51
|
Magdeldin S, Moresco JJ, Yamamoto T, Yates JR. Off-Line Multidimensional Liquid Chromatography and Auto Sampling Result in Sample Loss in LC/LC-MS/MS. J Proteome Res 2014; 13:3826-36. [PMID: 25040086 PMCID: PMC4123945 DOI: 10.1021/pr500530e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Indexed: 01/09/2023]
Abstract
Large-scale proteomics often employs two orthogonal separation methods to fractionate complex peptide mixtures. Fractionation can involve ion exchange separation coupled to reversed-phase separation or, more recently, two reversed-phase separations performed at different pH values. When multidimensional separations are combined with tandem mass spectrometry for protein identification, the strategy is often referred to as multidimensional protein identification technology (MudPIT). MudPIT has been used in either an automated (online) or manual (offline) format. In this study, we evaluated the performance of different MudPIT strategies by both label-free and tandem mass tag (TMT) isobaric tagging. Our findings revealed that online MudPIT provided more peptide/protein identifications and higher sequence coverage than offline platforms. When employing an off-line fractionation method with direct loading of samples onto the column from an eppendorf tube via a high-pressure device, a 5.3% loss in protein identifications is observed. When off-line fractionated samples are loaded via an autosampler, a 44.5% loss in protein identifications is observed compared with direct loading of samples onto a triphasic capillary column. Moreover, peptide recovery was significantly lower after offline fractionation than in online fractionation. Signal-to-noise (S/N) ratio, however, was not significantly altered between experimental groups. It is likely that offline sample collection results in stochastic peptide loss due to noncovalent adsorption to solid surfaces. Therefore, the use of the offline approaches should be considered carefully when processing minute quantities of valuable samples.
Collapse
Affiliation(s)
- Sameh Magdeldin
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, SR11, La Jolla, California 92037, United States
- Department
of Structural Pathology, Institute of Nephrology, Graduate School
of Medical and Dental Sciences, Niigata
University, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
- Department
of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - James J. Moresco
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, SR11, La Jolla, California 92037, United States
| | - Tadashi Yamamoto
- Department
of Structural Pathology, Institute of Nephrology, Graduate School
of Medical and Dental Sciences, Niigata
University, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
| | - John R. Yates
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, SR11, La Jolla, California 92037, United States
| |
Collapse
|
52
|
Mataveli LRV, Arruda MAZ. Expanding resolution of metalloprotein separations from soybean seeds using 2D-HPLC-ICP-MS and SDS-PAGE as a third dimension. J Proteomics 2014; 104:94-103. [PMID: 24631827 DOI: 10.1016/j.jprot.2014.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
This work reports on the use of a three dimensional separation system to enhance metalloprotein information when considering soybean seeds. Separations using size exclusion chromatography (SEC) allowed identification of three metal fractions. Following an anion exchange (AEX) chromatographic separation in the second dimension, the resultant sub-fractions were lyophilized and subjected to a third dimension of separation using a polyacrylamide gel electrophoresis (SDS-PAGE). After the separation, the bands were digested, and, in addition to others, the following proteins, previously associated with metals, were identified: 3-lipoxygenase A chain (soybean) complex with 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid, beta-amylase [Glycine max], seed lipoxygenase-1, lipoxygenase [G. max], seed lipoxygenase-2 (Pisum sativum) and beta-conglycinin. BIOLOGICAL SIGNIFICANCE Techniques presenting high resolution are desired due to their capability in resolving great amount of signals (responses) generated from hundreds of proteins generally found in different samples. To the best of our knowledge, this is the first time that bidimensional chromatographic system which allied to another separation dimension is applied for improving protein identification, so that higher number and different proteins were found when comparing 2D dimension with 3D dimension. In fact, this strategy is welcoming in proteomics studies, in order to improve the comprehension of those systems that present large number of proteins. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Lidiane Raquel Verola Mataveli
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
53
|
Meyer JG. In Silico Proteome Cleavage Reveals Iterative Digestion Strategy for High Sequence Coverage. ISRN COMPUTATIONAL BIOLOGY 2014; 2014:960902. [PMID: 30687733 PMCID: PMC6347401 DOI: 10.1155/2014/960902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the postgenome era, biologists have sought to measure the complete complement of proteins, termed proteomics. Currently, the most effective method to measure the proteome is with shotgun, or bottom-up, proteomics, in which the proteome is digested into peptides that are identified followed by protein inference. Despite continuous improvements to all steps of the shotgun proteomics workflow, observed proteome coverage is often low; some proteins are identified by a single peptide sequence. Complete proteome sequence coverage would allow comprehensive characterization of RNA splicing variants and all posttranslational modifications, which would drastically improve the accuracy of biological models. There are many reasons for the sequence coverage deficit, but ultimately peptide length determines sequence observability. Peptides that are too short are lost because they match many protein sequences and their true origin is ambiguous. The maximum observable peptide length is determined by several analytical challenges. This paper explores computationally how peptide lengths produced from several common proteome digestion methods limit observable proteome coverage. Iterative proteome cleavage strategies are also explored. These simulations reveal that maximized proteome coverage can be achieved by use of an iterative digestion protocol involving multiple proteases and chemical cleavages that theoretically allow 92.9% proteome coverage.
