51
|
Rodríguez Cabal LF, Vargas Medina DA, Martins Lima A, Lanças FM, Santos-Neto ÁJ. Robotic-assisted dynamic large drop microextraction. J Chromatogr A 2019; 1608:460416. [PMID: 31420177 DOI: 10.1016/j.chroma.2019.460416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022]
Abstract
By proper design of an innovative extraction device, a lab-made multipurpose autosampler was exploited in the automated performance of the dynamic large drops based microextraction. The pluses of this new analytical strategy were demonstrated in the determination of sulfonamides and fluoroquinolones in surface water samples, by direct immersion single drop microextraction (SDME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis. Operational autosampler features and critical experimental factors influencing SDME, including the extraction mode (static or dynamic), extraction, stirring rate, salt addition, drop size, number of cycles and drop exposition time, were comprehensively investigated using both univariate and multivariate optimization. The lab-made autosampler allowed to performance challenging dynamic and static large drop based SDMEs in an automated and effortless way and with minimal requirements of hardware and software. Large stable drops provided high surface area, enhancing the phase ratio and in consequence increasing the analytes uptake. The best extraction efficiencies were obtained as a result of the synergic interaction between the use of large drops and the automated dynamic mode of extraction. The developed method proved to be a reliable, sensitive, and robust analytical tool, with intraday RSDs ranging between 4.0 and 7.6% (n = 6), and interday RSDs between 4.8 and 9.3% (n = 6), and, LOD and LOQ in the range of 15-50 and 35-100 ng L-1, respectively.
Collapse
Affiliation(s)
| | | | - Adriel Martins Lima
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| | | |
Collapse
|
52
|
Knoblauch AM, de la Rosa S, Sherman J, Blauvelt C, Matemba C, Maxim L, Defawe OD, Gueye A, Robertson J, McKinney J, Brew J, Paz E, Small PM, Tanner M, Rakotosamimanana N, Grandjean Lapierre S. Bi-directional drones to strengthen healthcare provision: experiences and lessons from Madagascar, Malawi and Senegal. BMJ Glob Health 2019; 4:e001541. [PMID: 31413873 PMCID: PMC6673761 DOI: 10.1136/bmjgh-2019-001541] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/11/2019] [Accepted: 05/18/2019] [Indexed: 11/04/2022] Open
Abstract
Drones are increasingly being used globally for the support of healthcare programmes. Madagascar, Malawi and Senegal are among a group of early adopters piloting the use of bi-directional transport drones for health systems in sub-Saharan Africa. This article presents the experiences as well as the strengths, weaknesses, opportunities and threats (SWOT analysis) of these country projects. Methods for addressing regulatory, feasibility, acceptability, and monitoring and evaluation issues are presented to guide future implementations. Main recommendations for governments, implementers, drone providers and funders include (1) developing more reliable technologies, (2) thorough vetting of drone providers' capabilities during the selection process, (3) using and strengthening local capacity, (4) building in-country markets and businesses to maintain drone operations locally, (5) coordinating efforts among all stakeholders under government leadership, (6) implementing and identifying funding for long-term projects beyond pilots, and (7) evaluating impacts via standardised indicators. Sharing experiences and evidence from ongoing projects is needed to advance the use of drones for healthcare.
Collapse
Affiliation(s)
- Astrid M Knoblauch
- Mycobacteria Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- Global Health Institute, Stony Brook University, Stony Brook, New York, USA
| | - Sara de la Rosa
- UNICEF Supply Division, Supply Chain Strengthening Centre, Interagency Supply Chain Group, Copenhagen, Denmark
| | | | | | | | | | | | | | | | - Jesse McKinney
- Global Health Institute, Stony Brook University, Stony Brook, New York, USA
| | - Joe Brew
- Global Health Institute, Stony Brook University, Stony Brook, New York, USA
| | | | - Peter M Small
- Global Health Institute, Stony Brook University, Stony Brook, New York, USA
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Simon Grandjean Lapierre
- Mycobacteria Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Global Health Institute, Stony Brook University, Stony Brook, New York, USA
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
53
|
Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample. Biosens Bioelectron 2019; 136:132-139. [DOI: 10.1016/j.bios.2019.04.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 04/17/2019] [Indexed: 01/30/2023]
|
54
|
Lee SH, Park SM, Kim BN, Kwon OS, Rho WY, Jun BH. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens Bioelectron 2019; 141:111448. [PMID: 31252258 DOI: 10.1016/j.bios.2019.111448] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, nucleic acid amplification tests (NAATs) including polymerase chain reaction (PCR) were an indispensable methodology for diagnosing cancers, viral and bacterial infections owing to their high sensitivity and specificity. Because the NAATs can recognize and discriminate even a few copies of nucleic acid (NA) and species-specific NA sequences, NAATs have become the gold standard in a wide range of applications. However, limitations of NAAT approaches have recently become more apparent by reason of their lengthy run time, large reaction volume, and complex protocol. To meet the current demands of clinicians and biomedical researchers, new NAATs have developed to achieve ultrafast sample-to-answer protocols for the point-of-care testing (POCT). In this review, ultrafast NA-POCT platforms are discussed, outlining their NA amplification principles as well as delineating recent advances in ultrafast NAAT applications. The main focus is to provide an overview of NA-POCT platforms in regard to sample preparation of NA, NA amplification, NA detection process, interpretation of the analysis, and evaluation of the platform design. Increasing importance will be given to innovative, ultrafast amplification methods and tools which incorporate artificial intelligence (AI)-associated data analysis processes and mobile-healthcare networks. The future prospects of NA POCT platforms are promising as they allow absolute quantitation of NA in individuals which is essential to precision medicine.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, CA, USA
| | | | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, FL, USA
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Won-Yep Rho
- School of International Engineering and Science, Chonbuk National University, Jeonju, South Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, South Korea.
