51
|
An electrochemiluminescence sensor for 17β-estradiol detection based on resonance energy transfer in α-FeOOH@CdS/Ag NCs. Talanta 2021; 221:121479. [PMID: 33076091 DOI: 10.1016/j.talanta.2020.121479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023]
Abstract
An electrochemiluminescence (ECL) resonance energy transfer system is constructed for 17β-estradiol (E2) detection using α-FeOOH@CdS nanospheres as the ECL-active substrates and Ag NCs as an efficient quencher. CdS QDs loaded onto three-dimensional (3D) urchin-like α-FeOOH nanospheres (α-FeOOH@CdS nanospheres) exhibited excellent ECL responses, which is attributed to dual-amplification of α-FeOOH frameworks. The 3D hierarchical structure of the α-FeOOH nanospheres provided abundant sites for loading ECL-active species, thus significantly improving the ECL performance of substrates; While Fe3+ presented on surface of α-FeOOH nanospheres could be reduced to Fe2+ in negative potentials, after which might activate persulfate in a Fenton-like process, resulting in more sulfate free radicals for more effective ECL responses via electron transfer reactions. Additionally, Ag nanoclusters (Ag NCs) stabilized by single stranded oligonucleotide were introduced as quenching probes for CdS QDs owing to the well-matched donor-acceptor spectrum for efficient energy transfer, which makes them appropriate for detection of E2. The proposed strategy displayed a desirable dynamic range from 0.01 to 10 pg mL-1 with a limit of detection of 0.003 pg mL-1. The proposed strategy based on the ECL-RET strategy offered an ideal way for E2 detection, and also revealed an alternative platform for detection of other small molecules.
Collapse
|
52
|
Irkham, Rais RR, Ivandini TA, Fiorani A, Einaga Y. Electrogenerated Chemiluminescence of Luminol Mediated by Carbonate Electrochemical Oxidation at a Boron-Doped Diamond. Anal Chem 2020; 93:2336-2341. [DOI: 10.1021/acs.analchem.0c04212] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Irkham
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Raishaqy R. Rais
- Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Indonesia, Kampus UI Depok, Jakarta 16-4424, Indonesia
| | - Tribidasari A. Ivandini
- Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Indonesia, Kampus UI Depok, Jakarta 16-4424, Indonesia
| | - Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
53
|
Zhang AR, Zhong H, Li XR, Bao ZL, Cheng ZP, Zhang YJ, Chen P, Zhang ZC, Zhang LL, Qian HY. Preparation and characterization of COOH-G/Au@Ag nanocomposites and its electrogenerated chemiluminescence sensing for glucose. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
54
|
Zhu X, Pang X, Zhang Y, Yao S. Titanium carbide MXenes combined with red-emitting carbon dots as a unique turn-on fluorescent nanosensor for label-free determination of glucose. J Mater Chem B 2020; 7:7729-7735. [PMID: 31746930 DOI: 10.1039/c9tb02060h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Titanium carbides (Ti3C2), a new family of two-dimensional (2D) nanomaterials, have attracted extensive attention due to their unique structure and desirable physiochemical properties. Herein, we developed an effective and selective fluorescent turn-on nanosensor for glucose detection based on Ti3C2 nanosheets combined with red-emitting carbon dots (RCDs). The fluorescence intensity of RCDs could be effectively quenched (>96%) by Ti3C2 nanosheets through the inner-filter effect (IFE). In the presence of H2O2, the quenched fluorescence of the RCDs can remarkably recover due to the Ti3C2 nanosheets which were oxidized into Ti(OH)4 by H2O2. Based on H2O2 generated from oxidation of glucose catalyzed by glucose oxidase, the nanosensor can also be exploited for monitoring glucose. Under optimal conditions, a linear relationship between the increased fluorescence intensity of RCDs and the concentration of glucose was established in the range from 0.1 to 20 mM. The detection limit was 50 μM (S/N = 3). The proposed nanosensor also represented excellent selectivity for glucose analysis in biological fluid samples, providing a valuable platform for glucose sensing in clinical diagnostics.
