51
|
Preparation and Immunoaffinity Depletion of Fresh Frozen Tissue Homogenates for Mass Spectrometry-Based Proteomics in the Context of Drug Target/Biomarker Discovery. Methods Mol Biol 2018; 1647:71-90. [PMID: 28808996 DOI: 10.1007/978-1-4939-7201-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The discovery of novel drug targets and biomarkers via mass spectrometry (MS)-based proteomic analysis of clinical specimens has proven to be challenging. The wide dynamic range of protein concentration in clinical specimens and the high background/noise originating from highly abundant proteins in tissue homogenates and serum/plasma encompass two major analytical obstacles. Immunoaffinity depletion of highly abundant blood-derived proteins from serum/plasma is a well-established approach adopted by numerous researchers; however, the utilization of this technique for immunodepletion of tissue homogenates obtained from fresh frozen clinical specimens is lacking. We first developed immunoaffinity depletion of highly abundant blood-derived proteins from tissue homogenates, using renal cell carcinoma as a model disease, and followed this study by applying it to different tissue types. Tissue homogenate immunoaffinity depletion of highly abundant proteins may be equally important as is the recognized need for depletion of serum/plasma, enabling more sensitive MS-based discovery of novel drug targets, and/or clinical biomarkers from complex clinical samples. Provided is a detailed protocol designed to guide the researcher through the preparation and immunoaffinity depletion of fresh frozen tissue homogenates for two-dimensional liquid chromatography, tandem mass spectrometry (2D-LC-MS/MS)-based molecular profiling of tissue specimens in the context of drug target and/or biomarker discovery.
Collapse
|
52
|
Unterlander N, Doucette AA. Membrane-Based SDS Depletion Ahead of Peptide and Protein Analysis by Mass Spectrometry. Proteomics 2018; 18:e1700025. [PMID: 29575800 DOI: 10.1002/pmic.201700025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 02/23/2018] [Indexed: 11/07/2022]
Abstract
SDS interferes with both bottom-up and top-down MS analysis, requiring removal prior to detection. Filter-aided sample preparation (FASP) is favored for bottom-up proteomics (BUP) while acetone precipitation is popular for top-down proteomics (TDP). We recently demonstrated acetone precipitation in a membrane filter cartridge. Alternatively, our automated electrophoretic device, termed transmembrane electrophoresis (TME), depletes SDS for both TDP and BUP studies. Here TME is compared to these two alternative methods of SDS depletion in both BUP and TDP workflows. To do so, a modified FASP method is described applicable to the SDS purification and recovery of intact proteins, suitable for LC/MS. All three methods reliably deplete >99.8% SDS. TME provide higher sample yields (average 90%) than FASP (55%) or acetone precipitation (57%), translating into higher total protein identifications (973 vs 877 FASP or 890 acetone) and higher spectral matches (2.5 times) per protein. In a top down workflow, each SDS-depletion method yields high-quality MS spectra for intact proteins. These results show each of these membrane-based strategies is capable of depleting SDS with high sample recovery and high spectra quality for both BUP and TDP studies.
Collapse
Affiliation(s)
- Nicole Unterlander
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
53
|
Abstract
While human plasma has a wealth of diagnostic information regarding the state of the human body in heath and disease, low molecular weight (LMW) proteome (<30 kDa) has been shown to contain a rich source of diagnostic biomarkers. Here we describe a protocol for top-down proteomic analysis to identify and characterize the LMW proteoforms present in four types of human plasma samples without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. Each type of plasma sample was first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC software. As a result, a total of 442 LMW proteins and cleaved products, including those with posttranslational modifications (PTMs) and single amino acid variations (SAAVs), were identified with a threshold E-value of 1 × 10-4 from the four types of plasma samples.
Collapse
|
54
|
Kachuk C, Doucette AA. The benefits (and misfortunes) of SDS in top-down proteomics. J Proteomics 2018; 175:75-86. [DOI: 10.1016/j.jprot.2017.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/19/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
|
55
|
Unterlander N, Doucette AA. Accelerated SDS depletion from proteins by transmembrane electrophoresis: Impacts of Joule heating. Electrophoresis 2018; 39:1349-1356. [DOI: 10.1002/elps.201700410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Nicole Unterlander
- Department of Chemistry; Dalhousie University; Halifax Nova Scotia Canada
| | | |
Collapse
|
56
|
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
57
|
Schaffer LV, Shortreed MR, Cesnik AJ, Frey BL, Solntsev SK, Scalf M, Smith LM. Expanding Proteoform Identifications in Top-Down Proteomic Analyses by Constructing Proteoform Families. Anal Chem 2017; 90:1325-1333. [PMID: 29227670 DOI: 10.1021/acs.analchem.7b04221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In top-down proteomics, intact proteins are analyzed by tandem mass spectrometry and proteoforms, which are defined forms of a protein with specific sequences of amino acids and localized post-translational modifications, are identified using precursor mass and fragmentation data. Many proteoforms that are detected in the precursor scan (MS1) are not selected for fragmentation by the instrument and therefore remain unidentified in typical top-down proteomic workflows. Our laboratory has developed the open source software program Proteoform Suite to analyze MS1-only intact proteoform data. Here, we have adapted it to provide identifications of proteoform masses in precursor MS1 spectra of top-down data, supplementing the top-down identifications obtained using the MS2 fragmentation data. Proteoform Suite performs mass calibration using high-scoring top-down identifications and identifies additional proteoforms using calibrated, accurate intact masses. Proteoform families, the set of proteoforms from a given gene, are constructed and visualized from proteoforms identified by both top-down and intact-mass analyses. Using this strategy, we constructed proteoform families and identified 1861 proteoforms in yeast lysate, yielding an approximately 40% increase over the original 1291 proteoform identifications observed using traditional top-down analysis alone.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Stefan K Solntsev
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States.,Genome Center of Wisconsin, University of Wisconsin , 425G Henry Mall, Room 3420, Madison, Wisconsin 53706, United States
| |
Collapse
|
58
|
Cesnik AJ, Shortreed MR, Schaffer LV, Knoener RA, Frey BL, Scalf M, Solntsev SK, Dai Y, Gasch AP, Smith LM. Proteoform Suite: Software for Constructing, Quantifying, and Visualizing Proteoform Families. J Proteome Res 2017; 17:568-578. [PMID: 29195273 DOI: 10.1021/acs.jproteome.7b00685] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present an open-source, interactive program named Proteoform Suite that uses proteoform mass and intensity measurements from complex biological samples to identify and quantify proteoforms. It constructs families of proteoforms derived from the same gene, assesses proteoform function using gene ontology (GO) analysis, and enables visualization of quantified proteoform families and their changes. It is applied here to reveal systemic proteoform variations in the yeast response to salt stress.
