51
|
Wu Q, Shen H, Shen H, Sun Y, Song L. Study on sensing strategy and performance of a microfluidic chemiluminescence aptazyme sensor. Talanta 2015; 150:531-8. [PMID: 26838440 DOI: 10.1016/j.talanta.2015.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
Aptamers are analogous to antibodies in their range of target recognition. G-quadruplex DNAzymes exhibit peroxidase-like activity toward certain specific reactions. Despite aptazyme sensors, based on aptamer and DNAzyme conjugates, have the potential to replace many conventional immune-biosensors; the mechanism concerning high background interference has scarcely been discussed. In this work, by taking a couple of aptazyme sensors with oligonucleotide sequences of adenosine aptamer and CatG4 DNAzyme, the sensing strategy dealing with the thermodynamic equilibrium of the functional oligonucleotide distribution had been studied. Oligonucleotide arrangement and cation condition were found important in modulating the shifting between Watson-Crick duplex and Hoogsteen G-quadruplex, which ultimately influenced sample and background signals. Notably, benefit from the microfluidic chemiluminescence detection, the developed aptazyme sensor achieved an absolute detection limit of 12 pmol adenosine with just 2 μL of pretreated sample solution consumption and satisfactory selectivity. The results have implication for better design of aptazyme sensor in the future.
Collapse
Affiliation(s)
- Qiwang Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haihui Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong Shen
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lifang Song
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
52
|
Ha TH. Recent Advances for the Detection of Ochratoxin A. Toxins (Basel) 2015; 7:5276-300. [PMID: 26690216 PMCID: PMC4690132 DOI: 10.3390/toxins7124882] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022] Open
Abstract
Ochratoxin A (OTA) is one of the mycotoxins secreted by Aspersillus and Penicillium that can easily colonize various grains like coffee, peanut, rice, and maize. Since OTA is a chemically stable compound that can endure the physicochemical conditions of modern food processing, additional research efforts have been devoted to develop sensitive and cost-effective surveillance solutions. Although traditional chromatographic and immunoassays appear to be mature enough to attain sensitivity up to the regulation levels, alternative detection schemes are still being enthusiastically pursued in an attempt to meet the requirements of rapid and cost-effective detections. Herein, this review presents recent progresses in OTA detections with minimal instrumental usage, which have been facilitated by the development of OTA aptamers and by the innovations in functional nanomaterials. In addition to the introduction of aptamer-based OTA detection techniques, OTA-specific detection principles are also presented, which exclusively take advantage of the unique chemical structure and related physicochemical characteristics.
Collapse
Affiliation(s)
- Tai Hwan Ha
- BioNanotechnology Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Nanobiotechnology (Major), Korea University of Science & Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
53
|
K+-responsive off-to-on switching of hammerhead ribozyme through dual G-quadruplex formation requiring no heating and cooling treatment. Biochem Biophys Res Commun 2015; 468:27-31. [DOI: 10.1016/j.bbrc.2015.10.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/31/2015] [Indexed: 11/23/2022]
|
54
|
Orbach R, Willner B, Willner I. Catalytic nucleic acids (DNAzymes) as functional units for logic gates and computing circuits: from basic principles to practical applications. Chem Commun (Camb) 2015; 51:4144-60. [PMID: 25612298 DOI: 10.1039/c4cc09874a] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This feature article addresses the implementation of catalytic nucleic acids as functional units for the construction of logic gates and computing circuits, and discusses the future applications of these systems. The assembly of computational modules composed of DNAzymes has led to the operation of a universal set of logic gates, to field programmable logic gates and computing circuits, to the development of multiplexers/demultiplexers, and to full-adder systems. Also, DNAzyme cascades operating as logic gates and computing circuits were demonstrated. DNAzyme logic systems find important practical applications. These include the use of DNAzyme-based systems for sensing and multiplexed analyses, for the development of controlled release and drug delivery systems, for regulating intracellular biosynthetic pathways, and for the programmed synthesis and operation of cascades.
Collapse
Affiliation(s)
- Ron Orbach
- Institute of Chemistry and the Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
55
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
56
|
A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid. Anal Chim Acta 2015; 900:90-6. [DOI: 10.1016/j.aca.2015.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/01/2015] [Accepted: 10/16/2015] [Indexed: 11/20/2022]
|
57
|
Liao WC, Lu CH, Hartmann R, Wang F, Sohn YS, Parak WJ, Willner I. Adenosine Triphosphate-Triggered Release of Macromolecular and Nanoparticle Loads from Aptamer/DNA-Cross-Linked Microcapsules. ACS NANO 2015; 9:9078-9086. [PMID: 26266334 DOI: 10.1021/acsnano.5b03223] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The synthesis of stimuli-responsive DNA microcapsules acting as carriers for different payloads, and being dissociated through the formation of aptamer-ligand complexes is described. Specifically, stimuli-responsive anti-adenosine triphosphate (ATP) aptamer-cross-linked DNA-stabilized microcapsules loaded with tetramethylrhodamine-modified dextran (TMR-D), CdSe/ZnS quantum dots (QDs), or microperoxidase-11 (MP-11) are presented. In the presence of ATP as trigger, the microcapsules are dissociated through the formation of aptamer-ATP complexes, resulting in the release of the respective loads. Selective unlocking of the capsules is demonstrated, and CTP, GTP, or TTP do not unlock the pores. The ATP-triggered release of MP-11 from the microcapsules enables the MP-11-catalyzed oxidation of Amplex UltraRed by H2O2 to the fluorescent product resorufin.
Collapse
Affiliation(s)
- Wei-Ching Liao
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Chun-Hua Lu
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Raimo Hartmann
- Fachbereich Physik, Philipps-Universität Marburg , Renthof 7, 35037 Marburg, Germany
| | - Fuan Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg , Renthof 7, 35037 Marburg, Germany
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
58
|
Gong L, Zhao Z, Lv YF, Huan SY, Fu T, Zhang XB, Shen GL, Yu RQ. DNAzyme-based biosensors and nanodevices. Chem Commun (Camb) 2015; 51:979-95. [PMID: 25336076 DOI: 10.1039/c4cc06855f] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNAzymes, screened through in vitro selection, have shown great promise as molecular tools in the design of biosensors and nanodevices. The catalytic activities of DNAzymes depend specifically on cofactors and show multiple enzymatic turnover properties, which make DNAzymes both versatile recognition elements and outstanding signal amplifiers. Combining nanomaterials with unique optical, magnetic and electronic properties, DNAzymes may yield novel fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), electrochemical and chemiluminescent biosensors. Moreover, some DNAzymes have been utilized as functional components to perform arithmetic operations or as "walkers" to move along DNA tracks. DNAzymes can also function as promising therapeutics, when designed to complement target mRNAs or viral RNAs, and consequently lead to down-regulation of protein expression. This feature article focuses on the most significant achievements in using DNAzymes as recognition elements and signal amplifiers for biosensors, and highlights the applications of DNAzymes in logic gates, DNA walkers and nanotherapeutics.