Collapse
Affiliation(s)
- Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | | | | | | |
Collapse
|
55
|
Gao H, Han W, Qi H, Gao Q, Zhang C. Electrochemiluminescence Imaging for the Morphological and Quantitative Analysis of Living Cells under External Stimulation. Anal Chem 2020; 92:8278-8284. [PMID: 32458679 DOI: 10.1021/acs.analchem.0c00528] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, a simple electrochemiluminescence (ECL) imaging method based on the cell shield of the ECL emission was developed for the morphological and quantitative analysis of living cells under external stimulation. ECL images of MCF-7 cells cultured on or captured at the glassy carbon electrode (GCE) surface in a solution of tris(2,2'-bipyridyl)ruthenium(II)-tri-n-propylamine were recorded. Important morphological characteristics of living cells, including cell shape, cell area, average cell boundary, and junction distance between two adjacent cells, were directly obtained using the developed negative ECL imaging method. The ECL images revealed gradual morphological changes in cells on the GCE surface. During the course of H2O2 stimulation of cells on the GCE surface, cells shrunk, rounded up, disengaged from surrounding cells, and finally detached from the electrode surface. During the course of electrical stimulation (0.8 V), the cells on the GCE surface exhibited aggregation as demonstrated by increases in the average cell boundary and decreases in the junction distance between two adjacent cells. Additionally, a quantitative method for the sensitive determination of MCF-7 cells with a limit of detection of 29 cells/mL was developed using the negative ECL imaging strategy. This work demonstrates that the proposed negative ECL imaging strategy is a promising approach to assess important morphological characteristics of living cells during the course of external stimulation and to obtain quantitative information on cell concentrations in solution.
Collapse
Affiliation(s)
- Hongfang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Weijuan Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
56
|
Electrochemiluminescence Analysis of Hydrogen Peroxide Using L012 Modified Electrodes. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00134-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
57
|
Wang Z, Wang N, Gao H, Quan Y, Ju H, Cheng Y. Amplified electrochemiluminescence signals promoted by the AIE-active moiety of D-A type polymer dots for biosensing. Analyst 2020; 145:233-239. [PMID: 31746824 DOI: 10.1039/c9an01992h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-component conjugated polymers of a strong donor-acceptor (D-A) type could be synthesized by Pd-catalyzed Suzuki coupling polymerization reaction of 1,2-bis(4-bromophenyl)-1,2-diphenylethene (M-1) with 9-octyl-3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (M-2) and 4,6-bis((E)-4-bromostyryl)-2,2-difluoro-5-phenyl-2H-1l3,3,2l4-dioxaborinine (M-3). Among them, P-1 and P-2 with high TPE ratios at 0.95 and 0.9 showed obvious aggregation-induced emission (AIE) behavior; in contrast P-3 with a low TPE ratio at 0.8 showed an aggregation-caused quenching (ACQ) phenomenon. In particular, the three resulting polymer dots (P-1 to P-3 Pdots) exhibited a 200 mV lower electrochemiluminescence (ECL) potential due to their strong D-A electronic structure. Most importantly, the ECL signals of Pdots could be enhanced as high as 3 times by increasing their AIE-active TPE moiety ratios from 0.8 (P-3) to 0.95 (P-1) via the band gap emission process. Herein, P-1 Pdots with the strongest ECL signal were successfully used as ECL biosensors for the detection of catechol, epinephrine and dopamine with detection limits of 1, 7 and 3 nM, respectively. This work provides a new strategy for developing highly sensitive ECL biosensors by the smart structure design of the AIE-active Pdots.
Collapse
Affiliation(s)
- Ziyu Wang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | |
Collapse
|
58
|
Recent Advances in Electrochemiluminescence-Based Systems for Mammalian Cell Analysis. MICROMACHINES 2020; 11:mi11050530. [PMID: 32456040 PMCID: PMC7281524 DOI: 10.3390/mi11050530] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
Abstract
Mammalian cell analysis is essential in the context of both fundamental studies and clinical applications. Among the various techniques available for cell analysis, electrochemiluminescence (ECL) has attracted significant attention due to its integration of both electrochemical and spectroscopic methods. In this review, we summarize recent advances in the ECL-based systems developed for mammalian cell analysis. The review begins with a summary of the developments in luminophores that opened the door to ECL applications for biological samples. Secondly, ECL-based imaging systems are introduced as an emerging technique to visualize single-cell morphologies and intracellular molecules. In the subsequent section, the ECL sensors developed in the past decade are summarized, the use of which made the highly sensitive detection of cell-derived molecules possible. Although ECL immunoassays are well developed in terms of commercial use, the sensing of biomolecules at a single-cell level remains a challenge. Emphasis is therefore placed on ECL sensors that directly detect cellular molecules from small portions of cells or even single cells. Finally, the development of bipolar electrode devices for ECL cell assays is introduced. To conclude, the direction of research in this field and its application prospects are described.
