. Virology 2006; 348:19-34. [PMID: 16455125 DOI: 10.1016/j.virol.2005.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/12/2005] [Accepted: 12/12/2005] [Indexed: 11/23/2022]
Abstract
The p53 protein is stabilized during infection of primary human fibroblasts with human cytomegalovirus (HCMV). However, the p53 in HCMV-infected cells is unable to activate its downstream targets. HCMV accomplishes this inactivation, at least in part, by sequestering p53 into viral replication centers within the cell's nucleus soon after they are established. In order to better understand the interplay between HCMV and p53 and the mechanism of sequestration, we constructed a panel of mutant p53-GFP fusion constructs for use in transfection/infection experiments. These mutants affected several post-translational modification sites and several sites within the central sequence-specific DNA-binding domain of the protein. Two categories of p53 sequestration were observed when the mutant constructs were transfected into primary fibroblasts and then infected at either high or low multiplicity. The first category, including all of the post-translational modification mutants, showed sequestration comparable to a wild-type (wt) control, while the second category, mutants affecting the DNA-binding core, were not specifically sequestered above control GFP levels. This suggested that the DNA-binding ability of the protein was required for sequestration. When the HCMV genome was analyzed for p53 consensus binding sites, 21 matches were found, which localized either to the promoters or the coding regions of viral proteins involved in DNA replication and processing as well as structural proteins. An analysis of in vivo binding to these identified sites via chromatin immunoprecipitation assays revealed differential binding to several of the sites over the course of infection.
Collapse
Affiliation(s)
- Kyle Rosenke
- University of Idaho, Department of Microbiology, Molecular Biology and Biochemistry and Center for Reproductive Biology, Moscow, ID 83844-3052, USA
| | | | | | | | | |
Collapse
|
92
|
Hiramatsu K, Ogino T, Ozaki M, Okada S. Monochloramine inhibits ultraviolet B-induced p53 activation and DNA repair response in human fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:188-96. [PMID: 16414131 DOI: 10.1016/j.bbamcr.2005.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/15/2005] [Accepted: 11/18/2005] [Indexed: 11/20/2022]
Abstract
Monochloramine (NH2Cl) is one of the inflammation-derived oxidants, and has various effects on cell cycle, apoptosis and signal transduction. We studied the effects of NH2Cl on DNA repair response induced by ultraviolet B (UVB) irradiation in normal human diploid fibroblasts, TIG-1. TIG-1 irradiated with 20 mJ/cm2 UVB showed marked increase in thymine dimer, which decreased by about 50% after 24 h. This decrease in thymine dimer was significantly attenuated (P < 0.05) by the pretreatment of NH2Cl (200 microM), which indicated DNA repair inhibition. UVB induced p53 phosphorylation at Ser15, Ser20 and Ser37, and p53 accumulation, and NH2Cl also inhibited these changes. Consequently, UVB-induced increase in the downstream effectors of p53, namely p21Cip1 and Gadd45a, were almost completely inhibited by NH2Cl. Immunoprecipitation study indicated that the association of p53 and MDM2, an E3 ubiquitin ligase for p53, did not change substantially by NH2Cl and/or UVB. The phosphorylation of p53 (Ser15 and Ser37) by UVB is catalyzed by ATR (ataxia telangiectasia mutated and Rad3 related kinase), which works as DNA damage sensor, and ATR also phosphorylates checkpoint kinase 1(Chk1) at Ser345. NH2Cl also inhibited the phosphorylation of Chk1 (Ser345). As UVB-induced DNA damage is repaired by nucleotide excision repair (NER) in human cells, these findings indicated that NH2Cl inhibited NER through the inhibition of p53 phosphorylation and accumulation, and NH2Cl probably impaired DNA damage recognition and/or ATR activation. NH2Cl may facilitate carcinogenesis through the inhibition of NER that repairs DNA damages from various carcinogens.