| |
Collapse
|
55
|
Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. A portable nucleic acid detection system using natural convection combined with a smartphone. Biosens Bioelectron 2019; 134:68-75. [DOI: 10.1016/j.bios.2019.03.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 01/24/2023]
|
56
|
Cornelis S, Tytgat O, Fauvart M, Gansemans Y, Vander Plaetsen AS, Wiederkehr RS, Deforce D, Van Nieuwerburgh F, Stakenborg T. Silicon µPCR Chip for Forensic STR Profiling with Hybeacon Probe Melting Curves. Sci Rep 2019; 9:7341. [PMID: 31089203 PMCID: PMC6517373 DOI: 10.1038/s41598-019-43946-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/01/2019] [Indexed: 11/09/2022] Open
Abstract
The demand to perform forensic DNA profiling outside of centralized laboratories and on the crime scene is increasing. Several criminal investigations would benefit tremendously from having DNA based information available in the first hours rather than days or weeks. However, due to the complexity and time-consuming nature of standard DNA fingerprinting methods, rapid and automated analyses are hard to achieve. We here demonstrate the implementation of an alternative DNA fingerprinting method in a single microchip. By combining PCR amplification and HyBeacon melting assays in a silicon Lab-on-a-chip (LoC), a significant step towards rapid on-site DNA fingerprinting is taken. The small form factor of a LoC reduces reagent consumption and increases portability. Additional miniaturization is achieved through an integrated heating element covering 24 parallel micro-reactors with a reaction volume of 0.14 µl each. The high level of parallelization allows the simultaneous analysis of 4 short tandem repeat (STR) loci and the amelogenin gender marker commonly included in forensic DNA analysis. A reference and crime scene sample can be analyzed simultaneously for direct comparison. Importantly, by using industry-standard semiconductor manufacturing processes, mass manufacturability can be guaranteed. Following assay design and optimization, complete 5-loci profiles could be robustly generated on-chip that are on par with those obtained using conventional benchtop real-time PCR thermal cyclers. Together, our results are an important step towards the development of commercial, mass-produced, portable devices for on-site testing in forensic DNA analysis.
Collapse
Affiliation(s)
- Senne Cornelis
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Gent, Belgium
- Department of Life Science Technologies, Imec, 3001, Leuven, Belgium
| | - Olivier Tytgat
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Gent, Belgium
- Department of Life Science Technologies, Imec, 3001, Leuven, Belgium
| | - Maarten Fauvart
- Department of Life Science Technologies, Imec, 3001, Leuven, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Gent, Belgium
| | | | | | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Gent, Belgium.
| | | | - Tim Stakenborg
- Department of Life Science Technologies, Imec, 3001, Leuven, Belgium
| |
Collapse
|
57
|
O'Sullivan S, Ali Z, Jiang X, Abdolvand R, Ünlü MS, Silva HPD, Baca JT, Kim B, Scott S, Sajid MI, Moradian S, Mansoorzare H, Holzinger A. Developments in Transduction, Connectivity and AI/Machine Learning for Point-of-Care Testing. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1917. [PMID: 31018573 PMCID: PMC6515310 DOI: 10.3390/s19081917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
Abstract
We review some emerging trends in transduction, connectivity and data analytics for Point-of-Care Testing (POCT) of infectious and non-communicable diseases. The patient need for POCT is described along with developments in portable diagnostics, specifically in respect of Lab-on-chip and microfluidic systems. We describe some novel electrochemical and photonic systems and the use of mobile phones in terms of hardware components and device connectivity for POCT. Developments in data analytics that are applicable for POCT are described with an overview of data structures and recent AI/Machine learning trends. The most important methodologies of machine learning, including deep learning methods, are summarised. The potential value of trends within POCT systems for clinical diagnostics within Lower Middle Income Countries (LMICs) and the Least Developed Countries (LDCs) are highlighted.
Collapse
Affiliation(s)
- Shane O'Sullivan
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil.
| | - Zulfiqur Ali
- Healthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, UK.
| | - Xiaoyi Jiang
- Faculty of Mathematics and Computer Science, University Münster, Münster 48149, Germany.
| | - Reza Abdolvand
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - M Selim Ünlü
- Department of Electrical and Computer Engineering and Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | | | - Justin T Baca
- Department of Emergency Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Brian Kim
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Simon Scott
- Healthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, UK.
| | - Mohammed Imran Sajid
- Department of Upper GI Surgery, Wirral University Teaching Hospital, Wirral CH49 5PE, UK.
| | - Sina Moradian
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Hakhamanesh Mansoorzare
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Andreas Holzinger
- Institute for interactive Systems and Data Science, Graz University of Technology, Graz 8074, Austria.