Collapse
|
59
|
Wang Y, Jin R, Sojic N, Jiang D, Chen H. Intracellular Wireless Analysis of Single Cells by Bipolar Electrochemiluminescence Confined in a Nanopipette. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002323] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuling Wang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Rong Jin
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255 University of Bordeaux 33607 Pessac France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| |
Collapse
|
60
|
Wang Y, Jin R, Sojic N, Jiang D, Chen H. Intracellular Wireless Analysis of Single Cells by Bipolar Electrochemiluminescence Confined in a Nanopipette. Angew Chem Int Ed Engl 2020; 59:10416-10420. [DOI: 10.1002/anie.202002323] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yuling Wang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Rong Jin
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255 University of Bordeaux 33607 Pessac France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| |
Collapse
|
61
|
|
62
|
Ding H, Guo W, Su B. Electrochemiluminescence Single‐Cell Analysis: Intensity‐ and Imaging‐Based Methods. Chempluschem 2020; 85:725-733. [DOI: 10.1002/cplu.202000145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Hao Ding
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Weiliang Guo
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| |
Collapse
|
63
|
Closed bipolar electrochemical biosensor based on ohmic loss mechanism for noncontact measurements. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
64
|
Liu Z, Wu H, Ge X, Zhan H, Hu L. A sensitive method to monitor catechol by using graphitic carbon nitride quantum dots as coreactants in Ru(bpy)32+-based electrochemiluminescent system. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
65
|
Song X, Shao X, Dai L, Fan D, Ren X, Sun X, Luo C, Wei Q. Triple Amplification of 3,4,9,10-Perylenetetracarboxylic Acid by Co 2+-Based Metal-Organic Frameworks and Silver-Cysteine and Its Potential Application for Ultrasensitive Assay of Procalcitonin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9098-9106. [PMID: 31990177 DOI: 10.1021/acsami.9b23248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a triple-amplified biosensor with a bioactivity-maintained peculiarity was constructed for quantitative procalcitonin (PCT) detection. As everyone knows, a strong electrochemiluminescence (ECL) signal is the premise to ensure high sensitivity for trace target detection. Hence, a valid tactic was developed to achieve signal amplification of luminophor by using Co2+-based metal-organic frameworks (ZIF-67) and silver-cysteine (AgCys). The ZIF-67 particles, which have more atomically dispersed Co2+, could play the role of a co-reaction accelerator to catalyze S2O82- to generate abundant Co3+ and sulfate radical anions (SO4•-). Afterward, a mass of Co3+ was reduced to more hydroxyl radicals (OH•) by H2O, thus ulteriorly reducing S2O82- to generate more SO4•-. Remarkably, S2O82- was reduced to SO4•- continuously with the recycling of Co2+ and Co3+, which realized an effective signal amplification. Meanwhile, the AgCys complex with superior catalysis and biocompatibility was prepared to further improve the ECL signal and maintain the bioactivity of the biomolecule. Furthermore, HWRGWVC, a heptapeptide that was used for combining the Fc fragments of an antibody by Au-S bonding to achieve the fixed point fixation, could not only maintain bioactivity of an antibody but also improved its incubation efficiency, thus further enhancing biosensor sensitivity. Under optimum conditions, the proposed biosensor realized highly sensitive assay for PCT with a wide dynamic range from 10 fg/mL to 100 ng/mL and a detection limit as low as 3.67 fg/mL. With superior stability, selectivity, and repeatability, the prepared biosensor revealed immense potential application of ultrasensitive assay for PCT in human serum.
Collapse
Affiliation(s)
- Xianzhen Song
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Xinrong Shao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
- School of Chemical Engineering , Shandong University of Technology , Zibo 255049 , P.R. China
| | - Li Dai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Xiaojun Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Chuannan Luo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| |
Collapse
|
66
|
Recent advances in electrochemiluminescence-based simultaneous detection of multiple targets. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115767] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
67
|
Wu X, Chen S, Lu Q. High throughput profiling drug response and apoptosis of single polar cells. J Mater Chem B 2020; 8:8614-8622. [DOI: 10.1039/d0tb01684e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The drug response of single polar cells was evaluated via single cell trapping on anisotropic microwells for tumor heterogeneity.
Collapse
Affiliation(s)
- Xixi Wu
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- China
| | - Qinghua Lu
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
68
|
Abstract
Nano-electrochemical cytosensors have attracted intensive attention and achieved huge progress in the biomedical field owing to their stability, rapidity, accuracy, and low-cost properties.