Collapse
Affiliation(s)
- Liang Gong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Fluorometric detection of mutant DNA oligonucleotide based on toehold strand displacement-driving target recycling strategy and exonuclease III-assisted suppression. Biosens Bioelectron 2015; 77:40-5. [PMID: 26386329 DOI: 10.1016/j.bios.2015.09.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/24/2015] [Accepted: 09/11/2015] [Indexed: 11/24/2022]
Abstract
We describe here a fluorometric assay for sensitive detection of oligonucleotides, based on a target recycling amplification strategy driven by toehold-mediated strand displacement reaction and on exonuclease III (Exo Ш)-assisted fluorescence background suppression strategy. The network consists of a pair of partially complementary DNA hairpins (HP1 and HP2) with 3' overhang ends, between which the spontaneous hybridization is kinetically hindered by the stems. The target DNA is repeatedly used to trigger a recycling progress between the hairpins, generating numerous HP1-HP2 duplex complexes. Exo III was then employed to digest the double strand parts of the residual hairpins and the intermediate products. The fluorescent dye, SYBR Green I, binds to the double-strand DNA products and emits strong fluorescence to achieve sensitive detection of the target DNA with the detection limit of 5.34 pM. Moreover, this proposed strategy showed high discrimination efficiency towards target DNA against mismatched DNA and was successfully applied in the analysis of human serum sample.
Collapse
|
60
|
Shi H, Li D, Xu F, He X, Wang K, Ye X, Tang J, He C. A label-free activatable aptamer probe for colorimetric detection of cancer cells based on binding-triggered in situ catalysis of split DNAzyme. Analyst 2015; 139:4181-4. [PMID: 25037636 DOI: 10.1039/c4an00561a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel label-free tailed hairpin-shaped activatable aptamer probe (THAAP) was developed by rationally integrating an aptamer and a split G-quadruplex into one sequence. Based on target recognition-triggered in situ catalysis of split DNAzyme, the THAAP strategy achieved a simple, fast, washing-free, specific and quantitative colorimetric assay of human leukemic CCRF-CEM cells.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Endo M, Takeuchi Y, Suzuki Y, Emura T, Hidaka K, Wang F, Willner I, Sugiyama H. Single-Molecule Visualization of the Activity of a Zn2+
-Dependent DNAzyme. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
62
|
Endo M, Takeuchi Y, Suzuki Y, Emura T, Hidaka K, Wang F, Willner I, Sugiyama H. Single-Molecule Visualization of the Activity of a Zn(2+)-Dependent DNAzyme. Angew Chem Int Ed Engl 2015. [PMID: 26195344 DOI: 10.1002/anie.201504656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We demonstrate the single-molecule imaging of the catalytic reaction of a Zn(2+)-dependent DNAzyme in a DNA origami nanostructure. The single-molecule catalytic activity of the DNAzyme was examined in the designed nanostructure, a DNA frame. The DNAzyme and a substrate strand attached to two supported dsDNA molecules were assembled in the DNA frame in two different configurations. The reaction was monitored by observing the configurational changes of the incorporated DNA strands in the DNA frame. This configurational changes were clearly observed in accordance with the progress of the reaction. The separation processes of the dsDNA molecules, as induced by the cleavage by the DNAzyme, were directly visualized by high-speed atomic force microscopy (AFM). This nanostructure-based AFM imaging technique is suitable for the monitoring of various chemical and biochemical catalytic reactions at the single-molecule level.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan).
- CREST (Japan) Science and Technology Agency (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan).
| | - Yosuke Takeuchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Yuki Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Fuan Wang
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel).
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan).
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan).
- CREST (Japan) Science and Technology Agency (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan).
| |
Collapse
|
63
|
Adornetto G, Porchetta A, Palleschi G, Plaxco KW, Ricci F. A general approach to the design of allosteric, transcription factor-regulated DNAzymes. Chem Sci 2015; 6:3692-3696. [PMID: 28706715 PMCID: PMC5496187 DOI: 10.1039/c5sc00228a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/09/2015] [Indexed: 12/26/2022] Open
Abstract
Here we explore a general strategy for the rational design of nucleic acid catalysts that can be allosterically activated by specific nucleic-acid binding proteins. To demonstrate this we have combined a catalytic DNAzyme sequence and the consensus sequence recognized by specific transcription factors to create a construct exhibiting two low-energy conformations: a more stable conformation lacking catalytic activity and lacking the transcription factor binding site, and a less stable conformation that is both catalytically active and competent to bind the transcription factor. The presence of the target transcription factor pushes the equilibrium between these states towards the latter conformation, concomitantly activating catalysis. To demonstrate this we have designed and characterized two peroxidase-like DNAzymes whose activities are triggered upon binding either TATA binding protein or the microphthalmia-associated transcription factor. Our approach augments the current tool kit for the allosteric control of DNAzymes and ribozymes and, because transcription factors control many key biological functions, could have important clinical and diagnostic applications.