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
58
|
Eubanks MD, Lin C, Tarone AM. The role of ants in vertebrate carrion decomposition. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2018.e00109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
59
|
Rosser JC, Vignesh V, Terwilliger BA, Parker BC. Surgical and Medical Applications of Drones: A Comprehensive Review. JSLS 2018; 22:JSLS.2018.00018. [PMID: 30356360 PMCID: PMC6174005 DOI: 10.4293/jsls.2018.00018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Drones have the ability to gather real time data cost effectively, to deliver payloads and have initiated the rapid evolution of many industrial, commercial, and recreational applications. Unfortunately, there has been a slower expansion in the field of medicine. This article provides a comprehensive review of current and future drone applications in medicine, in hopes of empowering and inspiring more aggressive investigation. Database: A literature search was performed by EBSCO (Elton B. Stephens Company) Discovery Service, searching the phrases “drones,” “UAV,” “unmanned aerial vehicles,” “UAS,” and “unmanned aerial systems.” A second search was used to identify sources that contained “drone” in the subject or title and “medicine” in any of the text, yielding 60,260 results. After screening for irrelevant material, 1296 sources remained applicable. Major themes and number of sources were as follows: 116 public health and medical surveillance, 8 telemedicine, and 78 medical transport systems. Conclusion: Drones are used for surveillance of disaster sites and areas with biological hazards, as well as in epidemiology for research and tracking disease spread. Telecommunication drones are being used for diagnosis and treatment, perioperative evaluation, and telementoring in remote areas. Drones have the potential to be reliable medical delivery platforms for microbiological and laboratory samples, pharmaceuticals, vaccines, emergency medical equipment, and patient transport. Government agencies have placed drone use on the national agenda. The next steps include aggressive research initiatives in the areas of safety, industry expansion, increased public awareness, and participation.
Collapse
Affiliation(s)
- James C Rosser
- Department of Surgery, University at Buffalo, Buffalo, New York, USA
| | - Vudatha Vignesh
- Department of Surgery, University at Central Florida College of Medicine, Orlando, Florida, USA
| | - Brent A Terwilliger
- Department of Engineering and Technology, College of Aeronautics, Worldwide, Embry-Riddle Aeronautical University, Orlando, Florida, USA
| | - Brett C Parker
- Department of Surgery, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
60
|
Sun H, Jia Y, Dong H, Fan L, Zheng J. Multiplex quantification of metals in airborne particulate matter via smartphone and paper-based microfluidics. Anal Chim Acta 2018; 1044:110-118. [DOI: 10.1016/j.aca.2018.07.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022]
|
61
|
Priye A, Ball CS, Meagher RJ. Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor. Anal Chem 2018; 90:12385-12389. [PMID: 30272954 DOI: 10.1021/acs.analchem.8b03521] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Smartphones have shown promise as an enabling technology for portable and distributed point-of-care diagnostic tests. The CMOS camera sensor can be used for detecting optical signals, including fluorescence for applications such as isothermal nucleic acid amplification tests. However, such analysis is typically limited mostly to end point detection of single targets. Here we present a smartphone-based image analysis pipeline that utilizes the CIE xyY (chromaticity-luminance) color space to measure the luminance (in lieu of RGB intensities) of fluorescent signals arising from nucleic acid amplification targets, with a discrimination sensitivity (ratio between the positive to negative signals), which is an order of magnitude more than traditional RGB intensity based analysis. Furthermore, the chromaticity part of the analysis enables reliable multiplexed detection of different targets labeled with spectrally separated fluorophores. We apply this chromaticity-luminance formulation to simultaneously detect Zika and chikungunya viral RNA via end point RT-LAMP (Reverse transcription Loop-Mediated isothermal amplification). We also show real time LAMP detection of Neisseria gonorrhoeae samples down to a copy number of 3.5 copies per 10 μL of reaction volume in our smartphone-operated portable LAMP box. Our chromaticity-luminance analysis is readily adaptable to other types of multiplexed fluorescence measurements using a smartphone camera.
Collapse
Affiliation(s)
- Aashish Priye
- Department of Chemical and Environmental Engineering , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Cameron S Ball
- Biotechnology and Bioengineering Department , Sandia National Laboratories , Livermore , California 94550 , United States
| | - Robert J Meagher
- Biotechnology and Bioengineering Department , Sandia National Laboratories , Livermore , California 94550 , United States
| |
Collapse
|
62
|
Paper-based graphene oxide biosensor coupled with smartphone for the quantification of glucose in oral fluid. Biomed Microdevices 2018; 20:89. [DOI: 10.1007/s10544-018-0332-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
63
|
Katariya M, Chung DCK, Minifie T, Gupta H, Zahidi AAA, Liew OW, Ng TW. Note: Biochemical samples centrifuged in-flight on drones. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:106102. [PMID: 30399692 DOI: 10.1063/1.5031039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
The ability to conduct en-route centrifugation of samples improves quality and timeliness in the pre-analytical phase. This is demonstrated here on a quadcopter whereby the propellers were adapted to house and apply centrifugal forces to sample-containing capillary tubes instead of incorporating a centrifuge. Tests revealed the ability of the method to separate non-homogenized milk into a cream portion and a skim milk portion, and human whole blood into plasma, buffy coat, and red blood cell components.
Collapse
Affiliation(s)
- Mayur Katariya
- Laboratory for Optics and Applied Mechanics, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Dwayne Chung Kim Chung
- Laboratory for Optics and Applied Mechanics, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tristan Minifie
- Laboratory for Optics and Applied Mechanics, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Harshit Gupta
- Laboratory for Optics and Applied Mechanics, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Alifa Afiah Ahmad Zahidi
- Laboratory for Optics and Applied Mechanics, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Oi Wah Liew
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599
| | - Tuck Wah Ng
- Laboratory for Optics and Applied Mechanics, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
64
|
ABE-VIEW: Android Interface for Wireless Data Acquisition and Control. SENSORS 2018; 18:s18082647. [PMID: 30104474 PMCID: PMC6111993 DOI: 10.3390/s18082647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/04/2018] [Accepted: 08/09/2018] [Indexed: 01/19/2023]
Abstract
Advances in scientific knowledge are increasingly supported by a growing community of developers freely sharing new hardware and software tools. In this spirit we have developed a free Android app, ABE-VIEW, that provides a flexible graphical user interface (GUI) populated entirely from a remote instrument by ascii-coded instructions communicated wirelessly over Bluetooth. Options include an interactive chart for plotting data in real time, up to 16 data fields, and virtual controls including buttons, numerical controls with user-defined range and resolution, and radio buttons which the user can use to send coded instructions back to the instrument. Data can be recorded into comma delimited files interactively at the user’s discretion. Our original objective of the project was to make data acquisition and control for undergraduate engineering labs more modular and affordable, but we have also found that the tool is highly useful for rapidly testing novel sensor systems for iterative improvement. Here we document the operation of the app and syntax for communicating with it. We also illustrate its application in undergraduate engineering labs on dynamic systems modeling, as well as for identifying the source of harmonic distortion affecting electrochemical impedance measurements at certain frequencies in a novel wireless potentiostat.