Collapse
Affiliation(s)
- Jie Xu
- School of Information and Communication Engineering
- University of Electronic Science and Technology of China
- China
| | - Yanxiang Hu
- School of Information and Communication Engineering
- University of Electronic Science and Technology of China
- China
| | - Shengnan Wang
- School of Material Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- China
| | - Xing Ma
- School of Material Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- China
| | - Jinhong Guo
- School of Information and Communication Engineering
- University of Electronic Science and Technology of China
- China
| |
Collapse
|
69
|
Hu L, Wu Y, Xu M, Gu W, Zhu C. Recent advances in co-reaction accelerators for sensitive electrochemiluminescence analysis. Chem Commun (Camb) 2020; 56:10989-10999. [DOI: 10.1039/d0cc04371k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In electrochemiluminescence sensing platforms, co-reaction accelerators are specific materials used to catalyze the dissociation of co-reactants into active radicals, which can significantly boost the ECL emission of luminophores.
Collapse
Affiliation(s)
- Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Miao Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|
70
|
Cao SP, Luo QX, Li YJ, Liang RP, Qiu JD. Gold nanoparticles decorated carbon nitride nanosheets as a coreactant regulate the conversion of the dual-potential electrochemiluminescence of Ru(bpy)32+ for Hg2+ detection. Chem Commun (Camb) 2020; 56:5625-5628. [DOI: 10.1039/d0cc01311k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dual-potential electrochemiluminescence of Ru(bpy)32+ for Hg2+ assay using Au–g-C3N4 NSs as on-electrode coreactant.
Collapse
Affiliation(s)
- Shu-Ping Cao
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Qiu-Xia Luo
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Ya-Jie Li
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Ru-Ping Liang
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Jian-Ding Qiu
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
- Engineering Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province
| |
Collapse
|
71
|
Abstract
This Feature simply introduces the history and mechanism of classical electrogenerated chemiluminescence (ECL) systems for the detection of biomolecules, highlights new advances and emerging fields of the ECL biosensing with recent illustrative examples, and presents the challenges and perspectives of ECL biosensing.
Collapse
Affiliation(s)
- Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| |
Collapse
|
72
|
Cui C, Jin R, Jiang D, Zhang J, Zhu JJ. Electrogenerated Chemiluminescence in Submicrometer Wells for Very High-Density Biosensing. Anal Chem 2019; 92:578-582. [DOI: 10.1021/acs.analchem.9b04488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chen Cui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Rong Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
73
|
Ma C, Cao Y, Gou X, Zhu JJ. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal Chem 2019; 92:431-454. [PMID: 31679341 DOI: 10.1021/acs.analchem.9b04947] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
74
|
Cao N, Zeng P, Zhao F, Zeng B. Au@SiO2@RuDS nanocomposite based plasmon-enhanced electrochemiluminescence sensor for the highly sensitive detection of glutathione. Talanta 2019; 204:402-408. [DOI: 10.1016/j.talanta.2019.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
|
75
|
Wang C, Ren L, Liu W, Wei Q, Tan M, Yu Y. Fluorescence quantification of intracellular materials at the single-cell level by an integrated dual-well array microfluidic device. Analyst 2019; 144:2811-2819. [PMID: 30882810 DOI: 10.1039/c9an00153k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an integrated microfluidic device for quantifying intracellular materials at the single-cell level. This device combines a dual-well structure and a microfluidic control system. The dual-well structure includes capture wells (20 μm in diameter) for trapping a single cell and reaction wells (200 μm in diameter) for confining reagents. The control system enables a programmable procedure for single-cell analysis. This device achieves highly efficient trapping of single cells, overcoming the Poisson distribution, while affording sufficient biochemical reagents for each isolated reactor. We successfully utilized the presented device to monitor the catalytic interaction between intracellular alkaline phosphatase enzyme and a fluorogenic substrate and to quantify the intracellular glucose concentration of a single K562 cell based on an external standard method. The results demonstrate the feasibility and convenience of our dual-well array microfluidic device as a practical single-cell research tool.
