51
|
New screening approach for Alzheimer's disease risk assessment from urine lipid peroxidation compounds. Sci Rep 2019; 9:14244. [PMID: 31578419 PMCID: PMC6775072 DOI: 10.1038/s41598-019-50837-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/20/2019] [Indexed: 11/08/2022] Open
Abstract
Alzheimer Disease (AD) standard biological diagnosis is based on expensive or invasive procedures. Recent research has focused on some molecular mechanisms involved since early AD stages, such as lipid peroxidation. Therefore, a non-invasive screening approach based on new lipid peroxidation compounds determination would be very useful. Well-defined early AD patients and healthy participants were recruited. Lipid peroxidation compounds were determined in urine using a validated analytical method based on liquid chromatography coupled to tandem mass spectrometry. Statistical studies consisted of the evaluation of two different linear (Elastic Net) and non-linear (Random Forest) regression models to discriminate between groups of participants. The regression models fitted to the data from some lipid peroxidation biomarkers (isoprostanes, neuroprostanes, prostaglandines, dihomo-isoprostanes) in urine as potential predictors of early AD. These prediction models achieved fair validated area under the receiver operating characteristics (AUC-ROCs > 0.68) and their results corroborated each other since they are based on different analytical principles. A satisfactory early screening approach, using two complementary regression models, has been obtained from urine levels of some lipid peroxidation compounds, indicating the individual probability of suffering from early AD.
Collapse
|
52
|
Peña-Bautista C, Vento M, Baquero M, Cháfer-Pericás C. Lipid peroxidation in neurodegeneration. Clin Chim Acta 2019; 497:178-188. [PMID: 31377127 DOI: 10.1016/j.cca.2019.07.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/14/2023]
Abstract
Neurodegenerative diseases have great social and economic impact and cause millions of deaths every year. The potential molecular mechanisms in these pathologies have been widely studied and implicate lipid peroxidation as an important factor in the development of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Data indicates that pathologic mechanisms specifically involve ferroptosis and mitochondrial dysfunction. Here we review the molecular mechanisms related to the lipid peroxidation that involve the development of neurodegeneration, as well as the utility of some biomarkers in diagnosis, prognosis and evaluation of new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Máximo Vento
- Health Research Institute La Fe, Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
53
|
Wang Z, Yang Y, Liu M, Wei Y, Liu J, Pei H, Li H. Rhizoma Coptidis for Alzheimer's Disease and Vascular Dementia: A Literature Review. Curr Vasc Pharmacol 2019; 18:358-368. [PMID: 31291876 DOI: 10.2174/1570161117666190710151545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and vascular dementia (VaD) are major types of dementia, both of which cause heavy economic burdens for families and society. However, no currently available medicines can control dementia progression. Rhizoma coptidis, a Chinese herbal medicine, has been used for >2000 years and is now gaining attention as a potential treatment for AD and VaD. METHODS We reviewed the mechanisms of the active ingredients of Rhizoma coptidis and Rhizoma coptidis-containing Chinese herbal compounds in the treatment of AD and VaD. We focused on studies on ameliorating the risk factors and the pathological changes of these diseases. RESULTS The Rhizoma coptidis active ingredients include berberine, palmatine, coptisine, epiberberine, jatrorrhizine and protopine. The most widely studied ingredient is berberine, which has extensive therapeutic effects on the risk factors and pathogenesis of dementia. It can control blood glucose and lipid levels, regulate blood pressure, ameliorate atherosclerosis, inhibit cholinesterase activity, Aβ generation, and tau hyperphosphorylation, decrease neuroinflammation and oxidative stress and alleviate cognitive impairment. Other ingredients (such as jatrorrhizine, coptisine, epiberberine and palmatine) also regulate blood lipids and blood pressure; however, there are relatively few studies on them. Rhizoma coptidis-containing Chinese herbal compounds like Huanglian-Jie-Du-Tang, Huanglian Wendan Decoction, Banxia Xiexin Decoction and Huannao Yicong Formula have anti-inflammatory and antioxidant stress activities, regulate insulin signaling, inhibit γ-secretase activity, neuronal apoptosis, tau hyperphosphorylation, and Aβ deposition, and promote neural stem cell differentiation, thereby improving cognitive function. CONCLUSION The "One-Molecule, One-Target" paradigm has suffered heavy setbacks, but a "multitarget- directed ligands" strategy may be viable. Rhizoma coptidis active ingredients and Rhizoma coptidiscontaining Chinese herbal compounds have multi-aspect therapeutic effects on AD and VaD.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jiangang Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
54
|