Collapse
Affiliation(s)
- G Adornetto
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
| | - A Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| | - G Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| | - K W Plaxco
- Department of Chemistry and Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106 , USA
- Center for Bioengineering , University of California Santa Barbara , Santa Barbara , California 93106 , USA
| | - F Ricci
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| |
Collapse
|
64
|
Seok Y, Byun JY, Shim WB, Kim MG. A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal Chim Acta 2015; 886:182-7. [PMID: 26320651 DOI: 10.1016/j.aca.2015.05.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
An ultrasensitive, colorimetric and homogeneous strategy for aflatoxin B1 (AFB1) detection, which uses a DNA aptamer and two split DNAzyme halves, has been developed. Split halves of a hemin-binding DNAzymes is combined with an AFB1 aptamer to generate a homogeneous colorimetric sensor that undergoes an AFB1 induced DNA structural change. In the absence of AFB1, the split probes have peroxidase mimicking DNAzyme activity associated with catalysis of a color change reaction. Specific recognition of AFB1 by the aptamer component leads to structural deformation of the aptamer-DNAzyme complex, which causes splitting of the DNAzyme halves and a reduction in peroxidase mimicking activity. Therefore, a decrease of colorimetric signal arising from the catalytic process takes place upon in the presence of AFB1 in a concentration dependent manner in the 0.1-1.0 × 10(4) ng/mL range and with a colorimetric detection limit of 0.1 ng/mL. The new assay system exhibits high selectivity for AFB1 over other mycotoxins and can be employed detect the presence of AFB1 in ground corn samples. Overall, the strategy should serve as the basis for the development of rapid, simple and low-cost methods for detection of mycotoxins.
Collapse
Affiliation(s)
- Youngung Seok
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Ju-Young Byun
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Won-Bo Shim
- Food Analysis Research Team, Industry Service Research Center, World Institute of Kimchi an Annex of Korea Food Research Institute, 86, Kimchi-ro, Nam-gu, Gwangju, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea; Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
65
|
Lin S, Gao W, Tian Z, Yang C, Lu L, Mergny JL, Leung CH, Ma DL. Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem Sci 2015; 6:4284-4290. [PMID: 29218197 PMCID: PMC5707507 DOI: 10.1039/c5sc01320h] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/17/2015] [Indexed: 12/22/2022] Open
Abstract
A series of luminescent iridium(iii) complexes were synthesised and evaluated for their ability to act as luminescent G-quadruplex-selective probes. The iridium(iii) complex 9 [Ir(pbi)2(5,5-dmbpy)]PF6 (where pbi = 2-phenyl-1H-benzo[d]imidazole; 5,5-dmbpy = 5,5'-dimethyl-2,2'-bipyridine) exhibited high luminescence for G-quadruplex DNA compared to dsDNA and ssDNA, and was employed to construct a G-quadruplex-based assay for protein tyrosine kinase-7 (PTK7) in aqueous solution. PTK7 is an important biomarker for a range of leukemias and solid tumors. In the presence of PTK7, the specific binding of the sgc8 aptamer sequence triggers a structural transition and releases the G-quadruplex-forming sequence. The formation of the nascent G-quadruplex structure is then detected by the G-quadruplex-selective iridium(iii) complex with an enhanced luminescent response. Moreover, the application of the assay for detecting PTK7 in cellular debris and membrane protein extract was demonstrated. To our knowledge, this is the first G-quadruplex-based assay for PTK7.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Wei Gao
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Zeru Tian
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Lihua Lu
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Jean-Louis Mergny
- University of Bordeaux , ARNA Laboratory , Bordeaux , France .
- INSERM , U869 , IECB , Pessac , France
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
- Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China
| |
Collapse
|
66
|
Liu Y, Liu G, Li Z, Rong W, Yu J, Zhou Y, Liu K, Zheng Z, He J. Studies on the effect of thymine-mercury-thymine stem as a structural or functional motif in DNAzymes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:645-55. [PMID: 25222518 DOI: 10.1080/15257770.2014.912322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
T-Hg-T base pair formation has been demonstrated to be compatible with duplex DNA context, with considerable thermal stability contribution. Here, the T-Hg-T stem in two small DNAzymes 8-17 and 10-23 was studied for its structural and functional roles. The recognition arm 5' to the cleavage site of 10-23 DNAzyme complex and the stem in the catalytic loop of 8-17 DNAzyme could be replaced by consecutive T-Hg-T stem of different length. The linear relationship between the activity of the complex 10-23DZ-6T+D19-6T and the concentration of Hg(2+) demonstrated that the T-Hg-T stem contributes thermal stability of the recognition arm binding. The effect of T-Hg-T stem in the catalytic core of 8-17 DNAzyme and the position-dependent effect in 10-23 DNAzyme demonstrated that T-Hg-T base pair is not compatible with canonical base pairs in playing the functions of nucleic acids.
Collapse
Affiliation(s)
- Yang Liu
- a School of Pharmacological Sciences , Guangxi Medical University , 22 Shuangyong Road, Nanning , China
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Chen J, Qiu H, Zhang M, Gu T, Shao S, Huang Y, Zhao S. Hairpin assembly-triggered cyclic activation of a DNA machine for label-free and ultrasensitive chemiluminescence detection of DNA. Biosens Bioelectron 2015; 68:550-555. [DOI: 10.1016/j.bios.2015.01.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
68
|
Zheng J, Yang R, Shi M, Wu C, Fang X, Li Y, Li J, Tan W. Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem Soc Rev 2015; 44:3036-55. [PMID: 25777303 PMCID: PMC4431697 DOI: 10.1039/c5cs00020c] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acids hold promise as biomolecules for future applications in biomedicine and biotechnology. Their well-defined structures and compositions afford unique chemical properties and biological functions. Moreover, the specificity of hydrogen-bonded Watson-Crick interactions allows the construction of nucleic acid sequences with multiple functions. In particular, the development of nucleic acid probes as essential molecular engineering tools will make a significant contribution to advancements in biosensing, bioimaging and therapy. The molecular beacon (MB), first conceptualized by Tyagi and Kramer in 1996, is an excellent example of a double-stranded nucleic acid (dsDNA) probe. Although inactive in the absence of a target, dsDNA probes can report the presence of a specific target through hybridization or a specific recognition-triggered change in conformation. MB probes are typically fluorescently labeled oligonucleotides that range from 25 to 35 nucleotides (nt) in length, and their structure can be divided into three components: stem, loop and reporter. The intrinsic merit of MBs depends on predictable design, reproducibility of synthesis, simplicity of modification, and built-in signal transduction. Using resonance energy transfer (RET) for signal transduction, MBs are further endowed with increased sensitivity, rapid response and universality, making them ideal for chemical sensing, environmental monitoring and biological imaging, in contrast to other nucleic acid probes. Furthermore, integrating MBs with targeting ligands or molecular drugs can substantially support their in vivo applications in theranositics. In this review, we survey advances in bioanalytical and biomedical applications of rationally designed MBs, as they have evolved through the collaborative efforts of many researchers. We first discuss improvements to the three components of MBs: stem, loop and reporter. The current applications of MBs in biosensing, bioimaging and therapy will then be described. In particular, we emphasize recent progress in constructing MB-based biosensors in homogeneous solution or on solid surfaces. We expect that such rationally designed and functionalized MBs will open up new and exciting avenues for biological and medical research and applications.