Collapse
Affiliation(s)
- Chenyu Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
76
|
Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence Imaging for Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:275-295. [PMID: 30939032 DOI: 10.1146/annurev-anchem-061318-115226] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemiluminescence (ECL) is a widely used analytical technique with the advantages of high sensitivity and low background signal. The recent and rapid development of electrochemical materials, luminophores, and optical elements significantly increases the ECL signals and, thus, ECL imaging with enhanced spatial and temporal resolutions is realized. Currently, ECL imaging is successfully applied to high-throughput bioanalysis and to visualize the distribution of molecules at single cells. Compared with other optical bioassays, no optical excitation is involved in imaging, so the approach avoids a background signal from illumination and increases the detection sensitivity. This review highlights some of the most exciting developments in this field, including the mechanisms, electrode designs, and the applications of ECL imaging in bioanalysis and at single cells and particles.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China;
| | - Stéphane Arbault
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France;
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France;
| | - Dechen Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China;
| |
Collapse
|
77
|
Gao H, Wang X, Li M, Qi H, Gao Q, Zhang C. Ultrasensitive Electrochemiluminescence Aptasensor for Assessment of Protein Heterogeneity in Small Cell Population. ACS APPLIED BIO MATERIALS 2019; 2:3052-3058. [DOI: 10.1021/acsabm.9b00352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongfang Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Xiaofei Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Man Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Honglan Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Qiang Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| |
Collapse
|
78
|
Tang XC, Xiao Y, Li P, Qi LW. Simple, Fast, and Sensitive detection of artemisinin in human serum and Artemisia annua using microsensor array coupled with electrochemiluminescent imaging technique. Talanta 2019; 196:124-130. [DOI: 10.1016/j.talanta.2018.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
|
79
|
Yuan Y, Li X, Chen AY, Wang HJ, Chai YQ, Yuan R. Highly-efficient luminol immobilization approach and exponential strand displacement reaction based electrochemiluminescent strategy for monitoring microRNA expression in cell. Biosens Bioelectron 2019; 132:62-67. [DOI: 10.1016/j.bios.2019.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/08/2019] [Accepted: 02/03/2019] [Indexed: 01/07/2023]
|
80
|
Zanut A, Fiorani A, Rebeccani S, Kesarkar S, Valenti G. Electrochemiluminescence as emerging microscopy techniques. Anal Bioanal Chem 2019; 411:4375-4382. [PMID: 31020369 DOI: 10.1007/s00216-019-01761-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 03/06/2019] [Indexed: 10/26/2022]
Abstract
The use of electrochemiluminescence (ECL), i.e., chemiluminescence triggered by electrochemical stimulus, as emitting light source for microscopy is an emerging approach with different applications ranging from the visualization of nanomaterials to cell mapping. In this trend article, we give an overview of the state of the art in this new field with the purpose to illustrate all the possible applications so far explored as well as describing the mechanism underlying this transduction technique. The results discussed here would highlight the great potential of the combination between ECL and microscopy and how this marriage can turn into an innovative approach with specific application in analytical sciences. Graphical abstract.
Collapse
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Sara Rebeccani
- Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Sagar Kesarkar
- Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
81
|
Non-enzymatic glucose sensor based on molecularly imprinted polymer: a theoretical, strategy fabrication and application. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04237-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
82
|
Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosens Bioelectron 2019; 126:68-81. [DOI: 10.1016/j.bios.2018.10.038] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/06/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
|
83
|
Nanoparticle-based electrochemiluminescence cytosensors for single cell level detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
84
|
Huo XL, Zhang N, Xu JJ, Chen HY. Ultrasensitive electrochemiluminescence immunosensor with wide linear range based on a multiple amplification approach. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
85
|
Liu W, Chen A, Li S, Peng K, Chai Y, Yuan R. Perylene Derivative/Luminol Nanocomposite as a Strong Electrochemiluminescence Emitter for Construction of an Ultrasensitive MicroRNA Biosensor. Anal Chem 2018; 91:1516-1523. [DOI: 10.1021/acs.analchem.8b04638] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Anyi Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shengkai Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kanfu Peng
- Department of Kidney, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
86
|
Guo W, Ding H, Gu C, Liu Y, Jiang X, Su B, Shao Y. Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single Sample. J Am Chem Soc 2018; 140:15904-15915. [DOI: 10.1021/jacs.8b09422] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Weiliang Guo
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chaoyue Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanhuan Liu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xuecheng Jiang
- Hangzhou Genesea Biotechnology Limited Company, Hangzhou 315000, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
87
|
Voci S, Goudeau B, Valenti G, Lesch A, Jović M, Rapino S, Paolucci F, Arbault S, Sojic N. Surface-Confined Electrochemiluminescence Microscopy of Cell Membranes. J Am Chem Soc 2018; 140:14753-14760. [PMID: 30336008 DOI: 10.1021/jacs.8b08080] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein is reported a surface-confined microscopy based on electrochemiluminescence (ECL) that allows to image the plasma membrane of single cells at the interface with an electrode. By analyzing photoluminescence (PL), ECL and AFM images of mammalian CHO cells, we demonstrate that, in contrast to the wide-field fluorescence, ECL emission is confined to the immediate vicinity of the electrode surface and only the basal membrane of the cell becomes luminescent. The resulting ECL microscopy reveals details that are not resolved by classic fluorescence microscopy, without any light irradiation and specific setup. The thickness of the ECL-emitting regions is ∼500 nm due to the unique ECL mechanism that involves short-lifetime electrogenerated radicals. In addition, the reported ECL microscopy is a dynamic technique that reflects the transport properties through the cell membranes and not only the specific labeling of the membranes. Finally, disposable transparent carbon nanotube (CNT)-based electrodes inkjet-printed on classic microscope glass coverslips were used to image cells in both reflection and transmission configurations. Therefore, our approach opens new avenues for ECL as a surface-confined microscopy to develop single cell assays and to image the dynamics of biological entities in cells or in membranes.