Collapse
|
65
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|
66
|
|
67
|
Ballard ZS, Brown C, Ozcan A. Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome. ACS NANO 2018; 12:3065-3082. [PMID: 29553706 DOI: 10.1021/acsnano.7b08660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microbiome has been heralded as a gauge of and contributor to both human health and environmental conditions. Current challenges in probing, engineering, and harnessing the microbiome stem from its microscopic and nanoscopic nature, diversity and complexity of interactions among its members and hosts, as well as the spatiotemporal sampling and in situ measurement limitations induced by the restricted capabilities and norm of existing technologies, leaving some of the constituents of the microbiome unknown. To facilitate significant progress in the microbiome field, deeper understanding of the constituents' individual behavior, interactions with others, and biodiversity are needed. Also crucial is the generation of multimodal data from a variety of subjects and environments over time. Mobile imaging and sensing technologies, particularly through smartphone-based platforms, can potentially meet some of these needs in field-portable, cost-effective, and massively scalable manners by circumventing the need for bulky, expensive instrumentation. In this Perspective, we outline how mobile sensing and imaging technologies could lead the way to unprecedented insight into the microbiome, potentially shedding light on various microbiome-related mysteries of today, including the composition and function of human, animal, plant, and environmental microbiomes. Finally, we conclude with a look at the future, propose a computational microbiome engineering and optimization framework, and discuss its potential impact and applications.
Collapse
|
68
|
Mendoza-Gallegos RA, Rios A, Garcia-Cordero JL. An Affordable and Portable Thermocycler for Real-Time PCR Made of 3D-Printed Parts and Off-the-Shelf Electronics. Anal Chem 2018; 90:5563-5568. [DOI: 10.1021/acs.analchem.7b04843] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Roberto A. Mendoza-Gallegos
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León C.P. 66628, Mexico
| | - Amelia Rios
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León C.P. 66628, Mexico
| | - Jose L. Garcia-Cordero
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León C.P. 66628, Mexico
| |
Collapse
|
69
|
Zarei M. Infectious pathogens meet point-of-care diagnostics. Biosens Bioelectron 2018; 106:193-203. [PMID: 29428589 DOI: 10.1016/j.bios.2018.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
The field of point-of-care (POC) diagnostics provides the rapid diagnosis of infectious diseases which is essential and critical for improving the general public health in resource-limited settings. POC platforms offer many advantages for detection of various pathogens including portability, automation, speed, cost, and efficiency. In this review, we provide an overview of the recent trends for POC diagnostics of infectious diseases with focus on portable platforms. We review here the present status of POC platforms, emphasizing in period of the past three years, then extrapolate their advance into the future applications for diagnosis of infectious pathogens.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Chemical and Civil Engineering, University of Kurdistan, Sanandaj, P.O. Box 66177, Kurdistan Province 66618-36336, Iran.
| |
Collapse
|
70
|
Jayanath NY, Nguyen LT, Vu TT, Tran LD. Development of a portable electrochemical loop mediated isothermal amplification (LAMP) device for detection of hepatitis B virus. RSC Adv 2018; 8:34954-34959. [PMID: 35547082 PMCID: PMC9087361 DOI: 10.1039/c8ra07235c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/05/2018] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to develop a simple, inexpensive prototype device for rapid detection of hepatitis B virus (HBV). The device was able to simultaneously amplify, detect and quantify the target HBV DNA. The system was fabricated from a custom-made electrochemical set-up of which the temperature was thermostatically controlled by a water bath. Real-time monitoring of HBV DNA was accomplished by measuring the response of redox indicator in the reaction mixture. Concentration of HBV DNA in the samples was determined from the peak high ratio (PHR) and threshold time relationship. The signal was processed by sigmoidal model fitting to enhance the accuracy of the results. Key parameters including concentrations of redox indicator and reaction temperatures were optimized. Sensitivity and specificity of the method toward HBV DNA were evaluated. The prototype was capable of real-time amplification and detection of HBV DNA with concentration as low as 6.18 fg μl−1. The test showed high specificity against HBV DNA. The system was also able to detect HBV positive serum directly with simple thermal pretreatment instead of tedious DNA extraction. The electrochemical set-up was compatible with microfluidic platforms and can be readily adapted for efficient and high throughput point-of-care (POC) diagnosis of HBV. A novel prototype device using LAMP and electrochemical drop cell set-up for rapid detection of hepatitis B virus.![]()
Collapse
Affiliation(s)
| | - Loc Thai Nguyen
- Food Engineering and Bioprocess Technology
- School of Environment, Resources and Development (SERD)
- Asian Institute of Technology
- Bangkok
- Thailand
| | - Thu Thi Vu
- University of Science and Technology of Hanoi (USTH)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Center for High Technology Development (HTD)
| | - Lam Dai Tran
- Institute for Tropical Technology (ITT)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Graduate University of Science and Technology (GUST)
| |
Collapse
|
71
|
Advances in point-of-care technologies for molecular diagnostics. Biosens Bioelectron 2017; 98:494-506. [DOI: 10.1016/j.bios.2017.07.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
|
72
|
Tokonami S, Iida T. Review: Novel sensing strategies for bacterial detection based on active and passive methods driven by external field. Anal Chim Acta 2017; 988:1-16. [DOI: 10.1016/j.aca.2017.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023]