Collapse
Affiliation(s)
- Jing Zheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Wang CW, Yu WT, Lai HP, Lee BY, Gao RC, Tan KT. Steric-dependent label-free and washing-free enzyme amplified protein detection with dual-functional synthetic probes. Anal Chem 2015; 87:4231-6. [PMID: 25811916 DOI: 10.1021/ac504398g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enzyme-catalyzed signal amplification with an antibody-enzyme conjugate is commonly employed in many bioanalytical methods to increase assay sensitivity. However, covalent labeling of the enzyme to the antibody, laborious operating procedures, and extensive washing steps are necessary for protein recognition and signal amplification. Herein, we describe a novel label-free and washing-free enzyme-amplified protein detection method by using dual-functional synthetic molecules to impose steric effects upon protein binding. In our approach, protein recognition and signal amplification are modulated by a simple dual-functional synthetic probe which consists of a protein ligand and an inhibitor. In the absence of the target protein, the inhibitor from the dual-functional probe would inhibit the enzyme activity. In contrast, binding of the target protein to the ligand perturbs this enzyme-inhibitor affinity due to the generation of steric effects caused by the close proximity between the target protein and the enzyme, thereby activating the enzyme to initiate signal amplification. With this strategy, the fluorescence signal can be amplified to as high as 70-fold. The generality and versatility of this strategy are demonstrated by the rapid, selective, and sensitive detection of four different proteins, avidin, O6-methylguanine DNA methyltransferase (MGMT), SNAP-tag, and lactoferrin, with four different probes.
Collapse
Affiliation(s)
- Chia-Wen Wang
- †Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan (ROC)
| | - Wan-Ting Yu
- †Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan (ROC)
| | - Hsiu-Ping Lai
- †Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan (ROC)
| | - Bing-Yuan Lee
- †Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan (ROC)
| | - Ruo-Cing Gao
- †Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan (ROC)
| | - Kui-Thong Tan
- †Department of Chemistry, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan (ROC).,‡Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan (ROC)
| |
Collapse
|
70
|
Ren J, Wang T, Wang E, Wang J. Versatile G-quadruplex-mediated strategies in label-free biosensors and logic systems. Analyst 2015; 140:2556-72. [DOI: 10.1039/c4an02282c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review addresses how G-quadruplex (G4)-mediated biosensors convert the events of target recognition into a measurable physical signal. The application of label-free G4-strategies in the construction of logic systems is also discussed.
Collapse
Affiliation(s)
- Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Tianshu Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
71
|
Wang Y, Zhang J, Zhu L, Lu L, Feng C, Wang F, Xu Z, Zhang W. Activation of Mg2+-dependent DNAzymes based on AP site-containing triplex for specific melamine recognition. Analyst 2015; 140:7508-12. [DOI: 10.1039/c5an01515d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel strategy for melamine recognition based on melamine binding-triggered triplex formation and DNAzyme activity regulation was developed.
Collapse
Affiliation(s)
- Ya Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Junying Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Linling Zhu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Linlin Lu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Chongchong Feng
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Fengyang Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P.R. China
| |
Collapse
|
72
|
Ultrasensitive and Signal-on Electrochemiluminescence Aptasensor Using the Multi-tris(bipyridine)ruthenium(II)-β-cyclodextrin Complexes. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
73
|
Freage L, Wang F, Orbach R, Willner I. Multiplexed Analysis of Genes and of Metal Ions Using Enzyme/DNAzyme Amplification Machineries. Anal Chem 2014; 86:11326-33. [DOI: 10.1021/ac5030667] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lina Freage
- Institute of Chemistry, The Center for Nanoscience and
Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and
Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron Orbach
- Institute of Chemistry, The Center for Nanoscience and
Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and
Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
74
|
Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li XF, Le XC. Aptamers facilitating amplified detection of biomolecules. Anal Chem 2014; 87:274-92. [PMID: 25313902 DOI: 10.1021/ac5037236] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Feng Li
- Department of Laboratory Medicine and Pathology, ‡Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G3
| | | | | | | | | | | | | |
Collapse
|
75
|
Quartz crystal microbalance detection of protein amplified by nicked circling, rolling circle amplification and biocatalytic precipitation. Biosens Bioelectron 2014; 65:341-5. [PMID: 25461179 DOI: 10.1016/j.bios.2014.10.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 01/23/2023]
Abstract
A novel quartz crystal microbalance (QCM) assay was described for sensitive detection of protein. Lysozyme was used as a model of protein. To enhance the sensitivity of this QCM biosensor, biocatalytic precipitation (BCP) reaction combined with strand-scission cycle and rolling circle amplification (RCA) were applied together for the first time. As a result of the multi-signal amplification in this aptasensor, the detection limit for lysozyme was down to 0.3fM. What is more, this amplified QCM biosensor also showed good selectivity and practical usage in human serum.
Collapse
|
76
|
Hu Y, Wang F, Lu CH, Girsh J, Golub E, Willner I. Switchable Enzyme/DNAzyme Cascades by the Reconfiguration of DNA Nanostructures. Chemistry 2014; 20:16203-9. [DOI: 10.1002/chem.201404122] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 01/16/2023]
|
77
|
Lee J, Jeon CH, Ahn SJ, Ha TH. Highly stable colorimetric aptamer sensors for detection of ochratoxin A through optimizing the sequence with the covalent conjugation of hemin. Analyst 2014; 139:1622-7. [PMID: 24519363 DOI: 10.1039/c3an01639k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optimization of hairpin DNA is introduced to detect ochratoxin A (OTA) by chemically conjugating its cofactor, hemin, toward the 5'-end. The newly designed OTA aptasensor showed enhanced stability and sensitivity, thereby lowering the detection limit to an ~1 nM level. Furthermore, an optimal spacer for hemin conjugation was investigated for stable responses toward very diluted OTA solutions.