Collapse
Affiliation(s)
- Jesse G Meyer
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0378, USA
| |
Collapse
|
54
|
Robledo VR, Smyth WF. Review of the CE-MS platform as a powerful alternative to conventional couplings in bio-omics and target-based applications. Electrophoresis 2014; 35:2292-308. [DOI: 10.1002/elps.201300561] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Virginia Rodríguez Robledo
- Faculty of Pharmacy; Department of Analytical Chemistry and Food Technology; University of Castilla-La Mancha (UCLM); Albacete Spain
| | - William Franklin Smyth
- School of Pharmacy and Pharmaceutical Sciences; University of Ulster; Coleraine Northern Ireland UK
| |
Collapse
|
55
|
Hioki Y, Tanimura R, Iwamoto S, Tanaka K. Nano-LC/MALDI-MS Using a Column-Integrated Spotting Probe for Analysis of Complex Biomolecule Samples. Anal Chem 2014; 86:2549-58. [DOI: 10.1021/ac4037069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yusaku Hioki
- Koichi Tanaka Laboratory
of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan
| | - Ritsuko Tanimura
- Koichi Tanaka Laboratory
of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Laboratory
of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan
| | - Koichi Tanaka
- Koichi Tanaka Laboratory
of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
56
|
Jagusztyn-Krynicka EK, Dadlez M, Grabowska A, Roszczenko P. Proteomic technology in the design of new effective antibacterial vaccines. Expert Rev Proteomics 2014; 6:315-30. [DOI: 10.1586/epr.09.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
57
|
da Silva MAO, Sussulini A, Arruda MAZ. Metalloproteomics as an interdisciplinary area involving proteins and metals. Expert Rev Proteomics 2014; 7:387-400. [DOI: 10.1586/epr.10.16] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
58
|
Gao M, Qi D, Zhang P, Deng C, Zhang X. Development of multidimensional liquid chromatography and application in proteomic analysis. Expert Rev Proteomics 2014; 7:665-78. [DOI: 10.1586/epr.10.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
59
|
Lee H, Lee JH, Kim H, Kim SJ, Bae J, Kim HK, Lee SW. A fully automated dual-online multifunctional ultrahigh pressure liquid chromatography system for high-throughput proteomics analysis. J Chromatogr A 2014; 1329:83-9. [PMID: 24412000 DOI: 10.1016/j.chroma.2013.12.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/25/2013] [Accepted: 12/28/2013] [Indexed: 11/19/2022]
Abstract
A fully automated dual-online multifunctional ultrahigh pressure liquid chromatography (DO-MULTI-UPLC) system has been developed for high throughput proteome analyses of complex peptide mixtures. The system employs two online solid phase extraction (SPE) columns (150μm inner diameter×3cm), two capillary reverse phase (RP) columns (75μm×100cm) and a strong cation exchange (SCX) column (150μm×15cm) on a single system utilizing one binary pump and one isocratic pump. With the automated operation of six switching valves, the selection of LC experiments between single-dimensional RPLC and online two-dimensional SCX/RPLC were achieved automatically, without manual intervention, while two RPLC columns were used independently and alternatively. By essentially removing the dead time for column equilibration between experiments, in either 1D mode or 2D experimental mode, the current system was demonstrated to increase the experimental throughput by about two folds, while keeping the inter-column reproducibility of peptide elution time in less than 1% of gradient time. The advantageous features of the proposed system were demonstrated by its application to proteome samples of varying complexities.
Collapse
Affiliation(s)
- Hangyeore Lee
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea.
| | - Jung Hwa Lee
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea.
| | - Hokeun Kim
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea.
| | - Su-Jin Kim
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea.
| | - Jingi Bae
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea.
| | - Hark Kyun Kim
- National Cancer Center, Goyang 410-769, South Korea.
| | - Sang-Won Lee
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea.
| |
Collapse
|
60
|
Eichelbaum K, Krijgsveld J. Combining pulsed SILAC labeling and click-chemistry for quantitative secretome analysis. Methods Mol Biol 2014; 1174:101-114. [PMID: 24947377 DOI: 10.1007/978-1-4939-0944-5_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Secreted proteins, such as cytokines, chemokines, and hormones, exhibit central functions in intercellular communication, which is crucial to maintain homeostasis in every multicellular organism. A common approach to identify secreted proteins is by proteomic analysis of culture media after conditioning with a cell type of interest. This is preferably done in serum-free conditions to enable the detection of low-abundance secretory factors that would otherwise be masked by serum proteins. However, serum starvation introduces the risk of bringing cells in a stressed or perturbed state. A superior approach employs the enrichment of newly synthesized and secreted proteins from serum-containing growth medium. This is achieved by the combination of two metabolic labels: stable isotope-labeled amino acids for reliable quantification, and azidohomoalanine (AHA), an azide-bearing analogue of methionine, for the enrichment of newly synthesized and secreted proteins. This approach has been used to compare secretomes of multiple cell lines or to analyze proteins that are secreted upon a specific stimulation. Here we describe in detail the enrichment and quantification of newly synthesized and secreted proteins.
Collapse
Affiliation(s)
- Katrin Eichelbaum
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | | |
Collapse
|
61
|
|
62
|
Zhang Z, Wu S, Stenoien DL, Paša-Tolić L. High-throughput proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:427-454. [PMID: 25014346 DOI: 10.1146/annurev-anchem-071213-020216] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.
Collapse
|
63
|
Mass spectrometry-based biomarkers in drug development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:341-59. [PMID: 24952191 DOI: 10.1007/978-3-319-06068-2_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in mass spectrometry, proteomics, protein bioanalytical approaches, and biochemistry have led to a rapid evolution and expansion in the area of mass spectrometry-based biomarker discovery and development. The last decade has also seen significant progress in establishing accepted definitions, guidelines, and criteria for the analytical validation, acceptance, and qualification of biomarkers. These advances have coincided with a decreased return on investment for pharmaceutical research and development and an increasing need for better early decision making tools. Empowering development teams with tools to measure a therapeutic interventions impact on disease state and progression, measure target engagement, and to confirm predicted pharmacodynamic effects is critical to efficient data-driven decision making. Appropriate implementation of a biomarker or a combination of biomarkers can enhance understanding of a drugs mechanism, facilitate effective translation from the preclinical to clinical space, enable early proof of concept and dose selection, and increase the efficiency of drug development. Here we will provide descriptions of the different classes of biomarkers that have utility in the drug development process as well as review specific, protein-centric, mass spectrometry-based approaches for the discovery of biomarkers and development of targeted assays to measure these markers in a selective and analytically precise manner.
Collapse
|
64
|
Wang B, Trimpin S. High-throughput solvent assisted ionization inlet for use in mass spectrometry. Anal Chem 2013; 86:1000-6. [PMID: 24093975 DOI: 10.1021/ac400867b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work we developed a multiplexed analysis platform providing a simple high-throughput means to characterize solutions. Automated analyses, requiring less than 5 s per sample without carryover and 1 s per sample, accepting minor cross contamination, was achieved using multiplexed solvent assisted ionization inlet (SAII) mass spectrometry (MS). The method involves sequentially moving rows of pipet tips containing sample solutions in close proximity to the inlet aperture of a heated mass spectrometer inlet tube. The solution is pulled from the container into the mass spectrometer inlet by the pressure differential at the mass spectrometer inlet aperture. This sample introduction method for direct injection of solutions is fast, easily implemented, and widely applicable, as is shown by applications ranging from small molecules to proteins as large as carbonic anhydrase (molecular weight ca. 29,000). MS/MS fragmentation is applicable for sample characterization. An x,y-stage and common imaging software are incorporated to map the location of components in the sample wells of a microtiter plate. Location within an x,y-array of different sample solutions and the relative concentration of the sample are displayed using ion intensity maps.