Collapse
Affiliation(s)
- Kazuhisa Hiramatsu
- Department of Pathological Research, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama 700-8558, Japan
| | | | | | | |
Collapse
|
93
|
Rebollar E, Valadez-Graham V, Vázquez M, Reynaud E, Zurita M. Role of the p53 homologue fromDrosophila melanogasterin the maintenance of histone H3 acetylation and response to UV-light irradiation. FEBS Lett 2006; 580:642-8. [PMID: 16412438 DOI: 10.1016/j.febslet.2005.12.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 12/20/2005] [Accepted: 12/27/2005] [Indexed: 01/01/2023]
Abstract
It has been demonstrated that the human tumor suppressor p53 has an important role in modulating histone modifications after UV light irradiation. In this work we explored if the p53 Drosophila homologue has a similar role. Taking advantage of the existence of polytene chromosomes in the salivary glands of third instar larvae, we analyzed K9 and K14 H3 acetylation patterns in situ after UV irradiation of wild-type and Dmp53 null flies. As in human cells, after UV damage there is an increase in H3 acetylation in wild-type organisms. In Dmp53 mutant flies, this response is significantly affected at the K9 position. These results are similar to those found in human p53 mutant tumor cells with one interesting difference, only the basal H3 acetylation of K14 is reduced in Dmp53 mutant flies, while the basal H3-K9 acetylation is not affected. This work shows, that the presence of Dmp53 is necessary to maintain normal H3-K14 acetylation levels in Drosophila chromatin and that the function of p53 to maintaining histone modifications, is conserved in Drosophila and humans.
Collapse
Affiliation(s)
- Eria Rebollar
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, National University of México, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | |
Collapse
|
94
|
Kulaksiz G, Reardon JT, Sancar A. Xeroderma pigmentosum complementation group E protein (XPE/DDB2): purification of various complexes of XPE and analyses of their damaged DNA binding and putative DNA repair properties. Mol Cell Biol 2005; 25:9784-92. [PMID: 16260596 PMCID: PMC1280284 DOI: 10.1128/mcb.25.22.9784-9792.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xeroderma pigmentosum is characterized by increased sensitivity of the affected individuals to sunlight and light-induced skin cancers and, in some cases, to neurological abnormalities. The disease is caused by a mutation in genes XPA through XPG and the XP variant (XPV) gene. The proteins encoded by the XPA, -B, -C, -D, -F, and -G genes are required for nucleotide excision repair, and the XPV gene encodes DNA polymerase eta, which carries out translesion DNA synthesis. In contrast, the mechanism by which the XPE gene product prevents sunlight-induced cancers is not known. The gene (XPE/DDB2) encodes the small subunit of a heterodimeric DNA binding protein with high affinity to UV-damaged DNA (UV-damaged DNA binding protein [UV-DDB]). The DDB2 protein exists in at least four forms in the cell: monomeric DDB2, DDB1-DDB2 heterodimer (UV-DDB), and as a protein associated with both the Cullin 4A (CUL4A) complex and the COP9 signalosome. To better define the role of DDB2 in the cellular response to DNA damage, we purified all four forms of DDB2 and analyzed their DNA binding properties and their effects on mammalian nucleotide excision repair. We find that DDB2 has an intrinsic damaged DNA binding activity and that under our assay conditions neither DDB2 nor complexes that contain DDB2 (UV-DDB, CUL4A, and COP9) participate in nucleotide excision repair carried out by the six-factor human excision nuclease.
Collapse
Affiliation(s)
- Gülnihal Kulaksiz
- Biyokimya Anabilim Dali, Hacettepe Universitesi Tip Fakültesi, Ankara, Turkey
| | | | | |
Collapse
|
95
|
Chatterjee A, Mambo E, Osada M, Upadhyay S, Sidransky D. The effect of p53-RNAi and p53 knockout on human 8-oxoguanine DNA glycosylase (hOgg1) activity. FASEB J 2005; 20:112-4. [PMID: 16293709 DOI: 10.1096/fj.04-3423fje] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent evidence indicates that in vitro p53 augments base excision repair (BER) activities in mammalian cells. To understand the role of p53 in BER, we analyzed the repair activity of hOgg1 in isogenic cell lines HCT116p53+/+ and HCT116p53-/-. We found that hOgg1 activity was significantly decreased in HCT116p53-/- cells as compared with HCT116p53+/+ cells, indicating a functional role for p53 in the regulation of hOGG1. Using gel-shift assays, we showed that p53 binds to its putative cis-elements within the hOGG1 promoter. In addition we demonstrated that supplementing p53 in HCT116p53-/- cells enhanced the transcription of hOGG1. To further strengthen our findings, we used p53-RNAi to study the effects of decreased p53 levels on hOgg1 activity. We observed that p53-RNAi resulted in decreased hOGG1 expression both at the mRNA and protein levels. This decrease in hOGG1 expression was associated with reduced cell viability upon oxidative damage and reduced hOgg1 activity as evidenced by the 8-oxoG incision assay. Taken together, our results indicate that loss of p53 function can lead to decreased hOgg1 repair activity.