Collapse
Affiliation(s)
- Jayeon Lee
- Nanobiotechnology (Major), School of Engineering, University of Science & Technology Centre, Daejeon 305-806, Republic of Korea.
| | | | | | | |
Collapse
|
78
|
Kosman J, Wu YT, Gluszynska A, Juskowiak B. N-Methyl-4-hydrazino-7-nitrobenzofurazan: a fluorogenic substrate for peroxidase-like DNAzyme, and its potential application. Anal Bioanal Chem 2014; 406:7049-57. [PMID: 25213215 PMCID: PMC4206775 DOI: 10.1007/s00216-014-8119-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 01/31/2023]
Abstract
Characterization and optimization studies of N-methyl-4-hydrazino-7-nitrobenzofurazan (MNBDH) as a new fluorogenic substrate in the peroxidation reaction catalyzed by DNAzyme are reported. The effects of pH, H2O2 concentration, metal-cation type, and the concentration and type of surfactant on the fluorescence intensity were investigated. The optimized reaction was subsequently used for the development of an assay for DNA detection based on a molecular-beacon probe. The use of a fluorogenic substrate enabled the detection of a single-stranded DNA target with a 1 nmol L(-1) detection limit.
Collapse
Affiliation(s)
- Joanna Kosman
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614, Poznan, Poland,
| | | | | | | |
Collapse
|
79
|
Niazov-Elkan A, Golub E, Sharon E, Balogh D, Willner I. DNA sensors and aptasensors based on the hemin/G-quadruplex-controlled aggregation of Au NPs in the presence of L-cysteine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2883-2891. [PMID: 24700798 DOI: 10.1002/smll.201400002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/20/2014] [Indexed: 06/03/2023]
Abstract
L-cysteine induces the aggregation of Au nanoparticles (NPs), resulting in a color transition from red to blue due to interparticle plasmonic coupling in the aggregated structure. The hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme catalyzes the aerobic oxidation of L-cysteine to cystine, a process that inhibits the aggregation of the NPs. The degree of inhibition of the aggregation process is controlled by the concentration of the DNAzyme in the system. These functions are implemented to develop sensing platforms for the detection of a target DNA, for the analysis of aptamer-substrate complexes, and for the analysis of L-cysteine in human urine samples. A hairpin DNA structure that includes a recognition site for the DNA analyte and a caged G-quadruplex sequence, is opened in the presence of the target DNA. The resulting self-assembled hemin/G-quadruplex acts as catalyst that controls the aggregation of the Au NPs. Also, the thrombin-binding aptamer folds into a G-quadruplex nanostructure upon binding to thrombin. The association of hemin to the resulting G-quadruplex aptamer-thrombin complex leads to a catalytic label that controls the L-cysteine-mediated aggregation of the Au NPs. The hemin/G-qaudruplex-controlled aggregation of Au NPs process is further implemented for visual and spectroscopic detection of L-cysteine concentration in urine samples.
Collapse
Affiliation(s)
- Angelica Niazov-Elkan
- The Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
80
|
Jiang C, Kan YY, Jiang JH, Yu RQ. A simple and highly sensitive DNAzyme-based assay for nicotinamide adenine dinucleotide by ligase-mediated inhibition of strand displacement amplification. Anal Chim Acta 2014; 844:70-4. [PMID: 25172818 DOI: 10.1016/j.aca.2014.06.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/14/2014] [Accepted: 06/25/2014] [Indexed: 12/27/2022]
Abstract
Existing strategies for detecting nicotinamide adenine dinucleotide (NAD(+)) or other cofactors are commonly cumbersome and moderate sensitive. We report a novel DNAzyme-based visual assay strategy for NAD(+) based on ligase-mediated inhibition of the strand displacement amplification (SDA). In the presence of NAD(+), the SDA can be inhibited by the ligase reaction of two primers, which can initiate the SDA reaction in the case of no ligation, resulting in a dramatically decreasing yield of the SDA product, a G-quadruplex DNAzyme that can quantitatively catalyze the formation of a colored product. Therefore, the quantitative analysis for NAD(+) can be achieved visually with high sensitivity. The developed strategy provides a simple colorimetric approach with high selectivity against most interferences and a detection limit as low as 50 pM. It also provides a universal platform for investigating cofactors or other related small molecules as well as quantifying the activity of DNA ligases.
Collapse
Affiliation(s)
- Cheng Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Ying-Ya Kan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
81
|
Brown CW, Lakin MR, Horwitz EK, Fanning ML, West HE, Stefanovic D, Graves SW. Signal propagation in multi-layer DNAzyme cascades using structured chimeric substrates. Angew Chem Int Ed Engl 2014; 53:7183-7. [PMID: 24890874 PMCID: PMC4134131 DOI: 10.1002/anie.201402691] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/20/2014] [Indexed: 12/30/2022]
Abstract
Signal propagation through enzyme cascades is a critical component of information processing in cellular systems. Although such systems have potential as biomolecular computing tools, rational design of synthetic protein networks remains infeasible. DNA strands with catalytic activity (DNAzymes) are an attractive alternative, enabling rational cascade design through predictable base-pair hybridization principles. Multi-layered DNAzyme signaling and logic cascades are now reported. Signaling between DNAzymes was achieved using a structured chimeric substrate (SCS) that releases a downstream activator after cleavage by an upstream DNAzyme. The SCS can be activated by various upstream DNAzymes, can be coupled to DNA strand-displacement devices, and is highly resistant to interference from background DNA. This work enables the rational design of synthetic DNAzyme regulatory networks, with potential applications in biomolecular computing, biodetection, and autonomous theranostics.