Notarstefano V, Gioacchini G, Byrne HJ, Zacà C, Sereni E, Vaccari L, Borini A, Carnevali O, Giorgini E. Vibrational characterization of granulosa cells from patients affected by unilateral ovarian endometriosis: New insights from infrared and Raman microspectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:206-214. [PMID: 30639914 DOI: 10.1016/j.saa.2018.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Endometriosis is a chronic gynaecological disease characterised by the presence of endometrial cells in extra-uterine regions. One of the main factors impacting on the fertility of women affected by endometriosis is the poor oocyte quality. Granulosa Cells (GCs) regulate oocyte development and maintain the appropriate microenvironment for the acquisition of its competence; hence, the dysregulation of these functions in GCs can lead to severe cellular damages also in oocytes. In this study, luteinized GCs samples were separately collected from both ovaries of women affected by Unilateral Ovarian Endometriosis and analysed by infrared and Raman microspectroscopy. The spectral data were compared with those of GCs from women with diagnosis of tubal, idiopathic or male infertility (taken as control group). The coupling of these two spectroscopic techniques sheds new light on the alteration induced by this pathology on GCs metabolism and biochemical composition. In fact, the study revealed similar biochemical modifications in GCs from both ovaries of women affected by unilateral ovarian endometriosis, such as the alteration of the protein pattern, the induction of oxidative stress mechanisms, and the deregulation of lipid and carbohydrate metabolisms. These evidences suggest that unilateral endometriosis impairs the overall ovarian functions, causing alterations not only in the ovary with endometriotic lesions but also in the contralateral "healthy" one.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 2, Ireland
| | - Carlotta Zacà
- 9.Baby Center for Reproductive Health, via Dante 15, 40125 Bologna, Italy
| | - Elena Sereni
- 9.Baby Center for Reproductive Health, via Dante 15, 40125 Bologna, Italy
| | - Lisa Vaccari
- SISSI Beamline, Elettra-Sincrotrone Trieste, S.C.p.A., S.S. 14 - Km 163.5, 34149 Basovizza, Trieste, Italy
| | - Andrea Borini
- 9.Baby Center for Reproductive Health, via Dante 15, 40125 Bologna, Italy
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
55
|
Pushie MJ, Kelly ME, Hackett MJ. Direct label-free imaging of brain tissue using synchrotron light: a review of new spectroscopic tools for the modern neuroscientist. Analyst 2019; 143:3761-3774. [PMID: 29961790 DOI: 10.1039/c7an01904a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The incidence of brain disease and brain disorders is increasing on a global scale. Unfortunately, development of new therapeutic strategies has not increased at the same rate, and brain diseases and brain disorders now inflict substantial health and economic impacts. A greater understanding of the fundamental neurochemistry that underlies healthy brain function, and the chemical pathways that manifest in brain damage or malfunction, are required to enable and accelerate therapeutic development. A previous limitation to the study of brain function and malfunction has been the limited number of techniques that provide both a wealth of biochemical information, and spatially resolved information (i.e., there was a previous lack of techniques that provided direct biochemical or elemental imaging at the cellular level). In recent times, a suite of direct spectroscopic imaging techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence microscopy (XFM), and X-ray absorption spectroscopy (XAS) have been adapted, optimized and integrated into the field of neuroscience, to fill the above mentioned capability-gap. Advancements at synchrotron light sources, such as improved light intensity/flux, increased detector sensitivities and new capabilities of imaging/optics, has pushed the above suite of techniques beyond "proof-of-concept" studies, to routine application to study complex research problems in the field of neuroscience (and other scientific disciplines). This review examines several of the major advancements that have occurred over the last several years, with respect to FTIR, XFM and XAS capabilities at synchrotron facilities, and how the increases in technical capabilities have being integrated and used in the field of neuroscience.
Collapse
Affiliation(s)
- M J Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | |
Collapse
|
56
|
Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C. Free radicals in Alzheimer's disease: Lipid peroxidation biomarkers. Clin Chim Acta 2019; 491:85-90. [DOI: 10.1016/j.cca.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
|
57
|
Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcoplasmic inclusions. Nat Commun 2019; 10:1396. [PMID: 30918256 PMCID: PMC6437160 DOI: 10.1038/s41467-019-09111-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/14/2019] [Indexed: 11/08/2022] Open
Abstract
Myoglobin, encoded by MB, is a small cytoplasmic globular hemoprotein highly expressed in cardiac myocytes and oxidative skeletal myofibers. Myoglobin binds O2, facilitates its intracellular transport and serves as a controller of nitric oxide and reactive oxygen species. Here, we identify a recurrent c.292C>T (p.His98Tyr) substitution in MB in fourteen members of six European families suffering from an autosomal dominant progressive myopathy with highly characteristic sarcoplasmic inclusions in skeletal and cardiac muscle. Myoglobinopathy manifests in adulthood with proximal and axial weakness that progresses to involve distal muscles and causes respiratory and cardiac failure. Biochemical characterization reveals that the mutant myoglobin has altered O2 binding, exhibits a faster heme dissociation rate and has a lower reduction potential compared to wild-type myoglobin. Preliminary studies show that mutant myoglobin may result in elevated superoxide levels at the cellular level. These data define a recognizable muscle disease associated with MB mutation. Myoglobin is a hemeprotein that reversibly binds oxygen and gives muscle its red color. Here, the authors report a genetic variant in the MB gene that associates with myoglobinopathy, an autosomal dominant progressive myopathy, and altered oxygen binding properties of the mutant protein.