Collapse
Affiliation(s)
- Anthony J Cesnik
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michael R Shortreed
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Leah V Schaffer
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Rachel A Knoener
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Brian L Frey
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Stefan K Solntsev
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Yunxiang Dai
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Audrey P Gasch
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, ‡Laboratory of Genetics, and §Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
59
|
Belov AM, Viner R, Santos MR, Horn DM, Bern M, Karger BL, Ivanov AR. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2614-2634. [PMID: 28875426 PMCID: PMC5709234 DOI: 10.1007/s13361-017-1781-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 05/04/2023]
Abstract
Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Arseniy M Belov
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | | | - David M Horn
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | | | - Barry L Karger
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
60
|
Melani RD, Nogueira FCS, Domont GB. It is time for top-down venomics. J Venom Anim Toxins Incl Trop Dis 2017; 23:44. [PMID: 29075288 PMCID: PMC5648493 DOI: 10.1186/s40409-017-0135-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
The protein composition of animal venoms is usually determined by peptide-centric proteomics approaches (bottom-up proteomics). However, this technique cannot, in most cases, distinguish among toxin proteoforms, herein called toxiforms, because of the protein inference problem. Top-down proteomics (TDP) analyzes intact proteins without digestion and provides high quality data to identify and characterize toxiforms. Denaturing top-down proteomics is the most disseminated subarea of TDP, which performs qualitative and quantitative analyzes of proteoforms up to ~30 kDa in high-throughput and automated fashion. On the other hand, native top-down proteomics provides access to information on large proteins (> 50 kDA) and protein interactions preserving non-covalent bonds and physiological complex stoichiometry. The use of native and denaturing top-down venomics introduced novel and useful techniques to toxinology, allowing an unprecedented characterization of venom proteins and protein complexes at the toxiform level. The collected data contribute to a deep understanding of venom natural history, open new possibilities to study the toxin evolution, and help in the development of better biotherapeutics.
Collapse
Affiliation(s)
- Rafael D. Melani
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT A-542, Cidade Universitária, Rio de Janeiro, RJ CEP 21941-909 Brazil
| | - Fabio C. S. Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT A-542, Cidade Universitária, Rio de Janeiro, RJ CEP 21941-909 Brazil
| | - Gilberto B. Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT A-542, Cidade Universitária, Rio de Janeiro, RJ CEP 21941-909 Brazil
| |
Collapse
|
61
|
Takemori N, Takemori A, Wongkongkathep P, Nshanian M, Loo RRO, Lermyte F, Loo JA. Top-down/Bottom-up Mass Spectrometry Workflow Using Dissolvable Polyacrylamide Gels. Anal Chem 2017; 89:8244-8250. [PMID: 28723075 DOI: 10.1021/acs.analchem.7b00357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biologists' preeminent toolbox for separating, analyzing, and visualizing proteins is SDS-PAGE, yet recovering the proteins embedded in these polyacrylamide media as intact species is a long-standing challenge for mass spectrometry. In conventional workflows, protein mixtures from crude biological samples are electrophoretically separated at high-resolution within N,N'-methylene-bis-acrylamide cross-linked polyacrylamide gels to reduce sample complexity and facilitate sensitive characterization. However, low protein recoveries, especially for high molecular weight proteins, often hinder characterization by mass spectrometry. We describe a workflow for top-down/bottom-up mass spectrometric analyses of proteins in polyacrylamide slab gels using dissolvable, bis-acryloylcystamine-cross-linked polyacrylamide, enabling high-resolution protein separations while recovering intact proteins over a broad size range efficiently. The inferior electrophoretic resolution long associated with reducible gels has been overcome, as demonstrated by SDS-PAGE of crude tissue extracts. This workflow elutes intact proteins efficiently, supporting MS and MS/MS from proteins resolved on biologists' preferred separation platform.
Collapse
Affiliation(s)
- Nobuaki Takemori
- Proteo-Science Center, Division of Proteomics Research, Ehime University , Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Ayako Takemori
- Proteo-Science Center, Division of Proteomics Research, Ehime University , Shitsukawa, Toon, Ehime, 791-0295, Japan.,The United Graduate School of Agricultural Sciences, Ehime University , Matsuyama, Ehime, 790-8566, Japan
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California-Los Angeles , Los Angeles, California 90095, United States
| | - Michael Nshanian
- Department of Chemistry and Biochemistry, University of California-Los Angeles , Los Angeles, California 90095, United States
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, UCLA/DOE Institute for Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California-Los Angeles , Los Angeles, California 90095, United States
| | - Frederik Lermyte
- Department of Chemistry, University of Antwerp , Universiteitsplein 1, B-2610 Wilrijk-Antwerp, Belgium
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles , Los Angeles, California 90095, United States.,Department of Biological Chemistry, UCLA/DOE Institute for Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California-Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
62
|
Tholey A, Becker A. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2191-2199. [PMID: 28711385 DOI: 10.1016/j.bbamcr.2017.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Alexander Becker
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
63
|
Yu Y, Bekele S, Pieper R. Quick 96FASP for high throughput quantitative proteome analysis. J Proteomics 2017; 166:1-7. [PMID: 28669814 DOI: 10.1016/j.jprot.2017.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
Filter aided sample preparation (FASP) is becoming a central method for proteomic sample cleanup and peptide generation prior to LC-MS analysis. We previously adapted this method to a 96-well filter plate, and applied to prepare protein digests from cell lysate and body fluid samples in a high throughput quantitative manner. While the 96FASP approach is scalable and can handle multiple samples simultaneously, two key advantages compared to single FASP, it is also time-consuming. The centrifugation-based liquid transfer on the filter plate takes 3-5 times longer than single filter. To address this limitation, we now present a quick 96FASP (named q96FASP) approach that, relying on the use of filter membranes with a large MWCO size (~30kDa), significantly reduces centrifugal times. We show that q96FASP allows the generation of protein digests derived from whole cell lysates and body fluids in a quality similar to that of the single FASP method. Processing a sample in multiple wells in parallel, we observed excellent experimental repeatability by label-free quantitation approach. We conclude that the q96FASP approach promises to be a promising cost- and time-effective method for shotgun proteomics and will be particularly useful in large scale biomarker discovery studies. SIGNIFICANCE High throughput sample processing is of particular interests for quantitative proteomics. The previously developed 96FASP is high throughput and appealing, however it is time-consuming in the context of centrifugation-based liquid transfer (~1.5h per spin). This study presents a truly high throughput sample preparation method based on large cut-off 96-well filter plate, which shortens the spin time to ~20min. To our knowledge, this is the first multi-well method that is entirely comparable with conventional FASP. This study thoroughly examined two types of filter plates and performed side-by-side comparisons with single FASP. Two types of samples, whole cell lysate of a UTI (urinary tract infection)-associated Klebsiella pneumoniae cell and human urine, were tested which demonstrated its capability for quantitative proteomics. The q96FSAP approach makes the filter plate-based approach more appealing for protein biomarker discovery projects, and could be broadly applied to large scale proteomics analysis.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, United States.
| | - Shiferaw Bekele
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, United States
| | - Rembert Pieper
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, United States
| |
Collapse
|
64
|
Li W, Petruzziello F, Zhao N, Zhao H, Ye X, Zhang X, Rainer G. Separation and identification of mouse brain tissue microproteins using top‐down method with high resolution nanocapillary liquid chromatography mass spectrometry. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Wenxue Li
- Visual Cognition Laboratory Department of Medicine University of Fribourg Fribourg Switzerland
| | - Filomena Petruzziello
- Visual Cognition Laboratory Department of Medicine University of Fribourg Fribourg Switzerland
| | - Nan Zhao
- CAS Key Laboratory of Separation of Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Science Dalian P. R. China
| | - Huiyuan Zhao
- CAS Key Laboratory of Separation of Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Science Dalian P. R. China
| | - Xueting Ye
- Shenyang Pharmaceutical University Shenyang P. R. China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation of Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Science Dalian P. R. China
| | - Gregor Rainer
- Visual Cognition Laboratory Department of Medicine University of Fribourg Fribourg Switzerland
| |
Collapse
|
65
|
Saleh Al-w A, Nazri Isma M, Muhamad Sa S, Abdul Khal I, Ayesh Moha S, Alsayrafi M, Michael Ha T, Binti A. L A. Identification of Glycobiomarker Candidates for Breast Cancer Using LTQ-Orbitrap Fusion Technique. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.425.437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
66
|
A comprehensive analysis and annotation of human normal urinary proteome. Sci Rep 2017; 7:3024. [PMID: 28596590 PMCID: PMC5465101 DOI: 10.1038/s41598-017-03226-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Biomarkers are measurable changes associated with the disease. Urine can reflect the changes of the body while blood is under control of the homeostatic mechanisms; thus, urine is considered an important source for early and sensitive disease biomarker discovery. A comprehensive profile of the urinary proteome will provide a basic understanding of urinary proteins. In this paper, we present an in-depth analysis of the urinary proteome based on different separation strategies, including direct one dimensional liquid chromatography–tandem mass spectrometry (LC/MS/MS), two dimensional LC/MS/MS, and gel-eluted liquid fraction entrapment electrophoresis/liquid-phase isoelectric focusing followed by two dimensional LC/MS/MS. A total of 6085 proteins were identified in healthy urine, of which 2001 were not reported in previous studies and the concentrations of 2571 proteins were estimated (spanning a magnitude of 106) with an intensity-based absolute quantification algorithm. The urinary proteins were annotated by their tissue distribution. Detailed information can be accessed at the “Human Urine Proteome Database” (www.urimarker.com/urine).