|
73
|
Avella-Oliver M, Carrascosa J, Puchades R, Maquieira Á. Diffractive Protein Gratings as Optically Active Transducers for High-Throughput Label-free Immunosensing. Anal Chem 2017; 89:9002-9008. [DOI: 10.1021/acs.analchem.7b01649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Miquel Avella-Oliver
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, 46022 Valencia, Spain
| | - Javier Carrascosa
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, 46022 Valencia, Spain
| | - Rosa Puchades
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, 46022 Valencia, Spain
- Departmento
de Quı́mica, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ángel Maquieira
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, 46022 Valencia, Spain
- Departmento
de Quı́mica, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
74
|
Weng JH, Chen LC. Confocal epifluorescence sensor with an arc-shaped aperture for slide-based PCR quantification. Biosens Bioelectron 2017; 100:71-78. [PMID: 28863326 DOI: 10.1016/j.bios.2017.08.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022]
Abstract
The increasing needs of point-of-care diagnostics, quarantine of epidemic pathogens, and prevention of terrorism's bio-attacks have promised the future of portable real-time quantitative polymerase chain reaction (qPCR) sensors. This work aims at developing a highly sensitive and low-cost light emitting diode (LED)-based epifluorescence sensor module for qPCR sensor development and relevant bioassay applications. Inspired by the light stop design and dark-field detection of microscopes, this paper first reports a compact confocal LED epifluorescence sensor using a light stop with an arc-shaped aperture for enhancing the flexibility of quick DNA and PCR detection. The sensor features the advantages of the dichroic mirror-free and confocal (shared-focus) characteristics, which benefits size reduction and minimal optics used. It also allows extension to integrate with in situ real-time PCR thermal cycling since the sample slide is placed apart from the epi-sensing module. The epifluorescence sensor can detect as low as sub-ng/μL standard DNA and 101 copies of Salmonella typhimurium InvA gene sequences (cloned in E. coli and after 30-cycle PCR) with SYBR® Green I from non-purified culture samples, having highly sensitive and specific signal responses comparable with that of a commercial qPCR instrument.
Collapse
Affiliation(s)
- Jui-Hong Weng
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Lin-Chi Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
75
|
Chan HN, Tan MJA, Wu H. Point-of-care testing: applications of 3D printing. LAB ON A CHIP 2017; 17:2713-2739. [PMID: 28702608 DOI: 10.1039/c7lc00397h] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Point-of-care testing (POCT) devices fulfil a critical need in the modern healthcare ecosystem, enabling the decentralized delivery of imperative clinical strategies in both developed and developing worlds. To achieve diagnostic utility and clinical impact, POCT technologies are immensely dependent on effective translation from academic laboratories out to real-world deployment. However, the current research and development pipeline is highly bottlenecked owing to multiple restraints in material, cost, and complexity of conventionally available fabrication techniques. Recently, 3D printing technology has emerged as a revolutionary, industry-compatible method enabling cost-effective, facile, and rapid manufacturing of objects. This has allowed iterative design-build-test cycles of various things, from microfluidic chips to smartphone interfaces, that are geared towards point-of-care applications. In this review, we focus on highlighting recent works that exploit 3D printing in developing POCT devices, underscoring its utility in all analytical steps. Moreover, we also discuss key advantages of adopting 3D printing in the device development pipeline and identify promising opportunities in 3D printing technology that can benefit global health applications.
Collapse
Affiliation(s)
- Ho Nam Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | | | | |
Collapse
|
76
|
Wolinsky H. Biology goes in the air : Unmanned aerial vehicles offer biologists an efficient tool for observation and sampling from a safe distance. EMBO Rep 2017; 18:1284-1289. [PMID: 28743709 PMCID: PMC5538761 DOI: 10.15252/embr.201744740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Drones are becoming popular among biologists as a tool to observe wildlife, take samples from the air or remote locations, or even perform in-flight DNA analysis.
Collapse
|
77
|
Hu B, Li J, Mou L, Liu Y, Deng J, Qian W, Sun J, Cha R, Jiang X. An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. LAB ON A CHIP 2017; 17:2225-2234. [PMID: 28573279 DOI: 10.1039/c7lc00249a] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microfluidic platforms capable of automated, rapid, sensitive, and quantitative detection of biomarkers from patient samples could make a major impact on clinical or point-of-care (POC) diagnosis. In this work, we realize an automated diagnostic platform composed of two main components: (1) a disposable, self-contained, and integrated microfluidic chip and (2) a portable instrument that carries out completely automated operations. To demonstrate its potential for real-world application, we use injection molding for mass fabrication of the main components of disposable microfluidic chips. The assembled three-layered chip with on-chip mechanical valves for fluid control consists of (1) a top silicone fluidic layer with embedded zigzag microchannels, reagent reservoirs and a negative pressure port, (2) a middle tinfoil layer with patterned antibody/antigen stripes, and (3) a bottom silicone substrate layer with waste reservoirs. The versatility of the microfluidics-based system is demonstrated by implementation of a chemiluminescence immunoassay for quantitative detection of C-reactive protein (CRP) and testosterone in real clinical samples. This lab-on-a-chip platform with features of quantitation, portability and automation provides a promising strategy for POC diagnosis.