Collapse
|
58
|
Wen P, Wei X, Liang G, Wang Y, Yang Y, Qin L, Pang W, Qin G, Li H, Jiang Y, Wu Q. Long-term exposure to low level of fluoride induces apoptosis via p53 pathway in lymphocytes of aluminum smelter workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2671-2680. [PMID: 30478774 DOI: 10.1007/s11356-018-3726-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Long-term occupational exposure to low level of fluoride can induce oxidative stress and apoptosis in many cells, including lymphocyte. However, the underlying mechanism remains unclear. Hence, this study was designed to explore the potential oxidative stress and apoptosis of long-term occupational exposure to low level of fluoride in aluminum smelter workers. A total of 120 aluminum smelter workers were recruited in control, low-, middle-, and high-fluoride exposure groups with 30 workers for each group. The peripheral blood samples were collected, centrifuged, and isolated to obtain serum and lymphocyte suspensions. The air and serum fluoride concentrations were detected by fluoride ion-selective electrode method. The lymphocytic apoptosis rate, DNA damage, oxidative stress, and mRNA levels of p53, Bcl-2, and Bax were assessed by Annexin V/PI staining, comet assay, attenuated total reflectance Fourier transform infrared spectroscopy and real-time polymerase chain reaction, respectively. Results showed that the air and serum fluoride concentrations of fluoride-exposed groups were higher than those of the control group (p < 0.05). Fluoride exposure might induce apoptosis, DNA damage and oxidative stress in a dose-dependent manner in lymphocytes (p < 0.05). The expression levels of p53 and Bax were increased with fluoride exposure in lymphocytes (p < 0.05), whereas the Bcl-2 expression was decreased but not significantly. Taken together, these observations indicate that long-term occupational exposure to low level of fluoride may lead to oxidative stress and induce apoptosis through the p53-dependent pathway in peripheral blood lymphocytes of aluminum smelter workers. Serum fluoride level may be the potential biomarker of fluoride exposure.
Collapse
Affiliation(s)
- Pingjing Wen
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong, Nanning, Guangxi, 530021, People's Republic of China
- Department of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, People's Republic of China
| | - Xiaomin Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong, Nanning, Guangxi, 530021, People's Republic of China
| | - Guiqiang Liang
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, No. 13 Wuhe Avenue, Nanning, Guangxi, 530200, People's Republic of China
| | - Yanfei Wang
- Primary Care Division, Maternal and Child Health Hospital, Chongqing, People's Republic of China
| | - Yiping Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong, Nanning, Guangxi, 530021, People's Republic of China
| | - Lilin Qin
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong, Nanning, Guangxi, 530021, People's Republic of China
| | - Weiyi Pang
- Department of Occupational and Environmental Health, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Guangqiu Qin
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, No. 13 Wuhe Avenue, Nanning, Guangxi, 530200, People's Republic of China
| | - Hai Li
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, No. 13 Wuhe Avenue, Nanning, Guangxi, 530200, People's Republic of China
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong, Nanning, Guangxi, 530021, People's Republic of China.
| | - Qijun Wu
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, No. 13 Wuhe Avenue, Nanning, Guangxi, 530200, People's Republic of China.
| |
Collapse
|
59
|
Fimognari N, Hollings A, Lam V, Tidy RJ, Kewish CM, Albrecht MA, Takechi R, Mamo JCL, Hackett MJ. Biospectroscopic Imaging Provides Evidence of Hippocampal Zn Deficiency and Decreased Lipid Unsaturation in an Accelerated Aging Mouse Model. ACS Chem Neurosci 2018; 9:2774-2785. [PMID: 29901988 DOI: 10.1021/acschemneuro.8b00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Western society is facing a health epidemic due to the increasing incidence of dementia in aging populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Aging is the greatest risk factor for memory loss that occurs during the natural aging process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Greater understanding of the biochemical pathways that drive a healthy aging brain toward dementia (pathological aging or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein overexpression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural aging process. A promising animal model reported to model mechanisms of accelerated natural aging and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain aging. A limitation to traditional methods of biochemical characterization is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or microspatial resolution. Therefore, in this investigation, we report the first multimodal biospectroscopic characterization of the SAMP8 model, and have identified important biochemical and elemental alterations, and colocalizations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of Zn deficiency within specific subregions of the hippocampal CA3 sector, which colocalize with decreased lipid unsaturation. Our findings also revealed colocalization of decreased lipid unsaturation and increased lactate in the corpus callosum white matter, adjacent to the hippocampus. Such findings may have important implication for future research aimed at elucidating specific biochemical pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Nicholas Fimognari