Collapse
Affiliation(s)
- Beixi Wang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | | |
Collapse
|
65
|
Bomans K, Lang A, Roedl V, Adolf L, Kyriosoglou K, Diepold K, Eberl G, Mølhøj M, Strauss U, Schmalz C, Vogel R, Reusch D, Wegele H, Wiedmann M, Bulau P. Identification and monitoring of host cell proteins by mass spectrometry combined with high performance immunochemistry testing. PLoS One 2013; 8:e81639. [PMID: 24312330 PMCID: PMC3842259 DOI: 10.1371/journal.pone.0081639] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
Abstract
Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS). However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP) was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day) manner.
Collapse
Affiliation(s)
- Katrin Bomans
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Antje Lang
- Pharma Biotech, Roche Diagnostics GmbH, Penzberg, Germany
| | - Veronika Roedl
- Pharma Biotech, Roche Diagnostics GmbH, Penzberg, Germany
| | - Lisa Adolf
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
| | | | | | - Gabriele Eberl
- Pharma Biotech, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Mølhøj
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ulrike Strauss
- Pharma Biotech, Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Rudolf Vogel
- Professional Diagnostics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Dietmar Reusch
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Harald Wegele
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Patrick Bulau
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
- * E-mail:
| |
Collapse
|
66
|
Carrera M, Cañas B, Gallardo JM. Proteomics for the assessment of quality and safety of fishery products. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
67
|
Deracinois B, Flahaut C, Duban-Deweer S, Karamanos Y. Comparative and Quantitative Global Proteomics Approaches: An Overview. Proteomes 2013; 1:180-218. [PMID: 28250403 PMCID: PMC5302699 DOI: 10.3390/proteomes1030180] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 01/14/2023] Open
Abstract
Proteomics became a key tool for the study of biological systems. The comparison between two different physiological states allows unravelling the cellular and molecular mechanisms involved in a biological process. Proteomics can confirm the presence of proteins suggested by their mRNA content and provides a direct measure of the quantity present in a cell. Global and targeted proteomics strategies can be applied. Targeted proteomics strategies limit the number of features that will be monitored and then optimise the methods to obtain the highest sensitivity and throughput for a huge amount of samples. The advantage of global proteomics strategies is that no hypothesis is required, other than a measurable difference in one or more protein species between the samples. Global proteomics methods attempt to separate quantify and identify all the proteins from a given sample. This review highlights only the different techniques of separation and quantification of proteins and peptides, in view of a comparative and quantitative global proteomics analysis. The in-gel and off-gel quantification of proteins will be discussed as well as the corresponding mass spectrometry technology. The overview is focused on the widespread techniques while keeping in mind that each approach is modular and often recovers the other.
Collapse
Affiliation(s)
- Barbara Deracinois
- Université Lille Nord de France, Lille F-59000, France.
- Université d'Artois, LBHE, Lens F-62307, France.
- IMPRT-IFR114, Lille F-59000, France.
| | - Christophe Flahaut
- Université Lille Nord de France, Lille F-59000, France.
- Université d'Artois, LBHE, Lens F-62307, France.
- IMPRT-IFR114, Lille F-59000, France.
| | - Sophie Duban-Deweer
- Université Lille Nord de France, Lille F-59000, France.
- Université d'Artois, LBHE, Lens F-62307, France.
- IMPRT-IFR114, Lille F-59000, France.
| | - Yannis Karamanos
- Université Lille Nord de France, Lille F-59000, France.
- Université d'Artois, LBHE, Lens F-62307, France.
- IMPRT-IFR114, Lille F-59000, France.
| |
Collapse
|
68
|
Wöhlbrand L, Trautwein K, Rabus R. Proteomic tools for environmental microbiology-A roadmap from sample preparation to protein identification and quantification. Proteomics 2013; 13:2700-30. [DOI: 10.1002/pmic.201300175] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/07/2013] [Accepted: 06/28/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Kathleen Trautwein
- Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University Oldenburg; Oldenburg Germany
| |
Collapse
|
69
|
Boichenko AP, Govorukhina N, van der Zee AGJ, Bischoff R. Multidimensional separation of tryptic peptides from human serum proteins using reversed-phase, strong cation exchange, weak anion exchange, and fused-core fluorinated stationary phases. J Sep Sci 2013; 36:3463-70. [PMID: 24039020 DOI: 10.1002/jssc.201300750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Proteome profiling of crude serum is a challenging task due to the wide dynamic range of protein concentrations and the presence of high-abundance proteins, which cover >90% of the total protein mass in serum. Peptide fractionation on strong cation exchange, weak anion exchange in the electrostatic repulsion hydrophilic interaction chromatography (ERLIC) mode, RP C18 at pH 2.5 (low pH), fused-core fluorinated at pH 2.5, and RP C18 at pH 9.7 (high pH) stationary phases resulted in two to three times more identified proteins and three to four times more identified peptides in comparison with 1D nanoChip-LC-MS/MS quadrupole TOF analysis (45 proteins, 185 peptides). The largest number of peptides and proteins was identified after prefractionation in the ERLIC mode due to the more uniform distribution of peptides among the collected fractions and on the RP column at high pH due to the high efficiency of RP separations and the complementary selectivity of both techniques to low-pH RP chromatography. A 3D separation scheme combining ERLIC, high-pH RP, and low-pH nanoChip-LC-MS/MS for crude serum proteome profiling resulted in the identification of 208 proteins and 1088 peptides with the lowest reported concentration of 11 ng/mL for heat shock protein 74.
Collapse
Affiliation(s)
- Alexander P Boichenko
- Department of Analytical Biochemistry, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
70
|
SCX charge state selective separation of tryptic peptides combined with 2D-RP-HPLC allows for detailed proteome mapping. J Proteomics 2013; 91:164-71. [PMID: 23851314 DOI: 10.1016/j.jprot.2013.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/25/2013] [Accepted: 06/29/2013] [Indexed: 11/20/2022]
Abstract
UNLABELLED Multidimensional peptide fractionation is widely used in proteomics to reduce the complexity of peptide mixtures prior to mass spectrometric analysis. Here, we describe the sequential use of strong cation exchange and reversed phase liquid chromatography in both basic and acidic pH buffers for separating tryptic peptides from complex mixtures of proteins. Strong cation exchange exclusively separates peptide by their charge state into neutral, singly and multi-charged species. To further reduce complexity, each peptide group was separated by reversed phase liquid chromatography at basic pH and the resultant fractions were analyzed by LC-MS/MS. This workflow was applied to a soluble protein lysate from mouse embryonic fibroblast cells, and more than 5000 proteins from 29,843 peptides were identified. The high selectivity displayed during the SCX step (93% to 100%) and the overlaps between proteins identified from the SCX-separated peptide groups, are interesting assets of the procedure. BIOLOGICAL SIGNIFICANCE The present work shows how complex mixture of peptides can be selectively separated by SCX based essentially on the net charge of peptides. The proposed workflow results in three well-defined subset of peptides of specific amino acid composition, which are representative of the constituent proteins. The very high selectivity obtained (93% to 99%) on the peptide side, underscores for the first time the possibility of SCX chromatography to aid in validating identified peptides.
