51
|
Sanaei K, Zamanian A, Mashayekhan S, Ramezani T. Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration. IRANIAN BIOMEDICAL JOURNAL 2023; 27:280-93. [PMID: 37873644 PMCID: PMC10707813 DOI: 10.61186/ibj.27.5.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 12/17/2023]
Abstract
Background In the present study, a novel bioink was suggested based on the oxidized alginate (OAlg), gelatin (GL), and silk fibroin (SF) hydrogels. Methods The composition of the bioink was optimized by the rheological and printability measurements, and the extrusion-based 3D bioprinting process was performed by applying the optimum OAlg-based bioink. Results The results demonstrated that the viscosity of bioink was continuously decreased by increasing the SF/GL ratio, and the bioink displayed a maximum achievable printability (92 ± 2%) at 2% (w/v) of SF and 4% (w/v) of GL. Moreover, the cellular behavior of the scaffolds investigated by MTT assay and live/dead staining confirmed the biocompatibility of the prepared bioink. Conclusion The bioprinted OAlg-GL-SF scaffold could have the potential for using in skin tissue engineering applications, which needs further exploration.
Collapse
Affiliation(s)
- Khadijeh Sanaei
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Tayebe Ramezani
- Faculty of biological sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
52
|
Syed Mohamed SMD, Welsh GI, Roy I. Renal tissue engineering for regenerative medicine using polymers and hydrogels. Biomater Sci 2023; 11:5706-5726. [PMID: 37401545 DOI: 10.1039/d3bm00255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Chronic Kidney Disease (CKD) is a growing worldwide problem, leading to end-stage renal disease (ESRD). Current treatments for ESRD include haemodialysis and kidney transplantation, but both are deemed inadequate since haemodialysis does not address all other kidney functions, and there is a shortage of suitable donor organs for transplantation. Research in kidney tissue engineering has been initiated to take a regenerative medicine approach as a potential treatment alternative, either to develop effective cell therapy for reconstruction or engineer a functioning bioartificial kidney. Currently, renal tissue engineering encompasses various materials, mainly polymers and hydrogels, which have been chosen to recreate the sophisticated kidney architecture. It is essential to address the chemical and mechanical aspects of the materials to ensure they can support cell development to restore functionality and feasibility. This paper reviews the types of polymers and hydrogels that have been used in kidney tissue engineering applications, both natural and synthetic, focusing on the processing and formulation used in creating bioactive substrates and how these biomaterials affect the cell biology of the kidney cells used.
Collapse
Affiliation(s)
| | - Gavin I Welsh
- Renal Bristol, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S37HQ, UK.
| |
Collapse
|
53
|
Wang J, Liu S, Huang J, Ren K, Zhu Y, Yang S. Alginate: Microbial production, functionalization, and biomedical applications. Int J Biol Macromol 2023; 242:125048. [PMID: 37236570 DOI: 10.1016/j.ijbiomac.2023.125048] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Alginates are natural polysaccharides widely participating in food, pharmaceutical, and environmental applications due to their excellent gelling capacity. Their excellent biocompatibility and biodegradability further extend their application to biomedical fields. The low consistency in molecular weight and composition of algae-based alginates may limit their performance in advanced biomedical applications. It makes microbial alginate production more attractive due to its potential for customizing alginate molecules with stable characteristics. Production costs remain the primary factor limiting the commercialization of microbial alginates. However, carbon-rich wastes from sugar, dairy, and biodiesel industries may serve as potential substitutes for pure sugars for microbial alginate production to reduce substrate costs. Fermentation parameter control and genetic engineering strategies may further improve the production efficiency and customize the molecular composition of microbial alginates. To meet the specific needs of biomedical applications, alginates may need functionalization, such as functional group modifications and crosslinking treatments, to achieve enhanced mechanical properties and biochemical activities. The development of alginate-based composites incorporated with other polysaccharides, gelatin, and bioactive factors can integrate the advantages of each component to meet multiple requirements in wound healing, drug delivery, and tissue engineering applications. This review provided a comprehensive insight into the sustainable production of high-value microbial alginates. It also discussed recent advances in alginate modification strategies and alginate-based composites for representative biomedical applications.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Kexin Ren
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Yan Zhu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Siying Yang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| |
Collapse
|
54
|
Aldhaher A, Shahabipour F, Shaito A, Al-Assaf S, Elnour AA, Sallam EB, Teimourtash S, Elfadil AA. 3D hydrogel/ bioactive glass scaffolds in bone tissue engineering: Status and future opportunities. Heliyon 2023; 9:e17050. [PMID: 37483767 PMCID: PMC10362084 DOI: 10.1016/j.heliyon.2023.e17050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Repairing significant bone defects remains a critical challenge, raising the clinical demand to design novel bone biomaterials that incorporate osteogenic and angiogenic properties to support the regeneration of vascularized bone. Bioactive glass scaffolds can stimulate angiogenesis and osteogenesis. In addition, natural or synthetic polymers exhibit structural similarity with extracellular matrix (ECM) components and have superior biocompatibility and biodegradability. Thus, there is a need to prepare composite scaffolds of hydrogels for vascularized bone, which incorporate to improve the mechanical properties and bioactivity of natural polymers. In addition, those composites' 3-dimensional (3D) form offer regenerative benefits such as direct doping of the scaffold with ions. This review presents a comprehensive discussion of composite scaffolds incorporated with BaG, focusing on their effects on osteo-inductivity and angiogenic properties. Moreover, the adaptation of the ion-doped hydrogel composite scaffold into a 3D scaffold for the generation of vascularized bone tissue is exposed. Finally, we highlight the challenges and future of manufacturing such biomaterials.