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Ashley Hollings
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University, Bentley, WA 6845, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
| | - Rebecca J. Tidy
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University, Bentley, WA 6845, Australia
| | - Cameron M. Kewish
- Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Matthew A. Albrecht
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
| | - Mark J. Hackett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University, Bentley, WA 6845, Australia
| |
Collapse
|
60
|
Mordechai S, Shufan E, Porat Katz BS, Salman A. Early diagnosis of Alzheimer's disease using infrared spectroscopy of isolated blood samples followed by multivariate analyses. Analyst 2018; 142:1276-1284. [PMID: 27827489 DOI: 10.1039/c6an01580h] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, particularly in the elderly. The disease is characterized by cognitive decline that typically starts with insidious memory loss and progresses relentlessly to produce global impairment of all higher cortical functions. Due to better living conditions and health facilities in developed countries, which result in higher overall life spans, these countries report upward trends of AD among their populations. There are, however, no specific diagnostic tests for AD and clinical diagnosis is especially difficult in the earliest stages of the disease. Early diagnosis of AD is frequently subjective and is determined by physicians (generally neurologists, geriatricians, and psychiatrists) depending on their experience. Diagnosing AD requires both medical history and mental status testing. Having trouble with memory does not mean you have AD. AD has no current cure, but treatments for symptoms are available and research continues. In this study, we investigated the potential of infrared microscopy to differentiate between AD patients and controls, using Fourier transform infrared (FTIR) spectroscopy of isolated blood components. FTIR is known as a quick, safe, and minimally invasive method to investigate biological samples. For this goal, we measured infrared spectra from white blood cells (WBCs) and plasma taken from AD patients and controls, with the consent of the patients or their guardians. Applying multivariate analysis, principal component analysis (PCA) followed by linear discriminant analysis (LDA), it was possible to differentiate among the different types of mild, moderate, and severe AD, and the controls, with 85% accuracy when using the WBC spectra and about 77% when using the plasma spectra. When only the moderate and severe stages were included, an 83% accuracy was obtained using the WBC spectra and about 89% when using the plasma spectra.
Collapse
Affiliation(s)
- S Mordechai
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | | | |
Collapse
|
61
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
62
|
Ali MHM, Rakib F, Abdelalim EM, Limbeck A, Mall R, Ullah E, Mesaeli N, McNaughton D, Ahmed T, Al-Saad K. Fourier-Transform Infrared Imaging Spectroscopy and Laser Ablation -ICPMS New Vistas for Biochemical Analyses of Ischemic Stroke in Rat Brain. Front Neurosci 2018; 12:647. [PMID: 30283295 PMCID: PMC6157330 DOI: 10.3389/fnins.2018.00647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Stroke is the main cause of adult disability in the world, leaving more than half of the patients dependent on daily assistance. Understanding the post-stroke biochemical and molecular changes are critical for patient survival and stroke management. The aim of this work was to investigate the photo-thrombotic ischemic stroke in male rats with particular focus on biochemical and elemental changes in the primary stroke lesion in the somatosensory cortex and surrounding areas, including the corpus callosum. Materials and Methods: FT-IR imaging spectroscopy and LA-ICPMS techniques examined stroke brain samples, which were compared with standard immunohistochemistry studies. Results: The FTIR results revealed that in the lesioned gray matter the relative distribution of lipid, lipid acyl and protein contents decreased significantly. Also at this locus, there was a significant increase in aggregated protein as detected by high-levels Aβ1-42. Areas close to the stroke focus experienced decrease in the lipid and lipid acyl contents associated with an increase in lipid ester, olefin, and methyl bio-contents with a novel finding of Aβ1-42 in the PL-GM and L-WM. Elemental analyses realized major changes in the different brain structures that may underscore functionality. Conclusion: In conclusion, FTIR bio-spectroscopy is a non-destructive, rapid, and a refined technique to characterize oxidative stress markers associated with lipid degradation and protein denaturation not characterized by routine approaches. This technique may expedite research into stroke and offer new approaches for neurodegenerative disorders. The results suggest that a good therapeutic strategy should include a mechanism that provides protective effect from brain swelling (edema) and neurotoxicity by scavenging the lipid peroxidation end products.