Collapse
Affiliation(s)
- Silvia Voci
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| | - Bertrand Goudeau
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Andreas Lesch
- Laboratory of Physical and Analytical Electrochemistry , EPFL Valais Wallis , Rue de l'Industrie 17, CP 440 , CH-1951 Sion , Switzerland
| | - Milica Jović
- Laboratory of Physical and Analytical Electrochemistry , EPFL Valais Wallis , Rue de l'Industrie 17, CP 440 , CH-1951 Sion , Switzerland
| | - Stefania Rapino
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Stéphane Arbault
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| | - Neso Sojic
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| |
Collapse
|
88
|
Affiliation(s)
- Pieter E. Oomen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
| | - Mohaddeseh A. Aref
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
| | - Ibrahim Kaya
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Nhu T. N. Phan
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
- University of Göttingen Medical Center, Institute of Neuro- and Sensory Physiology, Göttingen 37073, Germany
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
| |
Collapse
|
89
|
Long D, Chen C, Cui C, Yao Z, Yang P. A high precision MUA-spaced single-cell sensor for cellular receptor assay based on bifunctional Au@Cu-PbCQD nanoprobes. NANOSCALE 2018; 10:18597-18605. [PMID: 30259937 DOI: 10.1039/c8nr03847c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A single-cell sensor with a spatial architecture was firstly fabricated for realizing high precision single-cell analysis using an 11-mercaptoundecanoic acid (MUA)-spaced sensing interface to prop up single cells and provide a suitable space for effective nanoprobe labeling. Mercapto acids (MA) with different carbon chain lengths were optimized and MUA was selected to provide optimal interspace on the electrodeposited PANI/AuNP substrates, and its carboxyl could couple with folic acid to capture cancer cells. Bifunctional Au@Cu-PbCQD nanoprobes, in which the AuNP cores were linked with lead-coadsorbed carbon quantum dots (PbCQDs) by a copper(ii) ion bridge, were firstly synthesized and applied as highly sensitive electrochemiluminescence (ECL) probes and electrochemical probes. Hyaluronic acid (HA)-functionalized Au@Cu-PbCQD nanoprobes were labelled on MCF-7 cells via specific recognition to the CD44 receptor, which served as the research model. The ECL response of the sensor was applied to evaluate the validity of nanoprobe labeling. With MUA modified, the sensor was able to enhance the ECL intensity by 37.5 ± 3.9%, indicating the remarkable amelioration of the accuracy of single-cell analysis. To take advantage of the bifunctional nanoprobes, differential pulse voltammetry (DPV) was further applied to confirm the feasibility of the proposed single-cell sensor with a spatial architecture. Therefore, the novel strategy provides a single-cell analysis platform to acquire high-precision analytical results, and more accurately to elucidate cellular heterogeneity and biological function.