Collapse
Affiliation(s)
- Aditi Chatterjee
- Department of Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Research Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | |
Collapse
|
96
|
Ragni N, Ferrero S, Prefumo F, Muschiato B, Gorlero F, Gualco M, Fulcheri E. The association between p53 expression, stage and histological features in endometrial cancer. Eur J Obstet Gynecol Reprod Biol 2005; 123:111-6. [PMID: 15894417 DOI: 10.1016/j.ejogrb.2005.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 11/24/2004] [Accepted: 03/29/2005] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Alterations of the p53 gene have been widely suggested to be relevant to the development of endometrial carcinoma. However, contradictory results have been reported when immunohistochemical determination of p53 expression has been correlated with stage and histological features of the tumours. STUDY DESIGN Pathology findings were reviewed and p53 immunoperoxidase staining was performed in 240 cases of endometrial carcinoma. RESULTS Uterine papillary serous adenocarcinomas showed significantly higher p53 overexpression than uterine endometrioid adenocarcinomas (100.0% versus 61.0%, p<0.005). p53 overexpression was significantly higher in the secretory variant (85.7%) than in the typical endometrioid carcinoma (60.0%) (p<0.05). p53 expression did not differ between early (stage I) and advanced (stage II-IV) carcinomas. Likewise, no difference was observed in p53 expression among different architectural grades. The incidence of metastasis to lymph nodes was similar in p53 positive (13.7%) and in p53 negative tumours (12.5%). CONCLUSION In the present series, p53 immunostaining did not differ between cases with different FIGO stages or histologic characteristics of the tumours. No simple relationship exists between the immunohistochemical determination of p53 expression and the biological aggressiveness of endometrial carcinomas.
Collapse
Affiliation(s)
- Nicola Ragni
- Department of Obstetrics and Gynaecology, San Martino Hospital, University of Genoa, Largo R. Benzi 1, 16132 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
97
|
van Zeeland AA, Vreeswijk MPG, de Gruijl FR, van Kranen HJ, Vrieling H, Mullenders LFH. Transcription-coupled repair: impact on UV-induced mutagenesis in cultured rodent cells and mouse skin tumors. Mutat Res 2005; 577:170-8. [PMID: 15949822 DOI: 10.1016/j.mrfmmm.2005.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 03/22/2005] [Accepted: 03/29/2005] [Indexed: 11/25/2022]
Abstract
UV-induced cyclobutane pyrimidine dimers (CPDs) are removed with accelerated speed from the transcribed strand of expressed genes in cultured mammalian cells by a process called transcription-coupled repair (TCR). It has been previously shown that this phenomenon has consequences for the molecular nature of the mutations induced by UV-light. Here, we review these data and show that TCR has not only a clear impact on UV-induced mutations in cultured mammalian cells but also on genes involved in tumor formation in the skin of UV-exposed mice. Mutations observed in the p53 gene in UV-induced squamous cell carcinoma are predominantly found at sites of dipyrimidines in the non-transcribed strand. In contrast, in UVC-irradiated Csb(-/-) Chinese hamster cells and in UVB-induced tumors in the Csb(-/-) mouse, almost all mutations are at positions of dipyrimidine sites in the transcribed strand of the mutated gene. Csb(-/-) mice appear to be susceptible to UVB-induced skin cancer in contrast to the human CSB patients. We speculate that the UVB-induced cancer susceptibility of Csb(-/-) mice is related to the absence of TCR as well as to a lack of a compensating global genome repair system for CPDs in mice.
Collapse
Affiliation(s)
- Albert A van Zeeland
- Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
98
|
Ford JM. Regulation of DNA damage recognition and nucleotide excision repair: another role for p53. Mutat Res 2005; 577:195-202. [PMID: 15927209 DOI: 10.1016/j.mrfmmm.2005.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/06/2005] [Accepted: 04/06/2005] [Indexed: 10/25/2022]
Abstract
In response to DNA damage, the p53 tumor suppressor gene product is activated leading to the induction of several downstream cellular processes including cell cycle checkpoints, DNA repair or apoptosis. Experiments first performed in the Hanawalt laboratory identified a p53-dependent pathway affecting global genomic nucleotide excision repair. The mechanisms involved in this process include both transcriptional and post-translational regulation by p53 of the DDB2 and XPC gene products, two critical DNA damage recognition proteins required for GGR. A historical review of this work is presented.