Collapse
Affiliation(s)
- Carl W. Brown
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Matthew R. Lakin
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Eli K. Horwitz
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - M. Leigh Fanning
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Hannah E. West
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Darko Stefanovic
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Steven W. Graves
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| |
Collapse
|
82
|
Bi S, Zhao T, Jia X, He P. Magnetic graphene oxide-supported hemin as peroxidase probe for sensitive detection of thiols in extracts of cancer cells. Biosens Bioelectron 2014; 57:110-6. [DOI: 10.1016/j.bios.2014.01.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 12/11/2022]
|
83
|
Brown CW, Lakin MR, Horwitz EK, Fanning ML, West HE, Stefanovic D, Graves SW. Signal Propagation in Multi‐Layer DNAzyme Cascades Using Structured Chimeric Substrates. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carl W. Brown
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Matthew R. Lakin
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Eli K. Horwitz
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - M. Leigh Fanning
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Hannah E. West
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Darko Stefanovic
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Steven W. Graves
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| |
Collapse
|
84
|
Xie S, Chai Y, Yuan Y, Bai L, Yuan R. A novel electrochemical aptasensor for highly sensitive detection of thrombin based on the autonomous assembly of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme nanowires. Anal Chim Acta 2014; 832:51-7. [PMID: 24890694 DOI: 10.1016/j.aca.2014.04.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022]
Abstract
In this work, a new signal amplified strategy was constructed based on isothermal exponential amplification reaction (EXPAR) and hybridization chain reaction (HCR) generating the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme (HRP-mimicking DNAzyme) nanowires as signal output component for the sensitive detection of thrombin (TB). We employed EXPAR's ultra-high amplification efficiency to produce a large amount of two hairpin helper DNAs within a minutes. And then the resultant two hairpin helper DNAs could autonomously assemble the hemin/G-quadruplex HRP-mimicking DNAzymes nanowires as the redox-active reporter units on the electrode surface via hybridization chain reaction (HCR). The hemin/G-quadruplex structures simultaneously served as electron transfer medium and electrocatalyst to amplify the signal in the presence of H2O2. Specifically, only when the EXPAR reaction process has occurred, the HCR could be achieved and the hemin/G-quadruplex complexes could be formed on the surface of an electrode to give a detectable signal. The proposed strategy combines the amplification power of the EXPAR, HCR, and the inherent high sensitivity of the electrochemical detection. With such design, the proposed assay showed a good linear relationship within the range of 0.1 pM-50 nM with a detection limit of 33 fM (defined as S/N=3) for TB.
Collapse
Affiliation(s)
- Shunbi Xie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Yali Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lijuan Bai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
85
|
Aleman-Garcia MA, Orbach R, Willner I. Ion-Responsive Hemin-G-Quadruplexes for Switchable DNAzyme and Enzyme Functions. Chemistry 2014; 20:5619-24. [DOI: 10.1002/chem.201304702] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/20/2014] [Indexed: 12/28/2022]
|
86
|
Feng C, Dai S, Wang L. Optical aptasensors for quantitative detection of small biomolecules: a review. Biosens Bioelectron 2014; 59:64-74. [PMID: 24690563 DOI: 10.1016/j.bios.2014.03.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 01/16/2023]
Abstract
Aptasensors are aptamer-based biosensors with excellent recognition capability towards a wide range of targets. Specially, there have been ever-growing interests in the development of aptasensors for the detection of small molecules. This phenomenon is contributed to two reasons. On one hand, small biomolecules play an important role in living organisms with many kinds of biological function, such as antiarrhythmic effect and vasodilator activity of adenosine. On the other hand, the concentration of small molecules can be an indicator for disease diagnosis, for example, the concentration of ATP is closely associated with cell injury and cell viability. As a potential analysis tool in the construction of aptasensors, optical analysis has attracted much more interest of researchers due to its high sensitivity, quick response and simple operation. Besides, it promises the promotion of aptasensors in performance toward a new level. Review the development of optical aptasensors for small biomolecules will give readers an overall understanding of its progress and provide some theoretical guidelines for its future development. Hence, we give a mini-review on the advance of optical aptasensors for small biomolecules. This review focuses on recent achievements in the design of various optical aptasensors for small biomolecules, containing fluorescence aptasensors, colorimetric aptasensors, chemiluminescence aptasensors and other optical aptasensors.
Collapse
Affiliation(s)
- Chunjing Feng
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, PR China
| | - Shuang Dai
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, PR China
| | - Lei Wang
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, PR China.
| |
Collapse
|
87
|
Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114:2881-941. [PMID: 24576227 DOI: 10.1021/cr400354z] [Citation(s) in RCA: 498] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
88
|
Dong ZM, Zhao GC. A theophylline quartz crystal microbalance biosensor based on recognition of RNA aptamer and amplification of signal. Analyst 2014; 138:2456-62. [PMID: 23467569 DOI: 10.1039/c3an36775d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A quartz crystal microbalance (QCM) biosensor for theophylline was developed by recognition of RNA aptamer and gold nanoparticle amplification technique. Firstly, a designed small single-stranded RNA, RNA1, was immobilized onto the QCM electrode through a thiol linker. Then, the complementary stranded RNA2, which can combine with RNA1 to form a double-stranded RNA with a recognition unit of theophylline, could be self-assembled on the QCM electrode surface through a hybrid reaction in the presence of theophylline. The recognition process could cause a frequency change of QCM to give the signal related to theophylline. When RNA2 was tethered to gold nanoparticles, the signal could be amplified to further enhance the sensitivity of the designed sensor. Under the optimal conditions, the QCM-based biosensor showed excellent sensitivity (limit of detection, 8.2 nM) and specificity with a dissociation constant of Kd = 5.26 × 10(-7) M. The sensor can be used to quantitatively detect theophylline in serum, suggesting that it can be applied in complex biological samples.
Collapse
Affiliation(s)
- Zong-Mu Dong
- Anhui key laboratory of Chem-Biosensing, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | | |
Collapse
|
89
|
Mun H, Jo EJ, Li T, Joung HA, Hong DG, Shim WB, Jung C, Kim MG. Homogeneous assay of target molecules based on chemiluminescence resonance energy transfer (CRET) using DNAzyme-linked aptamers. Biosens Bioelectron 2014; 58:308-13. [PMID: 24658027 DOI: 10.1016/j.bios.2014.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
Abstract
We have designed a single-stranded DNAzyme-aptamer sensor for homogeneous target molecular detection based on chemiluminescence resonance energy transfer (CRET). The structure of the engineered single-stranded DNA (ssDNA) includes the horseradish peroxidase (HRP)-like DNAzyme, optimum-length linker (10-mer-length DNA), and target-specific aptamer sequences. A quencher dye was modified at the 3' end of the aptamer sequence. The incorporation of hemin into the G-quadruplex structure of DNAzyme yields an active HRP-like activity that catalyzes luminol to generate a chemiluminescence (CL) signal. In the presence of target molecules, such as ochratoxin A (OTA), adenosine triphosphate (ATP), or thrombin, the aptamer sequence was folded due to the formation of the aptamer/analyte complex, which induced the quencher dye close to the DNAzyme structure. Consequently, the CRET occurred between a DNAzyme-catalyzed chemiluminescence reaction and the quencher dye. Our results showed that CRET-based DNAzyme-aptamer biosensing enabled specific OTA analysis with a limit of detection of 0.27ng/mL. The CRET platform needs no external light source and avoids autofluorescence and photobleaching, and target molecules can be detected specifically and sensitively in a homogeneous manner.