Collapse
|
71
|
Mommen GPM, Meiring HD, Heck AJR, de Jong APJM. Mixed-Bed Ion Exchange Chromatography Employing a Salt-Free pH Gradient for Improved Sensitivity and Compatibility in MudPIT. Anal Chem 2013; 85:6608-16. [DOI: 10.1021/ac400995e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Geert P. M. Mommen
- Formulation
and Analytical Research, Institute for Translational Vaccinology, Bilthoven,
the Netherlands
- Biomolecular
Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht
Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Hugo D. Meiring
- Formulation
and Analytical Research, Institute for Translational Vaccinology, Bilthoven,
the Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht
Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Ad P. J. M. de Jong
- Formulation
and Analytical Research, Institute for Translational Vaccinology, Bilthoven,
the Netherlands
| |
Collapse
|
72
|
Lin HR, Wu CC, Wu YH, Hsu CW, Cheng ML, Chiu DTY. Proteome-wide dysregulation by glucose-6-phosphate dehydrogenase (G6PD) reveals a novel protective role for G6PD in aflatoxin B₁-mediated cytotoxicity. J Proteome Res 2013; 12:3434-48. [PMID: 23742107 DOI: 10.1021/pr4002959] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is pivotal to reduced nicotinamide adenine dinucleotide phosphate (NADPH) production and cellular redox balance. Cells with G6PD deficiency are susceptible to oxidant-induced death at high oxidative stress. However, it remains unclear what precise biological processes are affected by G6PD deficiency due to altered cellular redox homeostasis, particularly at low oxidative stress. To further explore the biological role of G6PD, we generated G6PD-knockdown cell clones using lung cancer line A549. We identified proteins differentially expressed in the knockdown clones without the addition of exogenous oxidant by means of isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-mass spectrometry (LC-MS/MS). We validated a panel of proteins that showed altered expression in G6PD-knockdown clones and were involved in metabolism of xenobiotic and glutathione (GSH) as well as energy metabolism. To determine the physiological relevancy of our findings, we investigated the functional consequence of G6PD depletion in cells treated with a prevalent xenobiotic, aflatoxin B₁(AFB₁). We found a protective role of G6PD in AFB₁-induced cytotoxicity, possibly via providing NADPH for NADPH oxidase to induce epoxide hydrolase 1 (EPHX1), a xenobiotic-metabolizing enzyme. Collectively, our findings reveal for the first time a proteome-wide dysregulation by G6PD depletion under the condition without exogenous oxidant challenge, and we suggest a novel association of G6PD activity with AFB₁-related xenobiotic metabolism.
Collapse
Affiliation(s)
- Hsin-Ru Lin
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
73
|
Lim UM, Yap MGS, Lim YP, Goh LT, Ng SK. Identification of autocrine growth factors secreted by CHO cells for applications in single-cell cloning media. J Proteome Res 2013; 12:3496-510. [PMID: 23763710 DOI: 10.1021/pr400352n] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chinese hamster ovary (CHO) cell lines are widely used for the expression of therapeutic recombinant proteins, including monoclonal antibodies and other biologics. For manufacturing, cells derived from a single-cell clone are typically used to ensure product consistency. Presently, fetal bovine serum (FBS) is commonly used to support low cell density cultures to obtain clonal cell populations because cells grow slowly, or even do not survive at low cell densities in protein-free media. However, regulatory authorities have discouraged the use of FBS to reduce the risk of contamination by adventitious agents from animal-derived components. In this study, we demonstrated how a complementary mass spectrometry-based shotgun proteomics strategy enabled the identification of autocrine growth factors in CHO cell-conditioned media, which has led to the development of a fully defined single-cell cloning media that is serum and animal component-free. Out of 290 secreted proteins that were identified, eight secreted growth factors were reported for the first time from CHO cell cultures. By supplementing a combination of these growth factors to protein-free basal media, single cell growth of CHO cells was improved with cloning efficiencies of up to 30%, a 2-fold improvement compared to unsupplemented basal media. Complementary effects of these autocrine growth factors with other paracrine growth factors were also demonstrated when the mixture improved cloning efficiency to 42%, similar to that for the conditioned medium.
Collapse
Affiliation(s)
- U Ming Lim
- Bioprocessing Technology Institute , Agency for Science, Technology and Research-A*STAR, 20 Biopolis Way 06-01, Singapore 138668, Republic of Singapore
| | | | | | | | | |
Collapse
|
74
|
A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics. Appl Microbiol Biotechnol 2013; 97:4749-62. [DOI: 10.1007/s00253-013-4897-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
75
|
Piersma SR, Warmoes MO, de Wit M, de Reus I, Knol JC, Jiménez CR. Whole gel processing procedure for GeLC-MS/MS based proteomics. Proteome Sci 2013; 11:17. [PMID: 23617947 PMCID: PMC3656797 DOI: 10.1186/1477-5956-11-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/11/2013] [Indexed: 12/24/2022] Open
Abstract
Background SDS-PAGE followed by in-gel digestion (IGD) is a popular workflow in mass spectrometry-based proteomics. In GeLC-MS/MS, a protein lysate of a biological sample is separated by SDS-PAGE and each gel lane is sliced in 5–20 slices which, after IGD, are analyzed by LC-MS/MS. The database search results for all slices of a biological sample are combined yielding global protein identification and quantification for each sample. In large scale GeLC-MS/MS experiments the manual processing steps including washing, reduction and alkylation become a bottleneck. Here we introduce the whole gel (WG) procedure where, prior to gel slice cutting, the processing steps are carried out on the whole gel. Results In two independent experiments human HCT116 cell lysate and mouse tumor tissue lysate were separated by 1D SDS PAGE. In a back to back comparison of the IGD procedure and the WG procedure, both protein identification (>80% overlap) and label-free protein quantitation (R2=0.94) are highly similar between procedures. Triplicate analysis of the WG procedure of both HCT116 cell lysate and formalin-fixed paraffin embedded (FFPE) tumor tissue showed identification reproducibility of >88% with a CV<20% on protein quantitation. Conclusions The whole gel procedure allows for reproducible large-scale differential GeLC-MS/MS experiments, without a prohibitive amount of manual processing and with similar performance as conventional in-gel digestion. This procedure will especially enable clinical proteomics for which GeLC-MS/MS is a popular workflow and sample numbers are relatively high.