Collapse
Affiliation(s)
- Binfeng Hu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Mutlu AY, Kılıç V, Özdemir GK, Bayram A, Horzum N, Solmaz ME. Smartphone-based colorimetric detection via machine learning. Analyst 2017; 142:2434-2441. [PMID: 28597010 DOI: 10.1039/c7an00741h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the application of machine learning to smartphone-based colorimetric detection of pH values. The strip images were used as the training set for Least Squares-Support Vector Machine (LS-SVM) classifier algorithms that were able to successfully classify the distinct pH values. The difference in the obtained image formats was found not to significantly affect the performance of the proposed machine learning approach. Moreover, the influence of the illumination conditions on the perceived color of pH strips was investigated and further experiments were conducted to study the effect of color change on the learning model. Non-integer pH levels are identified as their nearest integer pH values, whereas the test results for integer pH levels using JPEG, RAW and RAW-corrected image formats captured under different lighting conditions lead to perfect classification accuracy, sensitivity and specificity, which proves that colorimetric detection using machine learning based systems is able to adapt to various experimental conditions and is a great candidate for smartphone-based sensing in paper-based colorimetric assays.
Collapse
Affiliation(s)
- Ali Y Mutlu
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, Izmir, Turkey
| | - Volkan Kılıç
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Abdullah Bayram
- Department of Materials Science and Engineering, Izmir Katip Celebi University, Izmir, Turkey
| | - Nesrin Horzum
- Department of Engineering Sciences, Izmir Katip Celebi University, Izmir, Turkey
| | - Mehmet E Solmaz
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, Izmir, Turkey and Nanoscience and Nanotechnology Programme, Izmir Katip Celebi University, Izmir, Turkey.
| |
Collapse
|
79
|
A sample-to-answer, real-time convective polymerase chain reaction system for point-of-care diagnostics. Biosens Bioelectron 2017. [PMID: 28624618 DOI: 10.1016/j.bios.2017.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Timely and accurate molecular diagnostics at the point-of-care (POC) level is critical to global health. To this end, we propose a handheld convective-flow real-time polymerase chain reaction (PCR) system capable of direct sample-to-answer genetic analysis for the first time. Such a system mainly consists of a magnetic bead-assisted photothermolysis sample preparation, a closed-loop convective PCR reactor, and a wireless video camera-based real-time fluorescence detection. The sample preparation exploits the dual functionality of vancomycin-modified magnetic beads (VMBs) for bacteria enrichment and photothermal conversion, enabling cell pre-concentration and lysis to be finished in less than 3min. On the presented system, convective thermocycling is driven by a single-heater thermal gradient, and its amplification is monitored in real-time, with an analysis speed of less than 25min, a dynamic linear range from 106 to 101 copies/µL and a detection sensitivity of as little as 1 copies/µL. Additionally, the proposed PCR system is self-contained with a control electronics, pocket-size and battery-powered, providing a low-cost genetic analysis in a portable format. Therefore, we believe that this integrated system may become a potential candidate for fast, accurate and affordable POC molecular diagnostics.
Collapse
|
80
|
Mobile phone-based biosensing: An emerging “diagnostic and communication” technology. Biosens Bioelectron 2017; 92:549-562. [DOI: 10.1016/j.bios.2016.10.062] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/04/2016] [Accepted: 10/23/2016] [Indexed: 01/02/2023]
|
81
|
Zarei M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
82
|
Bissonnette L, Bergeron MG. Portable devices and mobile instruments for infectious diseases point-of-care testing. Expert Rev Mol Diagn 2017; 17:471-494. [PMID: 28343420 DOI: 10.1080/14737159.2017.1310619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Rapidity, simplicity, and portability are highly desirable characteristics of tests and devices designed for performing diagnostics at the point of care (POC), either near patients managed in healthcare facilities or to offer bioanalytical alternatives in external settings. By reducing the turnaround time of the diagnostic cycle, POC diagnostics can reduce the dissemination, morbidity, and mortality of infectious diseases and provide tools to control the global threat of antimicrobial resistance. Areas covered: A literature search of PubMed and Google Scholar, and extensive mining of specialized publications, Internet resources, and manufacturers' websites have been used to organize and write this overview of the challenges and requirements associated with the development of portable sample-to-answer diagnostics, and showcase relevant examples of handheld devices, portable instruments, and less mobile systems which may or could be operated at POC. Expert commentary: Rapid (<1 h) diagnostics can contribute to control infectious diseases and antimicrobial resistant pathogens. Portable devices or instruments enabling sample-to-answer bioanalysis can provide rapid, robust, and reproducible testing at the POC or close from it. Beyond testing, to realize some promises of personalized/precision medicine, it will be critical to connect instruments to healthcare data management systems, to efficiently link decentralized testing results to the electronic medical record of patients.