Collapse
Affiliation(s)
- Hyoyoung Mun
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Eun-Jung Jo
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Taihua Li
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hyou-Arm Joung
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Dong-Gu Hong
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Won-Bo Shim
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Cheulhee Jung
- Department of Chemistry and Biochemistry, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Min-Gon Kim
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
90
|
Zhou J, Wang W, Yu P, Xiong E, Zhang X, Chen J. A simple label-free electrochemical aptasensor for dopamine detection. RSC Adv 2014. [DOI: 10.1039/c4ra08090d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A simple and label-free electrochemical biosensor based on a dopamine DNA aptamer was developed for the sensitive and selective detection of dopamine.
Collapse
Affiliation(s)
- Jiawan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| | - Wenyang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| | - Peng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| | - Erhu Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| |
Collapse
|
91
|
Zhou Z, Peng L, Wang X, Xiang Y, Tong A. A new colorimetric strategy for monitoring caspase 3 activity by HRP-mimicking DNAzyme–peptide conjugates. Analyst 2014; 139:1178-83. [DOI: 10.1039/c3an02028b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new colorimetric method is designed for the detection of caspase 3 activity by HRP-mimicking DNAzyme–peptide conjugates.
Collapse
Affiliation(s)
- Zhaojuan Zhou
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084, China
| | - Lu Peng
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084, China
| | - Xiaoyan Wang
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084, China
| | - Aijun Tong
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084, China
| |
Collapse
|
92
|
Golub E, Freeman R, Willner I. Hemin/G-quadruplex-catalyzed aerobic oxidation of thiols to disulfides: application of the process for the development of sensors and aptasensors and for probing acetylcholine esterase activity. Anal Chem 2013; 85:12126-33. [PMID: 24299064 DOI: 10.1021/ac403305k] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study describes the novel hemin/G-quadruplex DNAzyme-catalyzed aerobic oxidation of thiols to disulfides and the respective mechanism. The mechanism of the reaction involves the DNAzyme-catalyzed oxidation of thiols to disulfides and the thiol-mediated autocatalytic generation of H2O2 from oxygen. The coupling of a concomitant H2O2-mediated hemin/G-quadruplex-catalyzed oxidation of Amplex Red to the fluorescent resorufin as a transduction module provides a fluorescent signal for probing the catalyzed oxidation of the thiol to disulfides and for probing sensing processes that yield the hemin/G-quadruplex as a functional label. Accordingly, a versatile sensing method for analyzing thiols (L-cysteine, glutathione) using the H2O2-mediated DNAzyme-catalyzed oxidation of Amplex Red to the resorufin was developed. Also, the L-cysteine and Amplex Red system was implemented as an auxiliary fluorescent transduction module for probing recognition events that form the catalytic hemin/G-quadruplex structures. This is exemplified with the development of thrombin aptasensor. The thrombin/thrombin binding aptamer recognition complex binds hemin, and the resulting catalytic complex activates the auxiliary transduction module, involving the aerobic oxidation of l-cysteine and the concomitant formation of the fluorescent resorufin. Finally, the hemin/G-quadruplex DNAzyme/Amplex Red system was used to follow the activity of acetylcholine esterase, AChE, and to probe its inhibition. The AChE-catalyzed hydrolysis of acetylthiocholine to the thiol-functionalized thiocholine enabled the probing of the enzymatic activity of AChE through the hemin/G-quadruplex-catalyzed aerobic oxidation of thiocholine to the respective disulfide and the concomitant generation of the fluorescent resorufin product.
Collapse
Affiliation(s)
- Eyal Golub
- The Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
93
|
Kong DM. Factors influencing the performance of G-quadruplex DNAzyme-based sensors. Methods 2013; 64:199-204. [DOI: 10.1016/j.ymeth.2013.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/08/2013] [Indexed: 02/03/2023] Open
|
94
|
Wang G, Chen L, Zhu Y, Wang L, Zhang X. Adenosine Triphosphate Sensing by Electrocatalysis with DNAzyme. ELECTROANAL 2013. [DOI: 10.1002/elan.201300425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
95
|
Zhang DW, Nie J, Zhang FT, Xu L, Zhou YL, Zhang XX. Novel homogeneous label-free electrochemical aptasensor based on functional DNA hairpin for target detection. Anal Chem 2013; 85:9378-82. [PMID: 23998357 DOI: 10.1021/ac402295y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We first developed a label-free and immobilization-free homogeneous electrochemical aptasensor, which combined a smart functional DNA hairpin and a designed miniaturized electrochemical device. Cocaine was chosen as a model target. The anticocaine aptamer and peroxidase-mimicking DNAzyme were integrated into one single-stranded DNA hairpin. Both aptamer and G-quadruplex were elaborately blocked by the stem region. The conformation switching induced by the affinity interaction between aptamer and cocaine released G-quadruplex part and turned on DNAzyme activity. The designed electrochemical device, constructed by a disposable micropipet tip and a reproducible carbon fiber ultramicroelectrode, was applied to the detection of homogeneous DNAzyme catalytic activity at the microliter level. The aptasensor realized the quantification of cocaine ranging from 1 to 500 μM with high specificity. The clever combination of the functional DNA hairpin and the novel device achieved an absolutely label-free electrochemical aptasensor, which showed excellent performance like low cost, easy operation, rapid detection, and high repeatability.