Collapse
Affiliation(s)
- Mohamed H M Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.,Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Raghvendra Mall
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ehsan Ullah
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasrin Mesaeli
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Donald McNaughton
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Tariq Ahmed
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khalid Al-Saad
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
63
|
Benseny-Cases N, Álvarez-Marimon E, Castillo-Michel H, Cotte M, Falcon C, Cladera J. Synchrotron-Based Fourier Transform Infrared Microspectroscopy (μFTIR) Study on the Effect of Alzheimer’s Aβ Amorphous and Fibrillar Aggregates on PC12 Cells. Anal Chem 2018; 90:2772-2779. [DOI: 10.1021/acs.analchem.7b04818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Núria Benseny-Cases
- ALBA Synchrotron Light Source, Carrer de la Llum 2−26, 08290 Cerdanyola del Vallès, Catalonia, Spain
| | - Elena Álvarez-Marimon
- Unitat
de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat
de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Hiram Castillo-Michel
- ID21, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Marine Cotte
- ID21, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8220, Laboratoire d’Archéologie Moléculaire et Structurale (LAMS), 4 place Jussieu, 75005 Paris, France
| | - Carlos Falcon
- ALBA Synchrotron Light Source, Carrer de la Llum 2−26, 08290 Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Cladera
- Unitat
de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat
de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
64
|
Abstract
Proteomics and lipidomics are powerful tools to the large-scale study of proteins and lipids, respectively. Several methods can be employed with particular benefits and limitations in the study of human brain. This is a review of the rationale use of current techniques with particular attention to limitations and pitfalls inherent to each one of the techniques, and more importantly, to their use in the study of post-mortem brain tissue. These aspects are cardinal to avoid false interpretations, errors and unreal expectancies. Other points are also stressed as exemplified in the analysis of human neurodegenerative diseases which are manifested by disease-, region-, and stage-specific modifications commonly in the context of aging. Information about certain altered protein clusters and proteins oxidatively damaged is summarized for Alzheimer and Parkinson diseases.
Collapse
Affiliation(s)
- Isidro Ferrer
- Pathologic Anatomy Service, Institute of Neuropathology, Bellvitge University Hospital; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona; and Network Center of Biomedical Research on Neurodegenerative Diseases, Institute Carlos III; Hospitalet de Llobregat, Llobregat, Spain.
| |
Collapse
|
65
|
Schreiver I, Hesse B, Seim C, Castillo-Michel H, Villanova J, Laux P, Dreiack N, Penning R, Tucoulou R, Cotte M, Luch A. Synchrotron-based ν-XRF mapping and μ-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin. Sci Rep 2017; 7:11395. [PMID: 28900193 PMCID: PMC5595966 DOI: 10.1038/s41598-017-11721-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/29/2017] [Indexed: 11/26/2022] Open
Abstract
The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body. We used skin and lymphatic tissues from human corpses to address local biokinetics by means of synchrotron X-ray fluorescence (XRF) techniques at both the micro (μ) and nano (ν) scale. Additional advanced mass spectrometry-based methodology enabled to demonstrate simultaneous transport of organic pigments, heavy metals and titanium dioxide from skin to regional lymph nodes. Among these compounds, organic pigments displayed the broadest size range with smallest species preferentially reaching the lymph nodes. Using synchrotron μ-FTIR analysis we were also able to detect ultrastructural changes of the tissue adjacent to tattoo particles through altered amide I α-helix to β-sheet protein ratios and elevated lipid contents. Altogether we report strong evidence for both migration and long-term deposition of toxic elements and tattoo pigments as well as for conformational alterations of biomolecules that likely contribute to cutaneous inflammation and other adversities upon tattooing.
Collapse
Affiliation(s)
- Ines Schreiver
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Bernhard Hesse
- European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, Cedex 9, France
| | - Christian Seim
- Physikalisch-Technische Bundesanstalt, Department of X-ray Spectrometry, Abbestrasse 2-12, 10587, Berlin, Germany.,Technische Universität Berlin, Institute for Optics and Atomic Physics, Hardenbergstrasse 36, 10623, Berlin, Germany
| | | | - Julie Villanova
- European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, Cedex 9, France
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Nadine Dreiack
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Randolf Penning
- Institute of Forensic Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Remi Tucoulou
- European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, Cedex 9, France
| | - Marine Cotte
- European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, Cedex 9, France
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| |
Collapse
|
66
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 565] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
67
|
Summers KL, Fimognari N, Hollings A, Kiernan M, Lam V, Tidy RJ, Paterson D, Tobin MJ, Takechi R, George GN, Pickering IJ, Mamo JC, Harris HH, Hackett MJ. A Multimodal Spectroscopic Imaging Method To Characterize the Metal and Macromolecular Content of Proteinaceous Aggregates (“Amyloid Plaques”). Biochemistry 2017; 56:4107-4116. [DOI: 10.1021/acs.biochem.7b00262] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kelly L. Summers
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Nicholas Fimognari
- School
of Biomedical Sciences, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| | - Ashley Hollings