Collapse
Affiliation(s)
- Luc Bissonnette
- a Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval , Québec City , Québec , Canada
| | - Michel G Bergeron
- a Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval , Québec City , Québec , Canada.,b Département de microbiologie-infectiologie et d'immunologie , Faculté de médecine, Université Laval , Québec City , Québec , Canada
| |
Collapse
|
83
|
A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep 2017; 7:44778. [PMID: 28317856 PMCID: PMC5357913 DOI: 10.1038/srep44778] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
Current multiplexed diagnostics for Zika, dengue, and chikungunya viruses are situated outside the intersection of affordability, high performance, and suitability for use at the point-of-care in resource-limited settings. Consequently, insufficient diagnostic capabilities are a key limitation facing current Zika outbreak management strategies. Here we demonstrate highly sensitive and specific detection of Zika, chikungunya, and dengue viruses by coupling reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with our recently developed quenching of unincorporated amplification signal reporters (QUASR) technique. We conduct reactions in a simple, inexpensive and portable "LAMP box" supplemented with a consumer class smartphone. The entire assembly can be powered by a 5 V USB source such as a USB power bank or solar panel. Our smartphone employs a novel algorithm utilizing chromaticity to analyze fluorescence signals, which improves the discrimination of positive/negative signals by 5-fold when compared to detection with traditional RGB intensity sensors or the naked eye. The ability to detect ZIKV directly from crude human sample matrices (blood, urine, and saliva) demonstrates our device's utility for widespread clinical deployment. Together, these advances enable our system to host the key components necessary to expand the use of nucleic acid amplification-based detection assays towards point-of-care settings where they are needed most.
Collapse
|
84
|
Qiu X, Zhang S, Mei L, Wu D, Guo Q, Li K, Ge S, Ye X, Xia N, Mauk MG. Characterization and analysis of real-time capillary convective PCR toward commercialization. BIOMICROFLUIDICS 2017; 11:024103. [PMID: 28798846 PMCID: PMC5533481 DOI: 10.1063/1.4977841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/20/2017] [Indexed: 05/30/2023]
Abstract
Almost all the reported capillary convective polymerase chain reaction (CCPCR) systems to date are still limited to research use stemming from unresolved issues related to repeatability, reliability, convenience, and sensitivity. To move CCPCR technology forward toward commercialization, a couple of critical strategies and innovations are discussed here. First, single- and dual-end heating strategies are analyzed and compared between each other. Especially, different solutions for dual-end heating are proposed and discussed, and the heat transfer and fluid flow inside the capillary tube with an optimized dual-end heating strategy are analyzed and modeled. Second, real-time CCPCR is implemented with light-emitting diode and photodiode, and the real-time fluorescence detection method is compared with the post-amplification end-point detection method based on a dipstick assay. Thirdly, to reduce the system complexity, e.g., to simplify parameter tuning of the feedback control, an internal-model-control-based proportional-integral-derivative controller is adopted for accurate temperature control. Fourth, as a proof of concept, CCPCR with pre-loaded dry storage of reagent inside the capillary PCR tube is evaluated to better accommodate to point-of-care diagnosis. The critical performances of improved CCPCR, especially with sensitivity, repeatability, and reliability, have been thoroughly analyzed with different experiments using influenza A (H1N1) virus as the detection sample.
Collapse
Affiliation(s)
- Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shiyin Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, China
| | - Lanju Mei
- Institute of Micro/Nanotechnology, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Di Wu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qi Guo
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ke Li
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing 102206, China
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing 102206, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, China
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
85
|
|
86
|
Mauk M, Song J, Bau HH, Gross R, Bushman FD, Collman RG, Liu C. Miniaturized devices for point of care molecular detection of HIV. LAB ON A CHIP 2017; 17:382-394. [PMID: 28092381 PMCID: PMC5285266 DOI: 10.1039/c6lc01239f] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The HIV pandemic affects 36.7 million people worldwide, predominantly in resource-poor settings. Nucleic acid-based molecular detection of HIV plays a significant role in antiretroviral treatment monitoring for HIV patients, as well as diagnosis of HIV infection in infants. Currently available molecular diagnostic methods are complex, time-consuming and relatively expensive, thus limiting their use in resource-poor settings. Recent advances in microfluidics technology have made possible low-cost integrated miniaturized devices for molecular detection and quantification of HIV at the point of care. We review recent technical advances in molecular testing of HIV using microfluidic technology, with a focus on assays based on isothermal nucleic acid amplification. Microfluidic components for sample preparation, isothermal amplification and result detection are discussed and compared. We also discuss the challenges and future directions for developing an integrated "sample-to-result" microfluidic platform for HIV molecular detection.
Collapse
Affiliation(s)
- Michael Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Jinzhao Song
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Haim H Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Robert Gross
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
87
|
Gautam S, Batule BS, Kim HY, Park KS, Park HG. Smartphone-based portable wireless optical system for the detection of target analytes. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Shreedhar Gautam
- Department of Chemical and Biomolecular Engineering (BK 21+ program); Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Bhagwan S Batule
- Department of Chemical and Biomolecular Engineering (BK 21+ program); Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ program); Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Ki Soo Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program); Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program); Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| |
Collapse
|
88
|
Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-Care Diagnostics: Recent Developments in a Connected Age. Anal Chem 2017; 89:102-123. [PMID: 27958710 PMCID: PMC5793870 DOI: 10.1021/acs.analchem.6b04630] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samiksha Nayak
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Nicole R. Blumenfeld
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Tassaneewan Laksanasopin
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
89
|
Sharma S, Crawley A, O'Kennedy R. Strategies for overcoming challenges for decentralised diagnostics in resource-limited and catastrophe settings. Expert Rev Mol Diagn 2017; 17:109-118. [PMID: 28010145 DOI: 10.1080/14737159.2017.1273773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Globally, both communicable and non-communicable diseases pose a serious threat to populations in developed as well as developing countries. Access to reliable diagnostic testing along with qualified health practitioners is severely limited in low resource and very remote areas and following natural catastrophes. Areas covered: This paper provides an overview of the challenges involved and suggests strategies to address them. The emergence of more robust, user-friendly, cost-effective and 'sample-to-result' point-of-care (POC) tools, along with the proliferation of mobile technologies, may provide a practical approach in addressing some of the challenges. Expert commentary: The successful implementation of POC testing requires the availability of versatile diagnostic technologies, improved platforms and back-up infrastructure, successful leveraging of human resources through training and, finally, engagement/coordination of associated stakeholders, including public health agencies, diagnostics companies, healthcare practitioners and local rural authorities.