Collapse
Affiliation(s)
- Sander R Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
76
|
Hao P, Ren Y, Dutta B, Sze SK. Comparative evaluation of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and high-pH reversed phase (Hp-RP) chromatography in profiling of rat kidney proteome. J Proteomics 2013; 82:254-62. [PMID: 23486160 DOI: 10.1016/j.jprot.2013.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 01/17/2023]
Abstract
UNLABELLED ERLIC and high-pH RP (Hp-RP) have been reported to be promising alternatives to strong cation exchange (SCX) in proteome fractionation. Here we compared the performance of ERLIC, concatenated ERLIC and concatenated Hp-RP in proteome profiling. The protein identification is comparable in these three strategies, but significantly more unique peptides are identified by the two concatenation methods, resulting in a significant increase of the average protein sequence coverage. The pooling of fractions from spaced intervals results in more uniform distribution of peptides in each fraction compared with the chromatogram-based pooling of adjacent fractions. ERLIC fractionates peptides according to their pI and GRAVY values. These properties remains but becomes less remarkable in concatenated ERLIC. In contrast, the average pI and GRAVY values of the peptides are comparable in each fraction in concatenated Hp-RP. ERLIC performs the best in identifying peptides with pI>9 among the three strategies, while concatenated Hp-RP is good at identifying peptides with pI<4. These advantages are useful when either basic or acidic peptides/proteins are analytical targets. The power of ERLIC in identification of basic peptides seems to be due to their efficient separation from acidic peptides. This study facilitates the choice of proper fractionation strategies based on specific objectives. BIOLOGICAL SIGNIFICANCE For in-depth proteomic analysis of a cell, tissue and plasma, multidimensional liquid chromatography (MDLC) is still necessary to reduce sample complexity for improving analytical dynamic range and proteome coverage. This work conducts a direct comparison of three promising first-dimensional proteome fractionation methods. They are comparable in identifying proteins, but concatenated ERLIC and concatenated Hp-RP identify significantly more unique peptides than ERLIC. ERLIC is good at analyzing basic peptides, while concatenated Hp-RP performs the best in analyzing acidic peptides with pI<4. This will facilitate the choice of the proper peptide fractionation strategy based on a specific need. A combination of different fractionation strategies can be used to increase the sequence coverage and number of protein identification due to the complementary effect between different methods.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
77
|
Lothrop AP, Torres MP, Fuchs SM. Deciphering post-translational modification codes. FEBS Lett 2013; 587:1247-57. [PMID: 23402885 DOI: 10.1016/j.febslet.2013.01.047] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/20/2013] [Accepted: 01/23/2013] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) occur on nearly all proteins. Many domains within proteins are modified on multiple amino acid sidechains by diverse enzymes to create a myriad of possible protein species. How these combinations of PTMs lead to distinct biological outcomes is only beginning to be understood. This manuscript highlights several examples of combinatorial PTMs in proteins, and describes recent technological developments, which are driving our ability to understand how PTM patterns may "code" for biological outcomes.
Collapse
Affiliation(s)
- Adam P Lothrop
- Department of Biology, Tufts University, 200 Boston Ave. Suite 4700, Medford, MA 02155, USA
| | | | | |
Collapse
|
78
|
Yates JR. The revolution and evolution of shotgun proteomics for large-scale proteome analysis. J Am Chem Soc 2013; 135:1629-40. [PMID: 23294060 PMCID: PMC3751590 DOI: 10.1021/ja3094313] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mass spectrometry has evolved at an exponential rate over the last 100 years. Innovations in the development of mass spectrometers have created powerful instruments capable of analyzing a wide range of targets, from rare atoms and molecules to very large molecules, such as a proteins, protein complexes, and DNA. These performance gains have been driven by sustaining innovations, punctuated by the occasional disruptive innovation. The use of mass spectrometry for proteome analysis was driven by disruptive innovations that created a capability for large-scale analysis of proteins and modifications.
Collapse
Affiliation(s)
- John R. Yates
- 10550 North Torrey Pines, SR11, Department of Chemical Physiology, The Scripps Research Institute, LaJolla, CA 92037, TEL: (858) 784-8862
| |
Collapse
|
79
|
2D gels still have a niche in proteomics. J Proteomics 2013; 88:4-13. [PMID: 23353020 DOI: 10.1016/j.jprot.2013.01.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 01/26/2023]
Abstract
With the rapid advance of MS-based proteomics one might think that 2D gel-based proteomics is dead. This is far from the truth. Current research has shown that there are still a number of places in the field of protein and molecular biology where 2D gels still play a leading role. The aim of this review is to highlight some of these applications. Examples from our own research as well as from other published works are used to illustrate the 2D gel driven research in the areas of: 1) de novo sequencing and protein identification from organisms with no or incomplete genome sequences available; 2) alternative detection methods for modification specific proteomics; 3) identification of protein isoforms and modified proteins. With an example of the glycoprotein TIMP-1 protein we illustrate the unique properties of 2D gels for the separation and characterisation of multiply modified proteins. We also show that careful analysis of experimental and theoretical protein mass and pI can lead to the identification of unanticipated protein variants modified by for example proteolytic cleavage. Together this shows that there is an important niche for 2D gel-based proteomics, which compliments traditional LC-MS techniques for specific protein research purposes.