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Department
of Chemistry, Curtin University, GPO Box U1987, Bentley, Western Australia 6845, Australia
- Curtin Institute
of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6845, Australia
| | - Mitchell Kiernan
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Department
of Chemistry, Curtin University, GPO Box U1987, Bentley, Western Australia 6845, Australia
- Curtin Institute
of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6845, Australia
| | - Virginie Lam
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- School of
Public Health, Curtin University, Bentley, Western Australia 6102, Australia
| | - Rebecca J. Tidy
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Department
of Chemistry, Curtin University, GPO Box U1987, Bentley, Western Australia 6845, Australia
- Curtin Institute
of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6845, Australia
| | - David Paterson
- Australian Synchrotron, Clayton, Victoria 3068, Australia
| | - Mark J. Tobin
- Australian Synchrotron, Clayton, Victoria 3068, Australia
| | - Ryu Takechi
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- School of
Public Health, Curtin University, Bentley, Western Australia 6102, Australia
| | - Graham N. George
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Ingrid J. Pickering
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - John C. Mamo
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- School of
Public Health, Curtin University, Bentley, Western Australia 6102, Australia
| | - Hugh H. Harris
- Department
of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mark J. Hackett
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Department
of Chemistry, Curtin University, GPO Box U1987, Bentley, Western Australia 6845, Australia
- Curtin Institute
of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6845, Australia
| |
Collapse
|
68
|
Gonzalez-Moragas L, Yu SM, Benseny-Cases N, Stürzenbaum S, Roig A, Laromaine A. Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans. Nanotoxicology 2017; 11:647-657. [PMID: 28673184 DOI: 10.1080/17435390.2017.1342011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a mechanistic study of the effect of iron oxide nanoparticles (SPIONs) in Caenorhabditis elegans combining a genome-wide analysis with the investigation of specific molecular markers frequently linked to nanotoxicity. The effects of two different coatings were explored: citrate, an anionic stabilizer, and bovine serum albumin, as a pre-formed protein corona. The transcriptomic study identified differentially expressed genes following an exposure to SPIONs. The expression of genes involved in oxidative stress, metal detoxification response, endocytosis, intestinal integrity and iron homeostasis was quantitatively evaluated. The role of oxidative stress was confirmed by gene expression analysis and by synchrotron Fourier Transform infrared microscopy based on the higher tissue oxidation of NP-treated animals. The observed transcriptional modulation of key signaling pathways such as MAPK and Wnt suggests that SPIONs might be endocytosed by clathrin-mediated processes, a putative mechanism of nanotoxicity which deserves further mechanistic investigations.
Collapse
Affiliation(s)
- Laura Gonzalez-Moragas
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| | - Si-Ming Yu
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain.,b Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou , China
| | | | - Stephen Stürzenbaum
- d Faculty of Life Sciences & Medicine, Analytical and Environmental Sciences Division , King's College London , London , UK
| | - Anna Roig
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| | - Anna Laromaine
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| |
Collapse
|
69
|
Meléndez-Martínez D, Muñoz JM, Barraza-Garza G, Cruz-Peréz MS, Gatica-Colima A, Alvarez-Parrilla E, Plenge-Tellechea LF. Rattlesnake Crotalus molossus nigrescens venom induces oxidative stress on human erythrocytes. J Venom Anim Toxins Incl Trop Dis 2017; 23:24. [PMID: 28439287 PMCID: PMC5399391 DOI: 10.1186/s40409-017-0114-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Globally, snake envenomation is a well-known cause of death and morbidity. In many cases of snakebite, myonecrosis, dermonecrosis, hemorrhage and neurotoxicity are present. Some of these symptoms may be provoked by the envenomation itself, but others are secondary effects of the produced oxidative stress that enhances the damage produced by the venom toxins. The only oxidative stress effect known in blood is the change in oxidation number of Fe (from ferrous to ferric) in hemoglobin, generating methemoglobin but not in other macromolecules. Currently, the effects of the overproduction of methemoglobin derived from snake venom are not extensively recorded. Therefore, the present study aims to describe the oxidative stress induced by Crotalus molossus nigrescens venom using erythrocytes. METHODS Human erythrocytes were washed and incubated with different Crotalus molossus nigrescens venom concentrations (0-640 μg/mL). After 24 h, the hemolytic activity was measured followed by attenuated total reflectance-Fourier transform infrared spectroscopy, non-denaturing PAGE, conjugated diene and thiobarbituric acid reactive substances determination. RESULTS Low concentrations of venom (<10 μg/mL) generates oxyhemoglobin release by hemolysis, whereas higher concentrations produced a hemoglobin shift of valence, producing methemoglobin (>40 μg/mL). This substance is not degraded by proteases present in the venom. By infrared spectroscopy, starting in 80 μg/mL, we observed changes in bands that are associated with protein damage (1660 and 1540 cm-1) and lipid peroxidation (2960, 2920 and 1740 cm-1). Lipid peroxidation was confirmed by conjugated diene and thiobarbituric acid reactive substance determination, in which differences were observed between the control and erythrocytes treated with venom. CONCLUSIONS Crotalus molossus nigrescens venom provokes hemolysis and oxidative stress, which induces methemoglobin formation, loss of protein structure and lipid peroxidation.