Collapse
|
67
|
Kubota K, Kobayashi N, Yabuta M, Ohara M, Naito T, Kubo T, Otsuka K. Identification and characterization of a thermally cleaved fragment of monoclonal antibody-A detected by sodium dodecyl sulfate-capillary gel electrophoresis. J Pharm Biomed Anal 2017; 140:98-104. [DOI: 10.1016/j.jpba.2017.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
68
|
Blue LE, Franklin EG, Godinho JM, Grinias JP, Grinias KM, Lunn DB, Moore SM. Recent advances in capillary ultrahigh pressure liquid chromatography. J Chromatogr A 2017; 1523:17-39. [PMID: 28599863 DOI: 10.1016/j.chroma.2017.05.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/28/2022]
Abstract
In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed.
Collapse
Affiliation(s)
- Laura E Blue
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Edward G Franklin
- HPLC Research & Development, Restek Corp., Bellefonte, PA 16823, USA
| | - Justin M Godinho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
| | - Kaitlin M Grinias
- Department of Product Development & Supply, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Daniel B Lunn
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
69
|
Cai W, Tucholski T, Chen B, Alpert AJ, McIlwain S, Kohmoto T, Jin S, Ge Y. Top-Down Proteomics of Large Proteins up to 223 kDa Enabled by Serial Size Exclusion Chromatography Strategy. Anal Chem 2017; 89:5467-5475. [PMID: 28406609 DOI: 10.1021/acs.analchem.7b00380] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mass spectrometry (MS)-based top-down proteomics is a powerful method for the comprehensive analysis of proteoforms that arise from genetic variations and post-translational modifications (PTMs). However, top-down MS analysis of high molecular weight (MW) proteins remains challenging mainly due to the exponential decay of signal-to-noise ratio with increasing MW. Size exclusion chromatography (SEC) is a favored method for size-based separation of biomacromolecules but typically suffers from low resolution. Herein, we developed a serial size exclusion chromatography (sSEC) strategy to enable high-resolution size-based fractionation of intact proteins (10-223 kDa) from complex protein mixtures. The sSEC fractions could be further separated by reverse phase chromatography (RPC) coupled online with high-resolution MS. We have shown that two-dimensional (2D) sSEC-RPC allowed for the identification of 4044 more unique proteoforms and a 15-fold increase in the detection of proteins above 60 kDa, compared to one-dimensional (1D) RPC. Notably, effective sSEC-RPC separation of proteins significantly enhanced the detection of high MW proteins up to 223 kDa and also revealed low abundance proteoforms that are post-translationally modified. This sSEC method is MS-friendly, robust, and reproducible and, thus, can be applied to both high-efficiency protein purification and large-scale proteomics analysis of cell or tissue lysate for enhanced proteome coverage, particularly for low abundance and high MW proteoforms.
Collapse
Affiliation(s)
- Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Andrew J Alpert
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,PolyLC Inc. , Columbia, Maryland 21045, United States
| | - Sean McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Takushi Kohmoto
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
70
|
Cleland TP, DeHart CJ, Fellers RT, VanNispen AJ, Greer JB, LeDuc RD, Parker WR, Thomas PM, Kelleher NL, Brodbelt JS. High-Throughput Analysis of Intact Human Proteins Using UVPD and HCD on an Orbitrap Mass Spectrometer. J Proteome Res 2017; 16:2072-2079. [PMID: 28412815 DOI: 10.1021/acs.jproteome.7b00043] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The analysis of intact proteins (top-down strategy) by mass spectrometry has great potential to elucidate proteoform variation, including patterns of post-translational modifications (PTMs), which may not be discernible by analysis of peptides alone (bottom-up approach). To maximize sequence coverage and localization of PTMs, various fragmentation modes have been developed to produce fragment ions from deep within intact proteins. Ultraviolet photodissociation (UVPD) has recently been shown to produce high sequence coverage and PTM retention on a variety of proteins, with increasing evidence of efficacy on a chromatographic time scale. However, utilization of UVPD for high-throughput top-down analysis to date has been limited by bioinformatics. Here we detected 153 proteins and 489 proteoforms using UVPD and 271 proteins and 982 proteoforms using higher energy collisional dissociation (HCD) in a comparative analysis of HeLa whole-cell lysate by qualitative top-down proteomics. Of the total detected proteoforms, 286 overlapped between the UVPD and HCD data sets, with 68% of proteoforms having C scores greater than 40 for UVPD and 63% for HCD. The average sequence coverage (28 ± 20% for UVPD versus 17 ± 8% for HCD, p < 0.0001) was found to be higher for UVPD than HCD and with a trend toward improvement in q value for the UVPD data set. This study demonstrates the complementarity of UVPD and HCD for more extensive protein profiling and proteoform characterization.