Collapse
|
80
|
Xu J, Zhang X, Guo Z, Yan J, Yu L, Li X, Xue X, Liang X. Orthogonal separation and identification of long-chain peptides from scorpion Buthus martensi Karsch venom by using two-dimensional mixed-mode reversed phase-reversed phase chromatography coupled to tandem mass spectrometry. Analyst 2013; 138:1835-43. [DOI: 10.1039/c2an36704a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
81
|
The characteristics of open-tubular capillary electrochromatography columns with series/mixed stationary phases constructed with magnetic nanoparticle coating. Talanta 2013; 104:173-9. [DOI: 10.1016/j.talanta.2012.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 11/03/2012] [Accepted: 11/08/2012] [Indexed: 12/17/2022]
|
82
|
|
83
|
Yamamoto KI, Murata H, Putranto EW, Kataoka K, Motoyama A, Hibino T, Inoue Y, Sakaguchi M, Huh NH. DOCK7 is a critical regulator of the RAGE-Cdc42 signaling axis that induces formation of dendritic pseudopodia in human cancer cells. Oncol Rep 2012; 29:1073-9. [PMID: 23254359 DOI: 10.3892/or.2012.2191] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/25/2012] [Indexed: 11/05/2022] Open
Abstract
Cellular migration is a fundamental process linked to cancer metastasis. Growing evidence indicates that the receptor for advanced glycation end products (RAGE) plays a pivotal role in this process. With regard to downstream signal transducers of RAGE, diaphanous-1 and activated small guanine nucleotide triphosphatases, Rac1 and Cdc42, have been identified. To obtain precise insight into the direct downstream signaling mechanism of RAGE, we screened for proteins interacting with the cytoplasmic domain of RAGE employing an immunoprecipitation-liquid chromatography coupled with an electrospray tandem mass spectrometry system. In the present study, we found that the cytoplasmic domain of RAGE interacted with an atypical DOCK180-related guanine nucleotide exchange factor, dedicator of cytokinesis protein 7 (DOCK7). DOCK7 bound to the RAGE cytoplasmic domain and transduced a signal to Cdc42, resulting in the formation of abundant highly branched filopodia-like protrusions, dendritic pseudopodia. Blocking of the function of DOCK7 greatly abrogated the formation of dendritic pseudopodia and suppressed cellular migration. These results indicate that DOCK7 functions as an essential and downstream regulator of RAGE-mediated cellular migration through the formation of dendritic pseudopodia.
Collapse
Affiliation(s)
- Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
New analytical platforms have been developed in response to the need for attaining increased peak capacity for multicomponent complex analysis with higher sensitivity and characterization of the analytes, and high-throughput capabilities. This review outlines the fundamental principles of target and comprehensive 2D LC method development and encompasses applications of LC–LC and LC × LC coupled to MS in bioanalysis using a variety of online analytical procedures. It also provides a rationale for the usage of the most employed mass analyzers and ionization sources on these platforms.
Collapse
|
85
|
Yu Y, Xie L, Gunawardena HP, Khatun J, Maier C, Spitzer W, Leerkes M, Giddings MC, Chen X. GOFAST: an integrated approach for efficient and comprehensive membrane proteome analysis. Anal Chem 2012; 84:9008-14. [PMID: 23030679 DOI: 10.1021/ac300134e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Membrane proteomics, the large-scale analysis of membrane proteins, is often constrained by the difficulties of achieving fully resolvable separation and resistance to proteolysis, both of which could lead to low recovery and low identification rates of membrane proteins. Here, we introduce a novel integrated approach, GELFrEE Optimized FASP Technology (GOFAST) for large-scale and comprehensive membrane proteins analysis. Using an array of sample preparation techniques including gel-eluted liquid fraction entrapment electrophoresis (GELFrEE), filter-aided sample preparation (FASP), and microwave-assisted on-filter enzymatic digestion, we identified 2 090 proteins from the membrane fraction of a leukemia cell line (K562). Of these, 37% are annotated as membrane proteins according to gene ontology analysis, resulting in the largest membrane proteome of leukemia cells reported to date. Our approach combines the advantages of GELFrEE high-loading capacity, gel-free separation, efficient depletion of detergents, and microwave-assisted on-filter digestion, minimizing sample losses and maximizing MS-detectable sequence coverage of individual proteins. In addition, this approach also shows great potential for the identification of alternative splicing products.
Collapse
Affiliation(s)
- Yanbao Yu
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Wang Y, Fonslow BR, Wong CCL, Nakorchevsky A, Yates JR. Improving the comprehensiveness and sensitivity of sheathless capillary electrophoresis-tandem mass spectrometry for proteomic analysis. Anal Chem 2012; 84:8505-13. [PMID: 23004022 DOI: 10.1021/ac301091m] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe a solid phase microextraction (SPME), multistep elution, transient isotachophoresis (tITP) capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) procedure which employs a high sensitivity porous electrospray ionization (ESI) sprayer for the proteomic analysis of a moderately complex protein mixture. In order to improve comprehensiveness and sensitivity over a previously reported proteomic application of the ESI sprayer, we evaluated preconcentration with SPME and multistep elution prior to tITP stacking and CE separation. To maximize separation efficiency, we primarily employed electrokinetic methods for elution and separation after loading the sample by application of pressure. Conditions were developed for optimum simultaneous electrokinetic elution and sample stacking using a tryptic digest of 16 proteins to maximize peptide identifications and minimize band broadening. We performed comparative proteomic analysis of a dilution series using CE and nanoflow liquid chromatography (nLC). We found complementary peptide and protein identifications with larger quantities (100 ng) of a Pyrococcus furiosus tryptic digest, but with mass-limited amounts (5 ng) CE was 3 times more effective at identifying proteins. We attribute these gains in sensitivity to lower noise levels with the porous CE sprayer, illustrated by better signal-to-noise ratios of peptide precursor ions and associated higher XCorr values of identified peptides when compared directly to nLC. From comparative analysis of SPME-tITP-CE with direct injection CE, the SPME-tITP process improved comprehensiveness and sensitivity.
Collapse
Affiliation(s)
- Yueju Wang
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|
87
|
Identification and quantification of host cell protein impurities in biotherapeutics using mass spectrometry. Anal Biochem 2012; 428:150-7. [DOI: 10.1016/j.ab.2012.05.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/07/2023]
|
88
|
Donato P, Cacciola F, Tranchida PQ, Dugo P, Mondello L. Mass spectrometry detection in comprehensive liquid chromatography: basic concepts, instrumental aspects, applications and trends. MASS SPECTROMETRY REVIEWS 2012; 31:523-559. [PMID: 22383300 DOI: 10.1002/mas.20353] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 05/31/2023]
Abstract
The review, as can be deduced from the title, focuses on both theoretical and practical aspects of the use of mass spectrometry as a third, added dimension to a comprehensive LC (LC × LC) system, generating the most powerful analytical tool today for non-volatile analytes. The first part deals with the technical requirements for linkage of an LC × LC system to an MS one, including the choice of the mobile phase (buffer and salts), flow rate (splitting), type of ionization (interface); advantages and disadvantages of off-line and on-line methods are discussed, as well. A discussion of the various aspects of instrumentation is provided, both from a chromatographic and mass spectrometry standpoint, with particular emphasis directed to the choice of column sets, spatial resolution, mass resolving power, mass accuracy, and tandem-MS capabilities. The extent to which mass spectrometry may be of aid in unraveling column-outlet multicompound bands is highlighted, along with its effectiveness as a chromatographic detector of excellent sensitivity, universality yet with potential in terms of selectivity and amenability to quantitative analysis over a wide dynamic range. The following section of the review contains significant applications of comprehensive two-dimensional LC coupled to MS in different areas of research, with details on interfaces, column stationary phases, modulation and MS parameters. It is not the intention of the authors to provide a comprehensive description of the techniques, but merely to discuss only those aspects which are essential for successful applications of the LC-MS combination. The reader will be acquainted with the enormous potential of this hyphenated technique, and the factors and instrumental developments that have concurred to make it emerge to a central role in specialized fields, such as proteomics.