Collapse
Affiliation(s)
- De-Wen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
96
|
Porchetta A, Vallée-Bélisle A, Plaxco KW, Ricci F. Allosterically tunable, DNA-based switches triggered by heavy metals. J Am Chem Soc 2013; 135:13238-41. [PMID: 23971651 DOI: 10.1021/ja404653q] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we demonstrate the rational design of allosterically controllable, metal-ion-triggered molecular switches. Specifically, we designed DNA sequences that adopt two low energy conformations, one of which does not bind to the target ion and the other of which contains mismatch sites serving as specific recognition elements for mercury(II) or silver(I) ions. Both switches contain multiple metal binding sites and thus exhibit homotropic allosteric (cooperative) responses. As heterotropic allosteric effectors we employ single-stranded DNA sequences that either stabilize or destabilize the nonbinding state, enabling dynamic range tuning over several orders of magnitude. The ability to rationally introduce these effects into target-responsive switches could be of value in improving the functionality of DNA-based nanomachines.
Collapse
Affiliation(s)
- Alessandro Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome , Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | | | | | | |
Collapse
|
97
|
Tan Y, Guo Q, Zhao X, Yang X, Wang K, Huang J, Zhou Y. Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification. Biosens Bioelectron 2013; 51:255-60. [PMID: 23973935 DOI: 10.1016/j.bios.2013.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/29/2022]
Abstract
In this paper, we develop a sensitive fluorescence method for protein detection based on proximity extension and enzyme-assisted signal amplification. In this novel method, pairs of proximity probes are designed, and the recognition elements are integrated into the proximity probes. Then proteins are detected by transforming aptamer or antibody-protein binding signals into DNA detection based on proximity effect. In addition, nick sites are introduced into the proximity probes to amplify the detectable signal. As proof of concept, detection of human α-thrombin and human IgG are demonstrated in this study. The aptamers and antibodies are coupled in the proximity probes as recognition elements for human α-thrombin and human IgG respectively. In the presence of target protein, aptamer or antibody-protein binding signals are transformed into detectable signals by the proximity effect, and can be further amplified by enzyme-assisted strand displacement. The above mentioned strategies consequently bring the limit of detection (LOD) to as low as 1 pM for human α-thrombin and 6 pM for human IgG. Furthermore, this method might be extended to sensitive detection of other proteins by changing recognition elements of proximity probes.
Collapse
Affiliation(s)
- Yuyu Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, PR China
| | | | | | | | | | | | | |
Collapse
|
98
|
Zhang J, Tian J, He Y, Chen S, Jiang Y, Zhao Y, Zhao S. Protein-binding aptamer assisted signal amplification for the detection of influenza A (H1N1) DNA sequences based on quantum dot fluorescence polarization analysis. Analyst 2013; 138:4722-7. [PMID: 23826611 DOI: 10.1039/c3an00830d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a fluorescence polarization platform for H1N1 detection based on the construction of a DNA functional QD fluorescence polarization probe and a bi-functional protein binding aptamer (Apt-DNA). The assay has a linear range from 10 nM to 100 nM with a detection limit of 3.45 nM and is selective over the mismatched bases.
Collapse
Affiliation(s)
- Juanni Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), College of Chemistry and Chemical Engineering of Guangxi Normal University, Guilin, 541004, China
| | | | | | | | | | | | | |
Collapse
|
99
|
Deng S, Cheng L, Lei J, Cheng Y, Huang Y, Ju H. Label-free electrochemiluminescent detection of DNA by hybridization with a molecular beacon to form hemin/G-quadruplex architecture for signal inhibition. NANOSCALE 2013; 5:5435-5441. [PMID: 23662297 DOI: 10.1039/c2nr33471b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A facile label-free electrochemiluminescent (ECL) DNA sensor was designed using a molecular beacon with a guanine-rich stem as a recognition probe. The ECL emission was produced from surface unpassivated CdTe quantum dots (QDs) co-immobilized with colloidal gold nanoparticles (AuNPs) on a chitosan-modified electrode surface. The molecular beacon was adsorbed onto the AuNPs by the thiolated stem. Upon the hybridization of the molecular beacon with target DNA to open the cycle in the presence of hemin, the dissociated guanine-rich sequence could conjugate hemin to form a G-quadruplex architecture. The formed DNAzyme then catalyzed the reduction of dissolved oxygen, the endogenous coreactant for ECL emission of QDs, leading to a decrease in ECL signal. The variations in surface morphology during the fabrication and recognition processes of the ECL sensor were characterized by atomic force microscopy and electrochemical impedance spectroscopy. The ECL signal inhibition depended linearly on the logarithmic value of DNA concentration ranging from 5.0 fM to 0.1 nM, with a detection limit of 0.9 fM. This proposed label-free method is a promising application of QDs-based ECL emission for ultrasensitive DNA assay.
Collapse
Affiliation(s)
- Shengyuan Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
100
|
Zhang J, Chai Y, Yuan R, Yuan Y, Bai L, Xie S, Jiang L. A novel electrochemical aptasensor for thrombin detection based on the hybridization chain reaction with hemin/G-quadruplex DNAzyme-signal amplification. Analyst 2013; 138:4558-64. [PMID: 23741737 DOI: 10.1039/c3an00396e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, a novel signal amplification electrochemical aptasensor for the sensitive and selective detection of thrombin was successfully fabricated. The amplification method was based on the hybridization chain reaction (HCR) and a pseudobienzyme electrocatalytic system. HCR-based double-stranded DNA (dsDNA) polymers not only constructed an effective carrier for anchoring larger amounts of electron mediator methylene blue (MB) into the DNA duplexes to produce a strong differential pulse voltammetry (DPV) signal, but also resulted in the formation of hemin/G-quadruplex DNAzymes nanowires by intercalating hemin into two induced single-stranded DNA (ssDNA). With the addition of NADH into the electrolytic cell, the hemin/G-quadruplex acting as an NADH oxidase and HRP-mimicking DNAzyme for the pseudobienzyme amplifying system could in situ biocatalyze the formation of H₂O₂ with local concentrations and low transfer loss resulting in dramatic signal enhancements. The binding event can be detected by a decrease in the integrated charge of MB which electrostatically absorbed onto dsDNA polymers. In the presence of thrombin, the dsDNA polymers associated with MB and hemin/G-quadruplex structures were removed from the electrode surface, leading to a significant decrease of redox current. DPV signals of MB provided quantitative measures of the concentrations of thrombin, with a linear calibration range of 0.01-50 nM and a detection limit of 2 pM. Moreover, the resulting aptasensor also exhibited good specificity, acceptable reproducibility and stability, indicating that the present strategy was promising for broad potential application in clinic assay and various protein analyses.
Collapse
Affiliation(s)
- Juan Zhang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|