Collapse
Affiliation(s)
- Timothy P Cleland
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Caroline J DeHart
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Alexandra J VanNispen
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Joseph B Greer
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Richard D LeDuc
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - W Ryan Parker
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Paul M Thomas
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States.,Departments of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University , Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States.,Departments of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University , Evanston, Illinois 60208, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
71
|
Tubaon RM, Haddad PR, Quirino JP. Sample Clean‐up Strategies for ESI Mass Spectrometry Applications in Bottom‐up Proteomics: Trends from 2012 to 2016. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/09/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Ria Marni Tubaon
- Australian Centre for Research on Separation Science School of Physical Sciences‐Chemistry University of Tasmania Hobart Tasmania Australia
| | - Paul R. Haddad
- Australian Centre for Research on Separation Science School of Physical Sciences‐Chemistry University of Tasmania Hobart Tasmania Australia
| | - Joselito P. Quirino
- Australian Centre for Research on Separation Science School of Physical Sciences‐Chemistry University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
72
|
Yamada H, Matsumura C, Yamada K, Teshima K, Hiroshima T, Kinoshita M, Suzuki S, Kakehi K. Combination of SDS-PAGE and intact mass analysis for rapid determination of heterogeneities in monoclonal antibody therapeutics. Electrophoresis 2017; 38:1344-1352. [DOI: 10.1002/elps.201700014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Hideaki Yamada
- Pharmaceutical Sciences; Takeda Pharmaceutical Company Limited; Yodogawa-ku Osaka Japan
| | - Chiemi Matsumura
- School of Pharmacy; Kindai University; Higashi-Osaka Osaka Japan
| | - Keita Yamada
- School of Pharmacy; Kindai University; Higashi-Osaka Osaka Japan
| | - Koichiro Teshima
- Pharmaceutical Sciences; Takeda Pharmaceutical Company Limited; Yodogawa-ku Osaka Japan
| | - Takashi Hiroshima
- Pharmaceutical Sciences; Takeda Pharmaceutical Company Limited; Yodogawa-ku Osaka Japan
| | | | - Shigeo Suzuki
- School of Pharmacy; Kindai University; Higashi-Osaka Osaka Japan
| | - Kazuaki Kakehi
- School of Pharmacy; Kindai University; Higashi-Osaka Osaka Japan
| |
Collapse
|
73
|
Kuljanin M, Dieters-Castator DZ, Hess DA, Postovit LM, Lajoie GA. Comparison of sample preparation techniques for large-scale proteomics. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600337] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Miljan Kuljanin
- Department of Biochemistry; University of Western Ontario; London ON Canada
| | | | - David A. Hess
- Department of Physiology and Pharmacology; University of Western Ontario; London ON Canada
| | - Lynne-Marie Postovit
- Department of Anatomy and Cell Biology; University of Western Ontario; London ON Canada
- Department of Oncology; University of Alberta; Edmonton AB Canada
| | - Gilles A. Lajoie
- Department of Biochemistry; University of Western Ontario; London ON Canada
| |
Collapse
|
74
|
Anderson LC, DeHart CJ, Kaiser NK, Fellers RT, Smith DF, Greer JB, LeDuc RD, Blakney GT, Thomas PM, Kelleher NL, Hendrickson CL. Identification and Characterization of Human Proteoforms by Top-Down LC-21 Tesla FT-ICR Mass Spectrometry. J Proteome Res 2016; 16:1087-1096. [PMID: 27936753 DOI: 10.1021/acs.jproteome.6b00696] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Successful high-throughput characterization of intact proteins from complex biological samples by mass spectrometry requires instrumentation capable of high mass resolving power, mass accuracy, sensitivity, and spectral acquisition rate. These limitations often necessitate the performance of hundreds of LC-MS/MS experiments to obtain reasonable coverage of the targeted proteome, which is still typically limited to molecular weights below 30 kDa. The National High Magnetic Field Laboratory (NHMFL) recently installed a 21 T FT-ICR mass spectrometer, which is part of the NHMFL FT-ICR User Facility and available to all qualified users. Here we demonstrate top-down LC-21 T FT-ICR MS/MS of intact proteins derived from human colorectal cancer cell lysate. We identified a combined total of 684 unique protein entries observed as 3238 unique proteoforms at a 1% false discovery rate, based on rapid, data-dependent acquisition of collision-induced and electron-transfer dissociation tandem mass spectra from just 40 LC-MS/MS experiments. Our identifications included 372 proteoforms with molecular weights over 30 kDa detected at isotopic resolution, which substantially extends the accessible mass range for high-throughput top-down LC-MS/MS.
Collapse
Affiliation(s)
- Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory , Tallahassee, Florida 32310, United States
| | - Caroline J DeHart
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory , Tallahassee, Florida 32310, United States.,Proteomics Center of Excellence, Northwestern University , Evanston, Illinois 60208, United States
| | - Nathan K Kaiser
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory , Tallahassee, Florida 32310, United States
| | - Ryan T Fellers
- Proteomics Center of Excellence, Northwestern University , Evanston, Illinois 60208, United States
| | - Donald F Smith
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory , Tallahassee, Florida 32310, United States
| | - Joseph B Greer
- Proteomics Center of Excellence, Northwestern University , Evanston, Illinois 60208, United States
| | - Richard D LeDuc
- Proteomics Center of Excellence, Northwestern University , Evanston, Illinois 60208, United States
| | - Greg T Blakney
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory , Tallahassee, Florida 32310, United States
| | - Paul M Thomas
- Proteomics Center of Excellence, Northwestern University , Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University , Evanston, Illinois 60208, United States.,Departments of Chemistry and Molecular Biosciences and the Division of Hematology-Oncology, Northwestern University , Evanston, Illinois 60208, United States
| | - Christopher L Hendrickson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory , Tallahassee, Florida 32310, United States.,Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32304, United States
| |
Collapse
|
75
|
Fornelli L, Durbin KR, Fellers RT, Early BP, Greer JB, LeDuc RD, Compton PD, Kelleher NL. Advancing Top-down Analysis of the Human Proteome Using a Benchtop Quadrupole-Orbitrap Mass Spectrometer. J Proteome Res 2016; 16:609-618. [PMID: 28152595 DOI: 10.1021/acs.jproteome.6b00698] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, developments in high resolution mass spectrometry have enabled the high throughput analysis of intact proteins from complex proteomes, leading to the identification of thousands of proteoforms. Several previous reports on top-down proteomics (TDP) relied on hybrid ion trap-Fourier transform mass spectrometers combined with data-dependent acquisition strategies. To further reduce TDP to practice, we use a quadrupole-Orbitrap instrument coupled with software for proteoform-dependent data acquisition to identify and characterize nearly 2000 proteoforms at a 1% false discovery rate from human fibroblasts. By combining a 3 m/z isolation window with short transients to improve specificity and signal-to-noise for proteoforms >30 kDa, we demonstrate improving proteome coverage by capturing 439 proteoforms in the 30-60 kDa range. Three different data acquisition strategies were compared and resulted in the identification of many proteoforms not observed in replicate data-dependent experiments. Notably, the data set is reported with updated metrics and tools including a new viewer and assignment of permanent proteoform record identifiers for inclusion of highly characterized proteoforms (i.e., those with C-scores >40) in a repository curated by the Consortium for Top-Down Proteomics.
Collapse
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Bryan P Early
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Joseph B Greer
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Richard D LeDuc
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
76
|
Vorontsov EA, Rensen E, Prangishvili D, Krupovic M, Chamot-Rooke J. Abundant Lysine Methylation and N-Terminal Acetylation in Sulfolobus islandicus Revealed by Bottom-Up and Top-Down Proteomics. Mol Cell Proteomics 2016; 15:3388-3404. [PMID: 27555370 PMCID: PMC5098037 DOI: 10.1074/mcp.m116.058073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Protein post-translational methylation has been reported to occur in archaea, including members of the genus Sulfolobus, but has never been characterized on a proteome-wide scale. Among important Sulfolobus proteins carrying such modification are the chromatin proteins that have been described to be methylated on lysine side chains, resembling eukaryotic histones in that aspect. To get more insight into the extent of this modification and its dynamics during the different growth steps of the thermoacidophylic archaeon S. islandicus LAL14/1, we performed a global and deep proteomic analysis using a combination of high-throughput bottom-up and top-down approaches on a single high-resolution mass spectrometer. 1,931 methylation sites on 751 proteins were found by the bottom-up analysis, with methylation sites on 526 proteins monitored throughout three cell culture growth stages: early-exponential, mid-exponential, and stationary. The top-down analysis revealed 3,978 proteoforms arising from 681 proteins, including 292 methylated proteoforms, 85 of which were comprehensively characterized. Methylated proteoforms of the five chromatin proteins (Alba1, Alba2, Cren7, Sul7d1, Sul7d2) were fully characterized by a combination of bottom-up and top-down data. The top-down analysis also revealed an increase of methylation during cell growth for two chromatin proteins, which had not been evidenced by bottom-up. These results shed new light on the ubiquitous lysine methylation throughout the S. islandicus proteome. Furthermore, we found that S. islandicus proteins are frequently acetylated at the N terminus, following the removal of the N-terminal methionine. This study highlights the great value of combining bottom-up and top-down proteomics for obtaining an unprecedented level of accuracy in detecting differentially modified intact proteoforms. The data have been deposited to the ProteomeXchange with identifiers PXD003074 and PXD004179.