Collapse
Affiliation(s)
- Paola Donato
- University Campus Bio-Medico, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | | | | | | | | |
Collapse
|
89
|
Sun Z, Hamilton KL, Reardon KF. Phosphoproteomics and molecular cardiology: Techniques, applications and challenges. J Mol Cell Cardiol 2012; 53:354-68. [DOI: 10.1016/j.yjmcc.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/26/2012] [Accepted: 06/03/2012] [Indexed: 12/16/2022]
|
90
|
Meyer JG, A Komives E. Charge state coalescence during electrospray ionization improves peptide identification by tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1390-9. [PMID: 22610994 PMCID: PMC6345509 DOI: 10.1007/s13361-012-0404-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 05/12/2023]
Abstract
We report the effects of supercharging reagents dimethyl sulphoxide (DMSO) and m-nitrobenzyl alcohol (m-NBA) applied to untargeted peptide identification, with special emphasis on non-tryptic peptides. Peptides generated from a mixture of five standard proteins digested with trypsin, elastase, or pepsin were separated with nanoflow liquid chromatography using mobile phases modified with either 5% DMSO or 0.1%m-NBA. Eluting peptides were ionized by online electrospray and sequenced by both CID and ETD using data-dependent MS/MS. Statistically significant improvements in peptide identifications were observed with DMSO co-solvent. In order to understand this observation, we assessed the effects of supercharging reagents on the chromatographic separation and the electrospray quality. The increase in identifications was not due to supercharging, which was greater for the 0.1%m-NBA co-solvent and not observed for the 5.0% DMSO co-solvent. The improved MS/MS efficiency using the DMSO modified mobile phase appeared to result from charge state coalescence.
Collapse
Affiliation(s)
- Jesse G Meyer
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, 92093-0378, USA
| | | |
Collapse
|
91
|
Jafari M, Primo V, Smejkal GB, Moskovets EV, Kuo WP, Ivanov AR. Comparison of in-gel protein separation techniques commonly used for fractionation in mass spectrometry-based proteomic profiling. Electrophoresis 2012; 33:2516-26. [PMID: 22899259 PMCID: PMC4234072 DOI: 10.1002/elps.201200031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fractionation of complex samples at the cellular, subcellular, protein, or peptide level is an indispensable strategy to improve the sensitivity in mass spectrometry-based proteomic profiling. This study revisits, evaluates, and compares the most common gel-based protein separation techniques i.e. 1D SDS-PAGE, 1D preparative SDS-PAGE, IEF-IPG, and 2D-PAGE in their performance as fractionation approaches in nano LC-ESI-MS/MS analysis of a mixture of protein standards and mitochondrial extracts isolated from rat liver. This work demonstrates that all the above techniques provide complementary protein identification results, but 1D SDS-PAGE and IEF-IPG had the highest number of identifications. The IEF-IPG technique resulted in the highest average number of detected peptides per protein. The 2D-PAGE was evaluated as a protein fractionation approach. This work shows that the recovery of proteins and resulting proteolytic digests is highly dependent on the total volume of the gel matrix. The performed comparison of the fractionation techniques demonstrates the potential of a combination of orthogonal 1D SDS-PAGE and IEF-IPG for the improved sensitivity of profiling without significant decrease in throughput.
Collapse
Affiliation(s)
- Mohieddin Jafari
- HSPH Proteomics Resource, Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
- School of Paramedical Science, Shahid Beheshti University of Medical Science, Tehran, Iran
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Vincent Primo
- Harvard Catalyst, The Harvard Clinical and Translational Science Center, Laboratory for Innovative Translational Technologies, Boston, MA, USA
| | - Gary B. Smejkal
- Harvard Catalyst, The Harvard Clinical and Translational Science Center, Laboratory for Innovative Translational Technologies, Boston, MA, USA
| | | | - Winston P. Kuo
- Harvard Catalyst, The Harvard Clinical and Translational Science Center, Laboratory for Innovative Translational Technologies, Boston, MA, USA
- Harvard School of Dental Medicine, Department of Developmental Biology, Boston, MA, USA
| | - Alexander R. Ivanov
- HSPH Proteomics Resource, Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
92
|
Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 2012; 43:1049-60. [PMID: 22821265 DOI: 10.1007/s00726-012-1286-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/03/2012] [Indexed: 12/21/2022]
Abstract
Ubiquitin signaling plays an essential role in controlling cellular processes in eukaryotes, and the impairment of ubiquitin regulation contributes to the pathogenesis of a wide range of human diseases. During the last decade, mass spectrometry-based proteomics has emerged as an indispensable approach for identifying the ubiquitinated proteome (ubiquitinome), ubiquitin modification sites, the linkages of complex ubiquitin chains, as well as the interactome of ubiquitin enzymes. In particular, implementation of quantitative strategies allows the detection of dynamic changes in the ubiquitinome, enhancing the ability to differentiate between function-relevant protein targets and false positives arising from biological and experimental variations. The profiling of total cell lysate and the ubiquitinated proteome in the same sets of samples has become a powerful tool, revealing a subset of substrates that are modulated by specific physiological and pathological conditions, such as gene mutations in ubiquitin signaling. This strategy is equally useful for dissecting the pathways of ubiquitin-like proteins.
Collapse
|
93
|
Yang F, Shen Y, Camp DG, Smith RD. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics 2012; 9:129-34. [PMID: 22462785 DOI: 10.1586/epr.12.15] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Orthogonal high-resolution separations are critical for attaining improved analytical dynamic range and protein coverage in proteomic measurements. High-pH reversed-phase liquid chromatography (RPLC), followed by fraction concatenation, affords better peptide analysis than conventional strong cation-exchange chromatography applied for 2D proteomic analysis. For example, concatenated high-pH RPLC increased identification of peptides (by 1.8-fold) and proteins (by 1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of high-pH RPLC with fraction concatenation include improved protein sequence coverage, simplified sample processing and reduced sample losses, making this an attractive alternative to strong cation-exchange chromatography in conjunction with second-dimension low-pH RPLC for 2D proteomics analyses.