Collapse
Affiliation(s)
- David Meléndez-Martínez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, C. P. 32310. A. P. 1595-D Ciudad Juárez, Chihuahua Mexico
| | - Juan Manuel Muñoz
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, C. P. 32310. A. P. 1595-D Ciudad Juárez, Chihuahua Mexico
| | - Guillermo Barraza-Garza
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, C. P. 32310. A. P. 1595-D Ciudad Juárez, Chihuahua Mexico
| | - Martha Sandra Cruz-Peréz
- Herpetario de la Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro, Mexico
| | - Ana Gatica-Colima
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, C. P. 32310. A. P. 1595-D Ciudad Juárez, Chihuahua Mexico
| | - Emilio Alvarez-Parrilla
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, C. P. 32310. A. P. 1595-D Ciudad Juárez, Chihuahua Mexico
| | - Luis Fernando Plenge-Tellechea
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, C. P. 32310. A. P. 1595-D Ciudad Juárez, Chihuahua Mexico
| |
Collapse
|
70
|
Photothermal Microscopy for High Sensitivity and High Resolution Absorption Contrast Imaging of Biological Tissues. PHOTONICS 2017. [DOI: 10.3390/photonics4020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
71
|
James SA, Churches QI, de Jonge MD, Birchall IE, Streltsov V, McColl G, Adlard PA, Hare DJ. Iron, Copper, and Zinc Concentration in Aβ Plaques in the APP/PS1 Mouse Model of Alzheimer's Disease Correlates with Metal Levels in the Surrounding Neuropil. ACS Chem Neurosci 2017; 8:629-637. [PMID: 27958708 DOI: 10.1021/acschemneuro.6b00362] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The metal ions of iron, copper, and zinc have long been associated with the aggregation of β-amyloid (Aβ) plaques in Alzheimer's disease; an interaction that has been suggested to promote increased oxidative stress and neuronal dysfunction. We examined plaque metal load in the hippocampus of APP/PS1 mice using X-ray fluorescence microscopy to assess how the anatomical location of Aβ plaques was influenced by the metal content of surrounding tissue. Immunohistochemical staining of Aβ plaques colocalized with areas of increased X-ray scattering power in unstained tissue sections, allowing direct X-ray based-assessment of plaque metal levels in sections subjected to minimal chemical fixation. We identified and mapped 48 individual plaques in four subregions of the hippocampus from four biological replicates. Iron, Cu, and Zn areal concentrations (ng cm-2) were increased in plaques compared to the surrounding neuropil. However, this elevation in metal load reflected the local metal makeup of the surrounding neuropil, where different brain regions are enriched for different metal ions. After correcting for tissue density, only Zn levels remained elevated in plaques. This study suggests that the in vivo binding of Zn to plaques is not simply due to increased protein deposition.
Collapse
Affiliation(s)
- Simon A. James
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
- Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Quentin I. Churches
- Biomedical
Manufacturing,
CSIRO Manufacturing, Clayton South, Victoria 3169, Australia
| | | | - Ian E. Birchall
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Victor Streltsov
- Biomedical
Manufacturing,
CSIRO Manufacturing, Clayton South, Victoria 3169, Australia
| | - Gawain McColl
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul A. Adlard
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Dominic J. Hare
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
- Elemental
Bio-imaging Facility, University of Technology Sydney, Broadway, Sydney, New South Wales 2007, Australia
| |
Collapse
|
72
|
Pre-plaque conformational changes in Alzheimer's disease-linked Aβ and APP. Nat Commun 2017; 8:14726. [PMID: 28287086 PMCID: PMC5355803 DOI: 10.1038/ncomms14726] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/25/2017] [Indexed: 01/30/2023] Open
Abstract
Reducing levels of the aggregation-prone Aβ peptide that accumulates in the brain with Alzheimer's disease (AD) has been a major target of experimental therapies. An alternative approach may be to stabilize the physiological conformation of Aβ. To date, the physiological state of Aβ in brain remains unclear, since the available methods used to process brain tissue for determination of Aβ aggregate conformation can in themselves alter the structure and/or composition of the aggregates. Here, using synchrotron-based Fourier transform infrared micro-spectroscopy, non-denaturing gel electrophoresis and conformational specific antibodies we show that the physiological conformations of Aβ and amyloid precursor protein (APP) in brain of transgenic mouse models of AD are altered before formation of amyloid plaques. Furthermore, focal Aβ aggregates in brain that precede amyloid plaque formation localize to synaptic terminals. These changes in the states of Aβ and APP that occur prior to plaque formation may provide novel targets for AD therapy.
Collapse
|
73
|
Surowka AD, Pilling M, Henderson A, Boutin H, Christie L, Szczerbowska-Boruchowska M, Gardner P. FTIR imaging of the molecular burden around Aβ deposits in an early-stage 3-Tg-APP-PSP1-TAU mouse model of Alzheimer's disease. Analyst 2017; 142:156-168. [DOI: 10.1039/c6an01797e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High spatial resolution FTIR imaging of early-stage 3-Tg-APP-PSP1-TAU mouse brain identifies molecular burden around Aβ deposits.