Collapse
Affiliation(s)
- Abdullah Aldhaher
- Department of Chemistry, Faculty of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Fahimeh Shahabipour
- Orthopedic Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Abdullah Shaito
- Biomedical Research Center, College of Medicine, And Department of Biomedical Sciences at College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Saphwan Al-Assaf
- Hydrocolloids Research Centre, University of Chester, Chester, United Kingdom
| | - Ahmed A.M. Elnour
- Faculty of Chemical and Process Engineering Technology, University of Malaysia Pahang-UMP, Malaysia
| | | | - Shahin Teimourtash
- Department of Healthcare Science Center, McMaster University, Toronto, Canada
| | - Abdelgadir A. Elfadil
- Department of Environmental Science, Faculty of Science and Technology, Al-Neelain University, P. O. Box: 12702, Sudan
| |
Collapse
|
55
|
Schulik J, Salehi S, Boccaccini AR, Schrüfer S, Schubert DW, Arkudas A, Kengelbach-Weigand A, Horch RE, Schmid R. Comparison of the Behavior of 3D-Printed Endothelial Cells in Different Bioinks. Bioengineering (Basel) 2023; 10:751. [PMID: 37508778 PMCID: PMC10376299 DOI: 10.3390/bioengineering10070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Biomaterials with characteristics similar to extracellular matrix and with suitable bioprinting properties are essential for vascular tissue engineering. In search for suitable biomaterials, this study investigated the three hydrogels alginate/hyaluronic acid/gelatin (Alg/HA/Gel), pre-crosslinked alginate di-aldehyde with gelatin (ADA-GEL), and gelatin methacryloyl (GelMA) with respect to their mechanical properties and to the survival, migration, and proliferation of human umbilical vein endothelial cells (HUVECs). In addition, the behavior of HUVECs was compared with their behavior in Matrigel. For this purpose, HUVECs were mixed with the inks both as single cells and as cell spheroids and printed using extrusion-based bioprinting. Good printability with shape fidelity was determined for all inks. The rheological measurements demonstrated the gelling consistency of the inks and shear-thinning behavior. Different Young's moduli of the hydrogels were determined. However, all measured values where within the range defined in the literature, leading to migration and sprouting, as well as reconciling migration with adhesion. Cell survival and proliferation in ADA-GEL and GelMA hydrogels were demonstrated for 14 days. In the Alg/HA/Gel bioink, cell death occurred within 7 days for single cells. Sprouting and migration of the HUVEC spheroids were observed in ADA-GEL and GelMA. Similar behavior of the spheroids was seen in Matrigel. In contrast, the spheroids in the Alg/HA/Gel ink died over the time studied. It has been shown that Alg/HA/Gel does not provide a good environment for long-term survival of HUVECs. In conclusion, ADA-GEL and GelMA are promising inks for vascular tissue engineering.