Collapse
Affiliation(s)
- Feng Yang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | |
Collapse
|
94
|
McQueen P, Krokhin O. Optimal selection of 2D reversed-phase-reversed-phase HPLC separation techniques in bottom-up proteomics. Expert Rev Proteomics 2012; 9:125-8. [PMID: 22462784 DOI: 10.1586/epr.12.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent developments in bottom-up proteomics have supplanted the use of gel-based approaches in favor of multidimensional chromatographic separations of peptide mixtures followed by mass spectrometry analysis. This trend is driven by the desire to eliminate labor-intensive in-gel digestion procedures and increase proteome coverage through better recovery of proteolytic fragments. Introduction of reversed-phase-reversed-phase 2D separation techniques is one of the major improvements that have made this possible. In this article, we review recent developments in 2D HPLC and highlight variations in reversed-phase HPLC separation selectivity that allow for superior peak capacity in peptide fractionation.
Collapse
Affiliation(s)
- Peter McQueen
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB, Canada
| | | |
Collapse
|
95
|
Lee JH, Hyung SW, Mun DG, Jung HJ, Kim H, Lee H, Kim SJ, Park KS, Moore RJ, Smith RD, Lee SW. Fully automated multifunctional ultrahigh pressure liquid chromatography system for advanced proteome analyses. J Proteome Res 2012; 11:4373-81. [PMID: 22709424 DOI: 10.1021/pr3004166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A multifunctional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography or SCX/RPLC) separations and online phosphopeptide enrichment using a single binary nanoflow pump has been developed. With a simple operation of a function selection valve equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtained from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments. The final reverse-phase separation of the three experiments is completely decoupled from all of the function selection processes; thereby salts or acids from SCX or TiO2 column do not affect the efficiency of the reverse-phase separation.
Collapse
Affiliation(s)
- Jung Hwa Lee
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Xia S, Tao D, Yuan H, Zhou Y, Liang Z, Zhang L, Zhang Y. Nano-flow multidimensional liquid chromatography platform integrated with combination of protein and peptide separation for proteome analysis. J Sep Sci 2012; 35:1764-70. [PMID: 22623513 DOI: 10.1002/jssc.201200052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/06/2012] [Accepted: 04/06/2012] [Indexed: 11/07/2022]
Abstract
An integrated multidimensional nano-flow liquid chromatography platform with the combination of protein and peptide separation via online digestion by an immobilized enzymatic reactor was established, and successfully applied for proteome analysis. By this platform, proteins were first separated by a weak anion and weak cation mixed-bed microcolumn under a series of salt steps, online digested by a trypsin immobilized enzymatic reactor, digests trapped and desalted by a C18 precolumn, separated by nano-reversed phase liquid chromatography, and finally identified by electrospray ionization-MS/MS. To evaluate the performance of such a platform, Escherichia coli whole cell lysate proteins were analyzed. Compared with the results obtained by shotgun approach, the identified protein number was increased by 6%, with the consumed time decreased from 38 to 14 h. We also compared with integrate platform based on micro-HPLC, and the required sample amount was decreased to 8 μg. These results demonstrated that such an integrated approach would be an attractive alternative to commonly applied approaches for proteome research.
Collapse
Affiliation(s)
- Simin Xia
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P R China
| | | | | | | | | | | | | |
Collapse
|
97
|
Ramautar R, Heemskerk AAM, Hensbergen PJ, Deelder AM, Busnel JM, Mayboroda OA. CE-MS for proteomics: Advances in interface development and application. J Proteomics 2012; 75:3814-28. [PMID: 22609513 DOI: 10.1016/j.jprot.2012.04.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 12/25/2022]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) has emerged as a powerful technique for the analysis of proteins and peptides. Over the past few years, significant progress has been made in the development of novel and more effective interfaces for hyphenating CE to MS. This review provides an overview of these new interfacing techniques for coupling CE to MS, covering the scientific literature from January 2007 to December 2011. The potential of these new CE-MS interfacing techniques is demonstrated within the field of (clinical) proteomics, more specifically "bottom-up" proteomics, by showing examples of the analysis of various biological samples. The relevant papers on CE-MS for proteomics are comprehensively summarized in tables, including, e.g. information on sample type and pretreatment, interfacing and MS detection mode. Finally, general conclusions and future perspectives are provided.
Collapse
Affiliation(s)
- Rawi Ramautar
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
98
|
Wu Q, Yuan H, Zhang L, Zhang Y. Recent advances on multidimensional liquid chromatography-mass spectrometry for proteomics: from qualitative to quantitative analysis--a review. Anal Chim Acta 2012; 731:1-10. [PMID: 22652259 DOI: 10.1016/j.aca.2012.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/09/2012] [Accepted: 04/09/2012] [Indexed: 02/08/2023]
Abstract
With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography-mass spectrometry (MDLC-MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including "top-down" and "bottom-up" to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | | | | |
Collapse
|
99
|
Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients. Nat Protoc 2012; 7:882-90. [PMID: 22498708 DOI: 10.1038/nprot.2012.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The majority of proteome-wide studies rely on the high separation power of two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS), often combined with protein prefractionation. Alternative approaches would be advantageous in order to reduce the analysis time and the amount of sample required. On the basis of the recent advances in chromatographic and mass spectrometric instrumentation, thousands of proteins can be identified in a single-run LC-MS/MS experiment using ultralong gradients. Consequently, the analysis of simple proteomes or clinical samples in adequate depth becomes possible by performing single-run LC-MS/MS experiments. Here we present a generally applicable protocol for protein analysis from unseparated whole-cell extracts and discuss its potential and limitations. Demonstrating the practical applicability of the method, we identified 2,761 proteins from a HeLa cell lysate, requiring around 10 h of nanoLC-MS/MS measurement time.
Collapse
|
100
|
Cai X, Guo Z, Xue X, Xu J, Zhang X, Liang X. Two-dimensional liquid chromatography separation of peptides using reversed-phase/weak cation-exchange mixed-mode column in first dimension. J Chromatogr A 2012; 1228:242-9. [DOI: 10.1016/j.chroma.2011.06.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
|