Collapse
Affiliation(s)
- Dongping Long
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | |
Collapse
|
90
|
Delbeck S, Vahlsing T, Leonhardt S, Steiner G, Heise HM. Non-invasive monitoring of blood glucose using optical methods for skin spectroscopy-opportunities and recent advances. Anal Bioanal Chem 2018; 411:63-77. [PMID: 30283998 DOI: 10.1007/s00216-018-1395-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus is a widespread disease with greatly rising patient numbers expected in the future, not only for industrialized countries but also for regions in the developing world. There is a need for efficient therapy, which can be via self-monitoring of blood glucose levels to provide tight glycemic control for reducing the risks of severe health complications. Advancements in diabetes technology can nowadays offer different sensor approaches, even for continuous blood glucose monitoring. Non-invasive blood glucose assays have been promised for many years and various vibrational spectroscopy-based methods of the skin are candidates for achieving this goal. Due to the small spectral signatures of the glucose hidden among a largely variable background, the largest signal-to-noise ratios and multivariate calibration are essential to provide the method applicability for self-monitoring of blood glucose. Besides multiparameter approaches, recently presented devices based on photoplethysmography with wavelengths in the visible and near-infrared range are evaluated for their potential of providing reliable blood glucose concentration predictions. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sven Delbeck
- Interdisciplinary Center for Life Sciences, South-Westphalia University of Applied Sciences, Frauenstuhlweg 31, 58644, Iserlohn, Germany
| | - Thorsten Vahlsing
- Bundesanstalt für Materialforschung und -prüfung (BAM), Acoustic and Electromagnetic Methods, Unter den Eichen 87, 12205, Berlin, Germany.,Chair for Medical Information Technology, Helmholtz Institute of Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Steffen Leonhardt
- Chair for Medical Information Technology, Helmholtz Institute of Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Gerald Steiner
- Faculty of Medicine Carl Gustav Carus, Clinical Sensoring and Monitoring, Technical University of Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - H Michael Heise
- Interdisciplinary Center for Life Sciences, South-Westphalia University of Applied Sciences, Frauenstuhlweg 31, 58644, Iserlohn, Germany.
| |
Collapse
|
91
|
Llopis-Lorente A, de Luis B, García-Fernández A, Jimenez-Falcao S, Orzáez M, Sancenón F, Villalonga R, Martínez-Máñez R. Hybrid Mesoporous Nanocarriers Act by Processing Logic Tasks: Toward the Design of Nanobots Capable of Reading Information from the Environment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26494-26500. [PMID: 30016064 DOI: 10.1021/acsami.8b05920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we present the design of smart nanodevices capable of reading molecular information from the environment and acting accordingly by processing Boolean logic tasks. As proof of concept, we prepared Au-mesoporous silica (MS) nanoparticles functionalized with the enzyme glucose dehydrogenase (GDH) on the Au surface and with supramolecular nanovalves as caps on the MS surface, which is loaded with a cargo (dye or drug). The nanodevice acts as an AND logic gate and reads information from the solution (presence of glucose and nicotinamide adenine dinucleotide (NAD+)), which results in cargo release. We show the possibility of coimmobilizing GDH and the enzyme urease on nanoparticles to mimic an INHIBIT logic gate, in which the AND gate is switched off by the presence of urea. We also show that such nanodevices can deliver cytotoxic drugs in cancer cells by recognizing intracellular NAD+ and the presence of glucose.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) , Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia , 46022 València , Spain
- Departamento de Química , Universidad Politécnica de Valencia , Camino de Vera s/n , 46022 Valencia , Spain
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , Spain
| | - Beatriz de Luis
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) , Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia , 46022 València , Spain
- Departamento de Química , Universidad Politécnica de Valencia , Camino de Vera s/n , 46022 Valencia , Spain
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , Spain
| | - Alba García-Fernández
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) , Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia , 46022 València , Spain
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , Spain
- Centro de Investigación Príncipe Felipe , Eduardo Primo Yúfera 3 , 46012 Valencia , Spain
| | - Sandra Jimenez-Falcao
- Nanosensors & Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry , Complutense University of Madrid , 28040 Madrid , Spain
| | - Mar Orzáez
- Centro de Investigación Príncipe Felipe , Eduardo Primo Yúfera 3 , 46012 Valencia , Spain
| | - Félix Sancenón
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) , Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia , 46022 València , Spain
- Departamento de Química , Universidad Politécnica de Valencia , Camino de Vera s/n , 46022 Valencia , Spain
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , Spain
| | - Reynaldo Villalonga
- Nanosensors & Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry , Complutense University of Madrid , 28040 Madrid , Spain
| | - Ramón Martínez-Máñez
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) , Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia , 46022 València , Spain
- Departamento de Química , Universidad Politécnica de Valencia , Camino de Vera s/n , 46022 Valencia , Spain
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , Spain
| |
Collapse
|
92
|
Cao JT, Wang YL, Zhang JJ, Dong YX, Liu FR, Ren SW, Liu YM. Immuno-Electrochemiluminescent Imaging of a Single Cell Based on Functional Nanoprobes of Heterogeneous Ru(bpy)32+@SiO2/Au Nanoparticles. Anal Chem 2018; 90:10334-10339. [DOI: 10.1021/acs.analchem.8b02141] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, P.R.China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, P.R.China