Collapse
Affiliation(s)
- James M Ford
- Department of Medicine (Oncology), Stanford University School of Medicine, 1115 CCSR Bldg., 269 Campus Drive Stanford, CA 94305, USA.
| |
Collapse
|
99
|
Liu MT, Chang YT, Chen SC, Chuang YC, Chen YR, Lin CS, Chen JY. Epstein-Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity. Oncogene 2005; 24:2635-46. [PMID: 15829976 DOI: 10.1038/sj.onc.1208319] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV), a viral oncogene, is essential for transformation of resting B cells by the virus. We previously demonstrated that LMP1 could repress DNA repair in p53-wild-type and p53-deficient human epithelial cells. In this study, using a host cell reactivation (HCR) assay, we demonstrated that p53-enhanced DNA repair was repressed by LMP1 in p53-deficient cells. Moreover, we found that LMP1 was able to repress p53-dependent transcriptional activity. Regarding the mechanisms of p53 repression by LMP1, we found that LMP1 did not inhibit p53 function through direct interaction, by promoting protein degradation or reducing its DNA-binding ability. Using chimeric proteins in the reporter assay, we demonstrated that LMP1 inhibited p53 transactivation by influencing the N-terminal transactivation domain of p53. Subsequent experiments using various LMP1 deletion mutants indicated that a C-terminus-activating region of LMP1, CTAR1 or CTAR2, is responsible for the repression of p53-mediated DNA repair and p53-dependent transcription, which is correlated with the region responsible for NF-kappaB activation. Furthermore, blockage of NF-kappaB signalling by IkappaB-DeltaN was shown to abolish the repression of p53 by LMP1, suggesting that LMP1 likely repressed p53 function through the NF-kappaB pathway. Based on these results, we propose that inhibition of p53-dependent transcriptional activity and DNA repair by LMP1 results in the loss of p53 activity for maintaining genomic stability, which may contribute to the oncogenesis of LMP1 in human epithelial cells.
Collapse
Affiliation(s)
- Ming-Tsan Liu
- National Health Research Institutes, 3F No. 109, Section 6, Min-Chuan East Road, Taipei 114, Taiwan
| | | | | | | | | | | | | |
Collapse
|
100
|
Xu GW, Mymryk JS, Cairncross JG. Pharmaceutical-mediated inactivation of p53 sensitizes U87MG glioma cells to BCNU and temozolomide. Int J Cancer 2005; 116:187-92. [PMID: 15800902 DOI: 10.1002/ijc.21071] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pifithrin-alpha (PFTalpha) is a small molecule inhibitor of p53. By reversibly blocking apoptosis in response to DNA damage, PFTalpha protects normal cells from lethal doses of gamma-radiation (Komarov et al., Science, 1999;285:1733-7). We examined the effect of PFTalpha on the chemosensitivity of a human cancer in which cell cycle arrest, not apoptosis, is the principle cellular consequence of p53 activation. This was of interest because E6 silencing of p53 sensitizes U87MG astrocytic glioma cells to BCNU and temozolomide (TMZ), cytotoxic drugs that are modestly helpful in the treatment of aggressive astrocytic gliomas. We observed that exposure of U87MG cells to PFTalpha before cytotoxic chemotherapy attenuated p53-mediated induction of p21WAF1 protein levels, sensitizing U87MG cells to BCNU and TMZ. Sensitization of U87MG cells was associated with G1 arrest, delayed entry into S-phase and decreased repair of DNA damage by BCNU. Our findings suggest that in addition to protecting normal cells from the toxic effects of radiation and chemotherapy, small molecule inhibitors of p53, like PFTalpha, might play a role in clinical oncology by sensitizing certain resistant cancers to cytotoxic chemotherapies.
Collapse
Affiliation(s)
- G Wei Xu
- Department of Oncology, University of Western Ontario, London, Ontario
| | | | | |
Collapse
|