Collapse
Affiliation(s)
- Egor A Vorontsov
- From the ‡Structural Mass Spectrometry and Proteomics Unit, Structural Biology and Chemistry Department, Institut Pasteur, 75015 Paris, France
| | - Elena Rensen
- §Unit of the Molecular Biology of Gene in Extremophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - David Prangishvili
- §Unit of the Molecular Biology of Gene in Extremophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Mart Krupovic
- §Unit of the Molecular Biology of Gene in Extremophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France; julia.chamot-rooke@pasteur
| | - Julia Chamot-Rooke
- From the ‡Structural Mass Spectrometry and Proteomics Unit, Structural Biology and Chemistry Department, Institut Pasteur, 75015 Paris, France; julia.chamot-rooke@pasteur
- ¶UMR3528 CNRS, Paris, France
| |
Collapse
|
77
|
Cassidy L, Prasse D, Linke D, Schmitz RA, Tholey A. Combination of Bottom-up 2D-LC-MS and Semi-top-down GelFree-LC-MS Enhances Coverage of Proteome and Low Molecular Weight Short Open Reading Frame Encoded Peptides of the Archaeon Methanosarcina mazei. J Proteome Res 2016; 15:3773-3783. [DOI: 10.1021/acs.jproteome.6b00569] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Liam Cassidy
- Div. Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Daniela Prasse
- Institute
for General Microbiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Dennis Linke
- Div. Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Ruth A. Schmitz
- Institute
for General Microbiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Andreas Tholey
- Div. Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
78
|
Zhao Y, Sun L, Zhu G, Dovichi NJ. Coupling Capillary Zone Electrophoresis to a Q Exactive HF Mass Spectrometer for Top-down Proteomics: 580 Proteoform Identifications from Yeast. J Proteome Res 2016; 15:3679-3685. [PMID: 27490796 DOI: 10.1021/acs.jproteome.6b00493] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used reversed-phase liquid chromatography to separate the yeast proteome into 23 fractions. These fractions were then analyzed using capillary zone electrophoresis (CZE) coupled to a Q-Exactive HF mass spectrometer using an electrokinetically pumped sheath flow interface. The parameters of the mass spectrometer were first optimized for top-down proteomics using a mixture of seven model proteins; we observed that intact protein mode with a trapping pressure of 0.2 and normalized collision energy of 20% produced the highest intact protein signals and most protein identifications. Then, we applied the optimized parameters for analysis of the fractionated yeast proteome. From this, 580 proteoforms and 180 protein groups were identified via database searching of the MS/MS spectra. This number of proteoform identifications is two times larger than that of previous CZE-MS/MS studies. An additional 3,243 protein species were detected based on the parent ion spectra. Post-translational modifications including N-terminal acetylation, signal peptide removal, and oxidation were identified.
Collapse
Affiliation(s)
- Yimeng Zhao
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
79
|
Cai W, Tucholski TM, Gregorich ZR, Ge Y. Top-down Proteomics: Technology Advancements and Applications to Heart Diseases. Expert Rev Proteomics 2016; 13:717-30. [PMID: 27448560 DOI: 10.1080/14789450.2016.1209414] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Heart diseases are a leading cause of morbidity and mortality for both men and women worldwide, and impose significant economic burdens on the healthcare systems. Despite substantial effort over the last several decades, the molecular mechanisms underlying diseases of the heart remain poorly understood. AREAS COVERED Altered protein post-translational modifications (PTMs) and protein isoform switching are increasingly recognized as important disease mechanisms. Top-down high-resolution mass spectrometry (MS)-based proteomics has emerged as the most powerful method for the comprehensive analysis of PTMs and protein isoforms. Here, we will review recent technology developments in the field of top-down proteomics, as well as highlight recent studies utilizing top-down proteomics to decipher the cardiac proteome for the understanding of the molecular mechanisms underlying diseases of the heart. Expert commentary: Top-down proteomics is a premier method for the global and comprehensive study of protein isoforms and their PTMs, enabling the identification of novel protein isoforms and PTMs, characterization of sequence variations, and quantification of disease-associated alterations. Despite significant challenges, continuous development of top-down proteomics technology will greatly aid the dissection of the molecular mechanisms underlying diseases of the hearts for the identification of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Wenxuan Cai
- a Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , WI , USA.,b Molecular and Cellular Pharmacology Training Program , University of Wisconsin-Madison , Madison , WI , USA
| | - Trisha M Tucholski
- c Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA
| | - Zachery R Gregorich
- a Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , WI , USA.,b Molecular and Cellular Pharmacology Training Program , University of Wisconsin-Madison , Madison , WI , USA
| | - Ying Ge
- a Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , WI , USA.,c Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA.,d Human Proteomics Program , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
80
|
Kachuk C, Faulkner M, Liu F, Doucette AA. Automated SDS Depletion for Mass Spectrometry of Intact Membrane Proteins though Transmembrane Electrophoresis. J Proteome Res 2016; 15:2634-42. [DOI: 10.1021/acs.jproteome.6b00199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Carolyn Kachuk
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melissa Faulkner
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Fang Liu
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alan A. Doucette
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
81
|
Toby TK, Fornelli L, Kelleher NL. Progress in Top-Down Proteomics and the Analysis of Proteoforms. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:499-519. [PMID: 27306313 PMCID: PMC5373801 DOI: 10.1146/annurev-anchem-071015-041550] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
From a molecular perspective, enactors of function in biology are intact proteins that can be variably modified at the genetic, transcriptional, or post-translational level. Over the past 30 years, mass spectrometry (MS) has become a powerful method for the analysis of proteomes. Prevailing bottom-up proteomics operates at the level of the peptide, leading to issues with protein inference, connectivity, and incomplete sequence/modification information. Top-down proteomics (TDP), alternatively, applies MS at the proteoform level to analyze intact proteins with diverse sources of intramolecular complexity preserved during analysis. Fortunately, advances in prefractionation workflows, MS instrumentation, and dissociation methods for whole-protein ions have helped TDP emerge as an accessible and potentially disruptive modality with increasingly translational value. In this review, we discuss technical and conceptual advances in TDP, along with the growing power of proteoform-resolved measurements in clinical and translational research.
Collapse
Affiliation(s)
- Timothy K Toby
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208;
| | - Luca Fornelli
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Neil L Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208;
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
82
|
Melani RD, Skinner OS, Fornelli L, Domont GB, Compton PD, Kelleher NL. Mapping Proteoforms and Protein Complexes From King Cobra Venom Using Both Denaturing and Native Top-down Proteomics. Mol Cell Proteomics 2016; 15:2423-34. [PMID: 27178327 DOI: 10.1074/mcp.m115.056523] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Indexed: 11/06/2022] Open
Abstract
Characterizing whole proteins by top-down proteomics avoids a step of inference encountered in the dominant bottom-up methodology when peptides are assembled computationally into proteins for identification. The direct interrogation of whole proteins and protein complexes from the venom of Ophiophagus hannah (king cobra) provides a sharply clarified view of toxin sequence variation, transit peptide cleavage sites and post-translational modifications (PTMs) likely critical for venom lethality. A tube-gel format for electrophoresis (called GELFrEE) and solution isoelectric focusing were used for protein fractionation prior to LC-MS/MS analysis resulting in 131 protein identifications (18 more than bottom-up) and a total of 184 proteoforms characterized from 14 protein toxin families. Operating both GELFrEE and mass spectrometry to preserve non-covalent interactions generated detailed information about two of the largest venom glycoprotein complexes: the homodimeric l-amino acid oxidase (∼130 kDa) and the multichain toxin cobra venom factor (∼147 kDa). The l-amino acid oxidase complex exhibited two clusters of multiproteoform complexes corresponding to the presence of 5 or 6 N-glycans moieties, each consistent with a distribution of N-acetyl hexosamines. Employing top-down proteomics in both native and denaturing modes provides unprecedented characterization of venom proteoforms and their complexes. A precise molecular inventory of venom proteins will propel the study of snake toxin variation and the targeted development of new antivenoms or other biotherapeutics.