| | - Jing-Jing Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, P.R.China
| | - Yu-Xiang Dong
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, P.R.China
| | - Fu-Rao Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, P.R.China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang, Henan 464000, P.R.China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, P.R.China
| |
Collapse
|
93
|
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Yuji Nashimoto
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences; Tohoku University; 6-3 Aramaki-aza Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Noriko Taira
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Javier Ramon Azcon
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Hitoshi Shiku
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| |
Collapse
|
94
|
Xia J, Zhou J, Zhang R, Jiang D, Jiang D. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells. Anal Bioanal Chem 2018; 410:4787-4792. [PMID: 29862432 DOI: 10.1007/s00216-018-1160-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/29/2018] [Accepted: 05/24/2018] [Indexed: 01/12/2023]
Abstract
In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Juan Xia
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Junyu Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, Jiangsu, China
| | - Ronggui Zhang
- Department of Urinary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, Jiangsu, China
| | - Depeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
95
|
Pu G, Zhang D, Mao X, Zhang Z, Wang H, Ning X, Lu X. Biomimetic Interfacial Electron-Induced Electrochemiluminesence. Anal Chem 2018; 90:5272-5279. [DOI: 10.1021/acs.analchem.8b00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guiqiang Pu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Dongxu Zhang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xiang Mao
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Huan Wang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
96
|
Ke H, Zhang X, Huang C, Jia N. Electrochemiluminescence evaluation for carbohydrate antigen 15-3 based on the dual-amplification of ferrocene derivative and Pt/BSA core/shell nanospheres. Biosens Bioelectron 2018; 103:62-68. [DOI: 10.1016/j.bios.2017.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 01/14/2023]
|
97
|
Zhang J, Zhou J, Pan R, Jiang D, Burgess JD, Chen HY. New Frontiers and Challenges for Single-Cell Electrochemical Analysis. ACS Sens 2018; 3:242-250. [PMID: 29276834 DOI: 10.1021/acssensors.7b00711] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous measurements of cell populations might obscure many important cellular differences, and new strategies for single-cell analyses are urgently needed to re-examine these fundamental biological principles for better diagnosis and treatment of diseases. Electrochemistry is a robust technique for the analysis of single living cells that has the advantages of minor interruption of cellular activity and provides the capability of high spatiotemporal resolution. The achievements of the past 30 years have revealed significant information about the exocytotic events of single cells to elucidate the mechanisms of cellular activity. Currently, the rapid developments of micro/nanofabrication and optoelectronic technologies drive the development of multifunctional electrodes and novel electrochemical approaches with higher resolution for single cells. In this Perspective, three new frontiers in this field, namely, electrochemical microscopy, intracellular analysis, and single-cell analysis in a biological system (i.e., neocortex and retina), are reviewed. The unique features and remaining challenges of these techniques are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Junyu Zhou
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Rongrong Pan
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Dechen Jiang
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - James D. Burgess
- Department
of Medical Laboratory, Imaging, and Radiologic Sciences, College of
Allied Health Sciences, Augusta University, Augusta, Georgia 30912, United States
| | - Hong-Yuan Chen
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| |
Collapse
|
98
|
Tong YJ, Yu LD, Wu LL, Cao SP, Liang RP, Zhang L, Xia XH, Qiu JD. Aggregation-induced emission of luminol: a novel strategy for fluorescence ratiometric detection of ALP and As(v) with high sensitivity and selectivity. Chem Commun (Camb) 2018; 54:7487-7490. [DOI: 10.1039/c8cc03725f] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Luminol is introduced as a ligand for Tb3+ which, combined with GMP, leads to a sensor which is more robust, sensitive, and efficient.
Collapse
Affiliation(s)
- Yuan-Jun Tong
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Lu-Dan Yu
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Lu-Lu Wu
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Shu-Ping Cao
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Ru-Ping Liang
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Li Zhang
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Jian-Ding Qiu
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| |
Collapse
|
99
|
Zhuo Y, Wang HJ, Lei YM, Zhang P, Liu JL, Chai YQ, Yuan R. Electrochemiluminescence biosensing based on different modes of switching signals. Analyst 2018; 143:3230-3248. [DOI: 10.1039/c8an00276b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrochemiluminescence (ECL) has attracted much attention in various fields of analysis owing to low background signals, high sensitivity, and excellent controllability.
Collapse
Affiliation(s)
- Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Hai-Jun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yan-Mei Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Pu Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jia-Li Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
100
|
JIANG H, WANG XM. Progress of Metal Nanoclusters-based Electrochemiluminescent Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61054-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|