Collapse
Affiliation(s)
- Shikha Sharma
- a School of Biotechnology , Dublin City University , Dublin 9 , Ireland.,b Biomedical Diagnostics Institute , Dublin City University , Dublin 9 , Ireland
| | - Aoife Crawley
- a School of Biotechnology , Dublin City University , Dublin 9 , Ireland
| | - Richard O'Kennedy
- a School of Biotechnology , Dublin City University , Dublin 9 , Ireland.,b Biomedical Diagnostics Institute , Dublin City University , Dublin 9 , Ireland
| |
Collapse
|
90
|
|
91
|
Roda A, Calabretta MM, Calabria D, Caliceti C, Cevenini L, Lopreside A, Zangheri M. Smartphone-Based Biosensors for Bioanalytics. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
92
|
Abstract
Incredible progress continues to be made toward development of low-cost nucleic acid-based diagnostic solutions suitable for deployment in resource-limited settings. Detection components play a vitally important role in these systems, but have proven challenging to adapt for operation in a portable format. Here we describe efforts aimed at leveraging the capabilities of consumer-class smartphones as a convenient platform to enable detection of nucleic acid products associated with DNA amplification via the polymerase chain reaction (PCR). First, we show how fluorescence-based detection can be incorporated into a portable convective thermocycling system controlled by a smartphone app. Raw images captured by the phone's camera are processed to yield real-time amplification data comparable to benchtop instruments. Next, we leverage smartphone imaging to achieve label-free detection of PCR products by monitoring changes in electrochemical reactivity of embedded metal electrodes as the target DNA concentration increases during replication. These advancements make it possible to construct rugged inexpensive nucleic acid detection components that can be readily embedded in a variety of portable bioanalysis instruments.
Collapse
Affiliation(s)
- Aashish Priye
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA
| | - Victor M Ugaz
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3122, USA.
| |
Collapse
|
93
|
Chan K, Weaver SC, Wong PY, Lie S, Wang E, Guerbois M, Vayugundla SP, Wong S. Rapid, Affordable and Portable Medium-Throughput Molecular Device for Zika Virus. Sci Rep 2016; 6:38223. [PMID: 27934884 PMCID: PMC5146750 DOI: 10.1038/srep38223] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) has gained global attention as an etiologic agent of fetal microcephaly and Guillain-Barré syndrome. Existing immuno-based rapid tests often fail to distinguish between Zika and related flaviviruses that are common in affected regions of Central and South Americas and the Caribbean. The US CDC and qualified state health department laboratories can perform the reverse transcription polymerase chain reaction (RT-PCR) ZIKV test using highly sophisticated instruments with long turnaround times. The preliminary results of a portable and low-cost molecular diagnostics system for ZIKV infection are reported here. In less than 15 minutes, this low-cost platform can automatically perform high quality RNA extraction from up to 12 ZIKV-spiked urine samples simultaneously. It can also perform reverse transcription recombinase polymerase amplification reaction (RT-RPA) in ≤15 minutes. The fluorescent signal produced from probe-based RT-RPA or RT-PCR assays can be monitored using LEDs and a smartphone camera. In addition, the RT-RPA and RT-PCR assays do not cross-react with dengue and chikungunya viral RNA. This low-cost system lacks complicated, sensitive and high cost components, making it suitable for resource-limited settings. It has the potential to offer simple sample-to-answer molecular diagnostics and can inform healthcare workers of patients' diagnosis promptly.
Collapse
Affiliation(s)
- Kamfai Chan
- AI Biosciences, Inc., College Station, TX, 77845, USA
| | - Scott C. Weaver
- Institute for Human Infections and Immunity and Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pui-Yan Wong
- AI Biosciences, Inc., College Station, TX, 77845, USA
| | - Sherly Lie
- AI Biosciences, Inc., College Station, TX, 77845, USA
| | - Eryu Wang
- Institute for Human Infections and Immunity and Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mathilde Guerbois
- Institute for Human Infections and Immunity and Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Season Wong
- AI Biosciences, Inc., College Station, TX, 77845, USA
| |
Collapse
|
94
|
Affiliation(s)
- Bethany Gross
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Sarah Y. Lockwood
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Dana M. Spence
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
95
|
Grinias JP, Whitfield JT, Guetschow ED, Kennedy RT. An Inexpensive, Open-Source USB Arduino Data Acquisition Device for Chemical Instrumentation. JOURNAL OF CHEMICAL EDUCATION 2016; 93:1316-1319. [PMID: 27453587 PMCID: PMC4946424 DOI: 10.1021/acs.jchemed.6b00262] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many research and teaching labs rely on USB data acquisition devices to collect voltage signals from instrumentation. However, these devices can be cost-prohibitive (especially when large numbers are needed for teaching labs) and require software to be developed for operation. In this article, we describe the development and use of an open-source USB data acquisition device (with 16-bit acquisition resolution) built using simple electronic components and an Arduino Uno that costs under $50. Additionally, open-source software written in Python is included so that data can be acquired using nearly any PC or Mac computer with a simple USB connection. Use of the device was demonstrated for a sophomore-level analytical experiment using GC and a CE-UV separation on an instrument used for research purposes.
Collapse
Affiliation(s)
- James P. Grinias
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Jason T. Whitfield
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109
| | - Erik D. Guetschow
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|