Collapse
Affiliation(s)
- Rafael D Melani
- From the ‡Proteomics Unit, Rio de Janeiro Proteomics Network, Departamento de Bioquímica. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil; §Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, 60208
| | - Owen S Skinner
- §Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, 60208
| | - Luca Fornelli
- §Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, 60208
| | - Gilberto B Domont
- From the ‡Proteomics Unit, Rio de Janeiro Proteomics Network, Departamento de Bioquímica. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil;
| | - Philip D Compton
- §Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, 60208
| | - Neil L Kelleher
- §Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, 60208
| |
Collapse
|
83
|
Weng Y, Sui Z, Shan Y, Jiang H, Zhou Y, Zhu X, Liang Z, Zhang L, Zhang Y. In-Depth Proteomic Quantification of Cell Secretome in Serum-Containing Conditioned Medium. Anal Chem 2016; 88:4971-8. [DOI: 10.1021/acs.analchem.6b00910] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yejing Weng
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Sui
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yichu Shan
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hao Jiang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhou
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xudong Zhu
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
84
|
Durbin KR, Fornelli L, Fellers RT, Doubleday PF, Narita M, Kelleher NL. Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa. J Proteome Res 2016; 15:976-82. [PMID: 26795204 PMCID: PMC4794255 DOI: 10.1021/acs.jproteome.5b00997] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Top-down proteomics is capable of identifying and quantitating unique proteoforms through the analysis of intact proteins. We extended the coverage of the label-free technique, achieving differential analysis of whole proteins <30 kDa from the proteomes of growing and senescent human fibroblasts. By integrating improved control software with more instrument time allocated for quantitation of intact ions, we were able to collect protein data between the two cell states, confidently comparing 1577 proteoform levels. To then identify and characterize proteoforms, our advanced acquisition software, named Autopilot, employed enhanced identification efficiency in identifying 1180 unique Swiss-Prot accession numbers at 1% false-discovery rate. This coverage of the low mass proteome is equivalent to the largest previously reported but was accomplished in 23% of the total acquisition time. By maximizing both the number of quantified proteoforms and their identification rate in an integrated software environment, this work significantly advances proteoform-resolved analyses of complex systems.
Collapse
Affiliation(s)
- Kenneth R. Durbin
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Ryan T. Fellers
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Peter F. Doubleday
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Neil L. Kelleher
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
85
|
Melani RD, Seckler HS, Skinner OS, Do Vale LHF, Catherman AD, Havugimana PC, Valle de Sousa M, Domont GB, Kelleher NL, Compton PD. CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis. J Vis Exp 2016:53597. [PMID: 26967310 DOI: 10.3791/53597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses.
Collapse
Affiliation(s)
- Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Institute of Chemistry, Proteomics Unit, Federal University of Rio de Janeiro
| | - Henrique S Seckler
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University
| | - Owen S Skinner
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University
| | - Luis H F Do Vale
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Department of Cell Biology, Brazilian Center for Protein Research, Laboratory of Biochemistry and Protein Chemistry, University of Brasilia
| | - Adam D Catherman
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University
| | - Pierre C Havugimana
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University
| | - Marcelo Valle de Sousa
- Department of Cell Biology, Brazilian Center for Protein Research, Laboratory of Biochemistry and Protein Chemistry, University of Brasilia
| | - Gilberto B Domont
- Institute of Chemistry, Proteomics Unit, Federal University of Rio de Janeiro
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University;
| |
Collapse
|
86
|
Ntai I, LeDuc RD, Fellers RT, Erdmann-Gilmore P, Davies SR, Rumsey J, Early BP, Thomas PM, Li S, Compton PD, Ellis MJC, Ruggles KV, Fenyö D, Boja ES, Rodriguez H, Townsend RR, Kelleher NL. Integrated Bottom-Up and Top-Down Proteomics of Patient-Derived Breast Tumor Xenografts. Mol Cell Proteomics 2016; 15:45-56. [PMID: 26503891 PMCID: PMC4762530 DOI: 10.1074/mcp.m114.047480] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 10/06/2015] [Indexed: 01/15/2023] Open
Abstract
Bottom-up proteomics relies on the use of proteases and is the method of choice for identifying thousands of protein groups in complex samples. Top-down proteomics has been shown to be robust for direct analysis of small proteins and offers a solution to the "peptide-to-protein" inference problem inherent with bottom-up approaches. Here, we describe the first large-scale integration of genomic, bottom-up and top-down proteomic data for the comparative analysis of patient-derived mouse xenograft models of basal and luminal B human breast cancer, WHIM2 and WHIM16, respectively. Using these well-characterized xenograft models established by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium, we compared and contrasted the performance of bottom-up and top-down proteomics to detect cancer-specific aberrations at the peptide and proteoform levels and to measure differential expression of proteins and proteoforms. Bottom-up proteomic analysis of the tumor xenografts detected almost 10 times as many coding nucleotide polymorphisms and peptides resulting from novel splice junctions than top-down. For proteins in the range of 0-30 kDa, where quantitation was performed using both approaches, bottom-up proteomics quantified 3,519 protein groups from 49,185 peptides, while top-down proteomics quantified 982 proteoforms mapping to 358 proteins. Examples of both concordant and discordant quantitation were found in a ∼60:40 ratio, providing a unique opportunity for top-down to fill in missing information. The two techniques showed complementary performance, with bottom-up yielding eight times more identifications of 0-30 kDa proteins in xenograft proteomes, but failing to detect differences in certain posttranslational modifications (PTMs), such as phosphorylation pattern changes of alpha-endosulfine. This work illustrates the potency of a combined bottom-up and top-down proteomics approach to deepen our knowledge of cancer biology, especially when genomic data are available.
Collapse
Affiliation(s)
- Ioanna Ntai
- From the ‡Proteomics Center of Excellence, §Department of Chemistry, and
| | | | | | - Petra Erdmann-Gilmore
- ‖Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Sherri R Davies
- ‖Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Jeanne Rumsey
- ‖Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | | | - Paul M Thomas
- From the ‡Proteomics Center of Excellence, ¶Department of Molecular BiosciencesNorthwestern University, Evanston, IL 60208
| | - Shunqiang Li
- ‖Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Philip D Compton
- From the ‡Proteomics Center of Excellence, ‖Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Matthew J C Ellis
- **Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Kelly V Ruggles
- ‡‡Center for Health Informatics and Bioinformatics, and Department of Biochemistry and Molecular Pharmacology, New York University Medical School, New York, NY 10016
| | - David Fenyö
- ‡‡Center for Health Informatics and Bioinformatics, and Department of Biochemistry and Molecular Pharmacology, New York University Medical School, New York, NY 10016
| | - Emily S Boja
- §§Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892
| | - Henry Rodriguez
- §§Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892
| | - R Reid Townsend
- ‖Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110;
| | - Neil L Kelleher
- From the ‡Proteomics Center of Excellence, §Department of Chemistry, and ¶Department of Molecular BiosciencesNorthwestern University, Evanston, IL 60208;
| |
Collapse
|
87
|
Cheon DH, Nam EJ, Park KH, Woo SJ, Lee HJ, Kim HC, Yang EG, Lee C, Lee JE. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry. J Proteome Res 2015; 15:229-44. [DOI: 10.1021/acs.jproteome.5b00773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dong Huey Cheon
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
- Interdisciplinary
Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Republic of Korea
| | - Eun Ji Nam
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
- Department
of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kyu Hyung Park
- Department
of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea
| | - Se Joon Woo
- Department
of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea
| | - Hye Jin Lee
- Department
of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Hee Cheol Kim
- Department
of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Eun Gyeong Yang
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Cheolju Lee
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
- Department
of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Ji Eun Lee
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| |
Collapse
|
88
|
Comparison of sodium dodecyl sulfate depletion techniques for proteome analysis by mass spectrometry. J Chromatogr A 2015; 1418:158-166. [DOI: 10.1016/j.chroma.2015.09.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022]
|
89
|
Krist DT, Statsyuk AV. Catalytically Important Residues of E6AP Ubiquitin Ligase Identified Using Acid-Cleavable Photo-Cross-Linkers. Biochemistry 2015; 54:4411-4. [PMID: 26161728 DOI: 10.1021/acs.biochem.5b00625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inactivation of the E6AP E3 ubiquitin ligase (UBE3A gene) causes Angelman syndrome, while aberrant degradation of p53 by E6AP is implicated in cervical cancers. Herein, we describe the development of photo-cross-linkers to discover catalytic residues of E6AP. Using these cross-linkers, we identified covalent modifications of the E6AP catalytic cysteine and two lysines: Lys(847) and Lys(799). Lys(847) is required for the formation of Lys(48)-linked polyubiquitin chains, while the K799A E6AP mutant was more active at producing Lys(48)-linked polyubiquitin chains. Thus, opposing roles of Lys(799) and Lys(847) pave the path forward to pharmacological inhibitors or activators of E6AP for therapeutic purposes.