Collapse
Affiliation(s)
- Artur Dawid Surowka
- AGH University of Science and Technology
- Faculty of Physics and Applied Computer Science
- Krakow
- Poland
| | - Michael Pilling
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- School of Chemical Engineering and Analytical Science
| | - Alex Henderson
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- School of Chemical Engineering and Analytical Science
| | - Herve Boutin
- Wolfson Molecular Imaging Centre
- University of Manchester
- Manchester
- UK
| | - Lidan Christie
- Wolfson Molecular Imaging Centre
- University of Manchester
- Manchester
- UK
| | | | - Peter Gardner
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- School of Chemical Engineering and Analytical Science
| |
Collapse
|
74
|
Vibrational spectroscopies to investigate concretions and ectopic calcifications for medical diagnosis. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
75
|
Caine S, Hackett MJ, Hou H, Kumar S, Maley J, Ivanishvili Z, Suen B, Szmigielski A, Jiang Z, Sylvain NJ, Nichol H, Kelly ME. A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke. Neurobiol Dis 2016; 91:132-42. [DOI: 10.1016/j.nbd.2016.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/13/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023] Open
|
76
|
Lai L, Zhao C, Su M, Li X, Liu X, Jiang H, Amatore C, Wang X. In vivo target bio-imaging of Alzheimer's disease by fluorescent zinc oxide nanoclusters. Biomater Sci 2016; 4:1085-91. [PMID: 27229662 DOI: 10.1039/c6bm00233a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease which is difficult to cure. When Alzheimer's disease occurs, the level of zinc ions in the brain changes, and the relevant amount of zinc ions continue decreasing in the cerebrospinal fluid and plasma of Alzheimer's patients with disease exacerbation. In view of these considerations, we have explored a new strategy for the in vivo rapid fluorescence imaging of Alzheimer's disease through target bio-labeling of zinc oxide nanoclusters which were biosynthesized in vivo in the Alzheimer's brain via intravenous injection of zinc gluconate solution. By using three-month-old and six-month-old Alzheimer's model mice as models, our observations demonstrate that biocompatible zinc ions could pass through the blood-brain barrier of the Alzheimer's disease mice and generate fluorescent zinc oxide nanoclusters (ZnO NCs) through biosynthesis, and then the bio-synthesized ZnO NCs could readily accumulate in situ on the hippocampus specific region for the in vivo fluorescent labeling of the affected sites. This study provides a new way for the rapid diagnosis of Alzheimer's disease and may have promising prospects in the effective diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Lanmei Lai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Miyazaki J, Iida T, Tanaka S, Hayashi-Takagi A, Kasai H, Okabe S, Kobayashi T. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:1702-10. [PMID: 27231615 PMCID: PMC4871075 DOI: 10.1364/boe.7.001702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 05/28/2023]
Abstract
A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences.
Collapse
Affiliation(s)
- Jun Miyazaki
- Advanced Ultrafast Laser Research Center, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- JST, CREST, K’ Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tadatsune Iida
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| | - Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| | - Akiko Hayashi-Takagi
- Department of Structural Physiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| | - Haruo Kasai
- JST, CREST, K’ Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Department of Structural Physiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| | - Takayoshi Kobayashi
- Advanced Ultrafast Laser Research Center, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- JST, CREST, K’ Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Department of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan
- Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0971, Japan
| |
Collapse
|
78
|
Infrared Spectroscopy as a Tool to Study the Antioxidant Activity of Polyphenolic Compounds in Isolated Rat Enterocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9245150. [PMID: 27213031 PMCID: PMC4861801 DOI: 10.1155/2016/9245150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/14/2016] [Accepted: 04/03/2016] [Indexed: 11/17/2022]
Abstract
The protective effect of different polyphenols, catechin (Cat), quercetin (Qc) (flavonoids), gallic acid (GA), caffeic acid (CfA), chlorogenic acid (ChA) (phenolic acids), and capsaicin (Cap), against H2O2-induced oxidative stress was evaluated in rat enterocytes using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Fourier Transform Infrared Microspectroscopy (FTIRM), and results were compared to standard lipid peroxidation techniques: conjugated dienes (CD) and Thiobarbituric Acid Reactive Substances (TBARS). Analysis of ATR-FTIR and FTIRM spectral data allowed the simultaneous evaluation of the effects of H2O2 and polyphenols on lipid and protein oxidation. All polyphenols showed a protective effect against H2O2-induced oxidative stress in enterocytes, when administered before or after H2O2. Cat and capsaicin showed the highest protective effect, while phenolic acids had weaker effects and Qc presented a mild prooxidative effect (IR spectral profile of biomolecules between control and H2O2-treated cells) according to FTIR analyses. These results demonstrated the viability to use infrared spectroscopy to evaluate the oxidant and antioxidant effect of molecules in cell systems assays.
Collapse
|
79
|
Naudí A, Cabré R, Jové M, Ayala V, Gonzalo H, Portero-Otín M, Ferrer I, Pamplona R. Lipidomics of human brain aging and Alzheimer's disease pathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:133-89. [PMID: 26358893 DOI: 10.1016/bs.irn.2015.05.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context.
Collapse
Affiliation(s)
- Alba Naudí
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Victoria Ayala
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Hugo Gonzalo
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Biomedical Research Institute of Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain.
| |
Collapse
|