Collapse
Affiliation(s)
- David T Krist
- Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alexander V Statsyuk
- Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
90
|
Mahboob S, Mohamedali A, Ahn SB, Schulz-Knappe P, Nice E, Baker MS. Is isolation of comprehensive human plasma peptidomes an achievable quest? J Proteomics 2015; 127:300-9. [PMID: 25979773 DOI: 10.1016/j.jprot.2015.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/06/2015] [Accepted: 05/09/2015] [Indexed: 01/12/2023]
Abstract
The low molecular weight (LMW; <10kDa)* plasma peptidome has been considered a source of useful diagnostic biomarkers and potentially therapeutic molecules, as it contains many cytokines, peptide hormones, endogenous peptide products and potentially bioactive fragments derived from the parent proteome. The small size of the peptides allows them almost unrestricted vascular and interstitial access, and hence distribution across blood-brain barriers, tumour and other vascular permeability barriers. Therefore, the peptidome may carry specific signatures or fingerprints of an individual's health, wellbeing or disease status. This occurs primarily because of the advantage the peptidome has in being readily accessible in human blood and/or other biofluids. However, the co-expression of highly abundant proteins (>10kDa) and other factors present inherently in human plasma make direct analysis of the blood peptidome one of the most challenging tasks faced in contemporary analytical biochemistry. A comprehensive compendium of extraction and fractionation tools has been collected concerning the isolation and micromanipulation of peptides. However, the search for a reliable, accurate and reproducible single or combinatorial separation process for capturing and analysing the plasma peptidome remains a challenge. This review outlines current techniques used for the separation and detection of plasma peptides and suggests potential avenues for future investigation. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- S Mahboob
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - A Mohamedali
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, NSW 2109, Australia
| | - S B Ahn
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | | | - E Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - M S Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
91
|
Valeja SG, Xiu L, Gregorich ZR, Guner H, Jin S, Ge Y. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics. Anal Chem 2015; 87:5363-5371. [PMID: 25867201 PMCID: PMC4575680 DOI: 10.1021/acs.analchem.5b00657] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.
Collapse
Affiliation(s)
- Santosh G. Valeja
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lichen Xiu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Wisconsin, USA
| | - Huseyin Guner
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
92
|
Kim KH, Compton PD, Tran JC, Kelleher NL. Online matrix removal platform for coupling gel-based separations to whole protein electrospray ionization mass spectrometry. J Proteome Res 2015; 14:2199-206. [PMID: 25836738 DOI: 10.1021/pr501331q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A fractionation method called gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) has been used to dramatically increase the number of proteins identified in top-down proteomic workflows; however, the technique involves the use of sodium dodecyl sulfate (SDS), a surfactant that interferes with electrospray ionization. Therefore, an efficient removal of SDS is absolutely required prior to mass analysis. Traditionally, methanol/chloroform precipitation and spin columns have been used, but they lack reproducibility and are difficult to automate. Therefore, we developed an in-line matrix removal platform to enable the direct analysis of samples containing SDS and salts. Only small molecules like SDS permeate a porous membrane and are removed in a manner similar to cross-flow filtration. With this device, near-complete removal of SDS is accomplished within 5 min and proteins are subsequently mobilized into a mass spectrometer. The new platform was optimized for the analysis of GELFrEE fractions enriched for histones extracted from human HeLa cells. All four core histones and their proteoforms were detected in a single spectrum by high-resolution mass spectrometry. The new method versus protein precipitation/resuspension showed 2- to 10-fold improved signal intensities, offering a clear path forward to improve proteome coverage and the efficiency of top-down proteomics.
Collapse
Affiliation(s)
- Ki Hun Kim
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - John C Tran
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
93
|
Verrastro I, Pasha S, Jensen KT, Pitt AR, Spickett CM. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules 2015; 5:378-411. [PMID: 25874603 PMCID: PMC4496678 DOI: 10.3390/biom5020378] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Sabah Pasha
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Karina Tveen Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
94
|
Skinner OS, Do Vale LHF, Catherman AD, Havugimana PC, de Sousa MV, Compton PD, Kelleher NL. Native GELFrEE: a new separation technique for biomolecular assemblies. Anal Chem 2015; 87:3032-8. [PMID: 25664979 DOI: 10.1021/ac504678d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cadre of protein complexes in cells performs an array of functions necessary for life. Their varied structures are foundational to their ability to perform biological functions, lending great import to the elucidation of complex composition and dynamics. Native separation techniques that are operative on low sample amounts and provide high resolution are necessary to gain valuable data on endogenous complexes. Here, we detail and optimize the use of tube gel separations to produce samples proven compatible with native, multistage mass spectrometry (nMS/MS). We find that a continuous system (i.e., no stacking gel) with a gradient in its extent of cross-linking and use of the clear native buffer system performs well for both fractionation and native mass spectrometry of heart extracts and a fungal secretome. This integrated advance in separations and nMS/MS offers the prospect of untargeted proteomics at the next hierarchical level of protein organization in biology.
Collapse
Affiliation(s)
- Owen S Skinner
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | | | | | | |
Collapse
|
95
|
Geng X, Jia X, Liu P, Wang F, Yang X. Two variables dominating the retention of intact proteins under gradient elution with simultaneous ultrafast high-resolution separation by hydrophobic interaction chromatography. Analyst 2015; 140:6692-704. [DOI: 10.1039/c5an01400j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The retention of proteins under gradient elution in HIC is dominated by two variables of steady and migration regions.
Collapse
Affiliation(s)
- Xindu Geng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Institute of Modern Separation Science
- Shaanxi Provincial Key Laboratory
- Northwest University
- Xi'an
| | - Xiaodan Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Institute of Modern Separation Science
- Shaanxi Provincial Key Laboratory
- Northwest University
- Xi'an
| | - Peng Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Institute of Modern Separation Science
- Shaanxi Provincial Key Laboratory
- Northwest University
- Xi'an
| | - Fei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Institute of Modern Separation Science
- Shaanxi Provincial Key Laboratory
- Northwest University
- Xi'an
| | - Xiaoming Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Institute of Modern Separation Science
- Shaanxi Provincial Key Laboratory
- Northwest University
- Xi'an
| |
Collapse
|
96
|
Doucette AA, Vieira DB, Orton DJ, Wall MJ. Resolubilization of precipitated intact membrane proteins with cold formic acid for analysis by mass spectrometry. J Proteome Res 2014; 13:6001-12. [PMID: 25384094 DOI: 10.1021/pr500864a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein precipitation in organic solvent is an effective strategy to deplete sodium dodecyl sulfate (SDS) ahead of MS analysis. Here we evaluate the recovery of membrane and water-soluble proteins through precipitation with chloroform/methanol/water or with acetone (80%). With each solvent system, membrane protein recovery was greater than 90%, which was generally higher than that of cytosolic proteins. With few exceptions, residual supernatant proteins detected by MS were also detected in the precipitation pellet, having higher MS signal intensity in the pellet fraction. Following precipitation, we present a novel strategy for the quantitative resolubilization of proteins in an MS-compatible solvent system. The pellet is incubated at -20 °C in 80% formic acid/water and then diluted 10-fold with water. Membrane protein recovery matches that of sonication of the pellet in 1% SDS. The resolubilized proteins are stable at room temperature, with no observed formylation as is typical of proteins suspended in formic acid at room temperature. The protocol is applied to the molecular weight determination of membrane proteins from a GELFrEE-fractionated sample of Escherichia coli proteins.
Collapse
Affiliation(s)
- Alan A Doucette
- Department of Chemistry and ‡Department of Pathology, Dalhousie University , Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
97
|
Crowell AMJ, MacLellan DL, Doucette AA. A two-stage spin cartridge for integrated protein precipitation, digestion and SDS removal in a comparative bottom-up proteomics workflow. J Proteomics 2014; 118:140-50. [PMID: 25316050 DOI: 10.1016/j.jprot.2014.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Protein precipitation with organic solvent is an effective means of depleting contaminants such as sodium dodecyl sulfate (SDS), while maintaining high analyte recovery. Here, we report the use of a disposable two-stage spin cartridge to facilitate isolation of the precipitated protein, with subsequent enzyme digestion and peptide cleanup in the cartridge. An upper filtration cartridge retains over 95% of the protein (10 μg BSA), with 99.75% detergent depleted from a sample initially containing 2% SDS. Following precipitation, a plug attached to the base of the filtration cartridge retains the solution to enable tryptic digestion in the vial, while a solid phase extraction cartridge attached to the base of the filter facilitates peptide cleanup post-digestion. A GELFrEE fractionated Escherichia coli proteome extract processed with the spin cartridge yields similar protein identifications compared to controls (226 vs 216 for control), and with an increased number of unique peptides (1753 vs 1554 for control). The device is applied to proteome characterization of rat kidneys experiencing a surgically induced ureteral tract obstruction, revealing several statistically altered proteins, consistent with the morphology and expected pathophysiology of the disease. BIOLOGICAL SIGNIFICANCE Conventionally, protein precipitation involves extended centrifugation to pellet the sample, with careful pipetting to remove the supernatant without disturbing the pellet. The method is not only time consuming but is highly subject to the skill of the individual, particularly at lower protein concentrations where the pellet may not be visible. As such, protein precipitation is often overlooked in proteomics, favoring column-based approaches to concentrate or purify samples. Here, all aspects of sample manipulation are integrated into a simple disposable cartridge. The device enables SDS depletion, sample preconcentration, resolubilization, derivatization, digestion, and peptide cleanup in a highly repeatable and easily multiplexed format. The device is ideally suited for comparative proteome studies. Antenatal hydronephrosis is a congenital disorder affecting 1-5% of all pregnancies, and can require surgical intervention to avoid loss of renal function. Using our device, we investigated the impact of hydronephrosis on the kidneys in a surgically induced animal model of the disease. Proteome analysis points to decreased metabolic activity in the obstructed kidney, with upregulation of proteins involved in cytoskeletal organization. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.
Collapse
Affiliation(s)
| | - Dawn L MacLellan
- Department of Urology and Pathology, Dalhousie University, Canada
| | | |
Collapse
|
98
|
Soldi M, Bremang M, Bonaldi T. Biochemical systems approaches for the analysis of histone modification readout. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:657-68. [PMID: 24681439 DOI: 10.1016/j.bbagrm.2014.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/06/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Chromatin is the macromolecular nucleoprotein complex that governs the organization of genetic material in the nucleus of eukaryotic cells. In chromatin, DNA is packed with histone proteins into nucleosomes. Core histones are prototypes of hyper-modified proteins, being decorated by a large number of site-specific reversible and irreversible post-translational modifications (PTMs), which contribute to the maintenance and modulation of chromatin plasticity, gene activation, and a variety of other biological processes and disease states. The observations of the variety, frequency and co-occurrence of histone modifications in distinct patterns at specific genomic loci have led to the idea that hPTMs can create a molecular barcode, read by effector proteins that translate it into a specific transcriptional state, or process, on the underlying DNA. However, despite the fact that this histone-code hypothesis was proposed more than 10 years ago, the molecular details of its working mechanisms are only partially characterized. In particular, two questions deserve specific investigation: how the different modifications associate and synergize into patterns and how these PTM configurations are read and translated by multi-protein complexes into a specific functional outcome on the genome. Mass spectrometry (MS) has emerged as a versatile tool to investigate chromatin biology, useful for both identifying and validating hPTMs, and to dissect the molecular determinants of histone modification readout systems. We review here the MS techniques and the proteomics methods that have been developed to address these fundamental questions in epigenetics research, emphasizing approaches based on the proteomic dissection of distinct native chromatin regions, with a critical evaluation of their present challenges and future potential. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Michael Bremang
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
99
|
Catherman AD, Skinner OS, Kelleher NL. Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun 2014; 445:683-93. [PMID: 24556311 PMCID: PMC4103433 DOI: 10.1016/j.bbrc.2014.02.041] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 12/29/2022]
Abstract
The rise of the "Top Down" method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious "inference" problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years.
Collapse
Affiliation(s)
- Adam D Catherman
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States
| | - Owen S Skinner
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
100
|
Reprint of "GELFrEE fractionation combined with mass spectrometry for proteome analysis of secreted toxins from Enteropathogenic Escherichia coli (EPEC)". Mol Cell Probes 2014; 28:83-90. [PMID: 24486296 DOI: 10.1016/j.mcp.2014.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/05/2013] [Accepted: 06/21/2013] [Indexed: 11/22/2022]
Abstract
Enteropathogenic Escherichia coli, or EPEC, is a human pathogen associated with gastroenteritis and diarrheal disease whose pathogenicity is related to the secretion of effector proteins (exotoxins). Determining exotoxin expression level is of considerable interest to those studying toxin function and pathological phenotypes. Mass spectrometry (MS) provides an ideal platform for detection and quantification of proteins from complex mixtures. Here, we apply a solution-phase electrophoretic platform (GELFrEE) followed by MS to characterize the secreted proteome of a wild type and mutant strain of EPEC (ΔsepD), exhibiting enhanced secretion of effector proteins. Through peptide-level analysis, a total of 363 and 155 proteins were identified from the wild type and mutant strains, respectively. Semi-quantitative analysis of the MS data reveals the effector proteins EspB, EspC, and EspD appear in a relatively greater abundance from wild type EPEC, while two major virulence factors in EPEC, Tir and NleA appear in greater abundance from the secreted proteome of the mutant strain. Additionally, intact proteins may further be characterized following GELFrEE with MS to improve throughput of analysis. This study demonstrates the application of GELFrEE-MS to differentiate wild type and mutant strains of EPEC. This platform is therefore a powerful tool to study exotoxin secretion from pathogenic bacteria.
Collapse
|