Collapse
Affiliation(s)
- Jana Schulik
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery University Hospital of Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Stefan Schrüfer
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany
| | - Andreas Arkudas
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery University Hospital of Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery University Hospital of Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Raymund E Horch
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery University Hospital of Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Rafael Schmid
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery University Hospital of Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| |
Collapse
|
56
|
Jalali Kandeloos A, Bastani S, Mashayekhan S. Architecting oxidized alginate methacrylate hydrogels with tunable characteristics by altering the sequence of the cross-linking steps, methacrylation reaction time, and polymer concentration. J Biomater Appl 2023:8853282231184294. [PMID: 37329334 DOI: 10.1177/08853282231184294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this study, biodegradable oxidized methacrylated alginate (OMA) hydrogels with controllable mechanical properties were engineered. An ionic and photo cross-linking combination was employed to fabricate dual cross-linked hydrogels. By altering the degree of methacrylation and polymer concentration, hydrogels with an elastic modulus of 4.85 ± 0.13 to 21.02 ± 0.91 kPa, controllable swelling, and degradation kinetics, and cross-link density in the range of 1.0 × 10-5 to 6.5 × 10-5 mol/cm3 were obtained. Moreover, evaluating the effect of cross-linking sequence on the hydrogels' mechanical properties demonstrated that in comparison to the hydrogels fabricated by ionic cross-linking followed by photo-polymerization, hydrogels produced by photo-polymerization followed by ionic cross-linking retain a stiffer gel network with more compact structure. Cytocompatibility examination was performed via MTT assay against L929 fibroblasts, and all the hydrogel samples demonstrated high cell viability (>80%). The findings demonstrate the significant effect of the sequence of cross-linking as a novel tool to tune the OMA hydrogel's final properties which can serve as a useful platform for tissue engineering applications.
Collapse
Affiliation(s)
- A Jalali Kandeloos
- Department of Printing Science and Technology, Institute for Color Science and Technology, Tehran, Iran
| | - S Bastani
- Department of Printing Science and Technology, Institute for Color Science and Technology, Tehran, Iran
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, Tehran, Iran
| | - S Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
57
|
Sheng X, Li C, Wang Z, Xu Y, Sun Y, Zhang W, Liu H, Wang J. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio 2023; 20:100636. [PMID: 37441138 PMCID: PMC10333686 DOI: 10.1016/j.mtbio.2023.100636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 07/15/2023] Open
Abstract
Strontium (Sr) and strontium ranelate (SR) are commonly used therapeutic drugs for patients suffering from osteoporosis. Researches have showed that Sr can significantly improve the biological activity and physicochemical properties of materials in vitro and in vivo. Therefore, a large number of strontium containing biomaterials have been developed for repairing bone defects and promoting osseointegration. In this review, we provide a comprehensive overview of Sr-containing biomaterials along with the current state of their clinical use. For this purpose, the different types of biomaterials including calcium phosphate, bioactive glass, and polymers are discussed and provided future outlook on the fabrication of the next-generation multifunctional and smart biomaterials.
Collapse
Affiliation(s)
| | | | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yu Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
58
|
Khadem E, Kharaziha M, Salehi S. Colorimetric pH-responsive and hemostatic hydrogel-based bioadhesives containing functionalized silver nanoparticles. Mater Today Bio 2023; 20:100650. [PMID: 37206880 PMCID: PMC10189517 DOI: 10.1016/j.mtbio.2023.100650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023] Open
Abstract
Here we develop and characterize a dual-cross-linked pH-responsive hydrogel based on the carboxyethyl chitosan-oxidized sodium alginate (CAO) containing silver nanoparticles (Ag NPs) functionalized with tannic acid/red cabbage (ATR). This hybrid hydrogel is formed via covalent and non-covalent cross-linking. The adhesive strength measured in contact with cow skin and compression strength is measured more than 3 times higher than that of CAO. Importantly, the incorporation of 1 wt% ATR into CAO significantly enhances the compression strength of CAO from 35.1 ± 2.1 kPa to 97.5 ± 2.9 kPa. Moreover, the cyclic compression tests confirm significantly higher elastic behavior of CAO after the addition of ATR-functionalized NPs to CAO. The CAO/ATR hydrogel is pH-sensitive and indicated remarkable color changes in different buffer solutions. The CAO/ATR also shows improved hemostatic properties and reduced clotting time compared to the clotting time of blood in contact with CAO hydrogel. In addition, while CAO/ATR is effective in inhibiting the growth of both Gram-positive and Gram-negative bacteria, CAO is only effective in inhibiting the growth of Gram-positive bacteria. Finally, the CAO/ATR hydrogel is cytocompatible with L929 fibroblasts. In summary, the resulting CAO/ATR hydrogel shows promising results in designing and constructing smart wound bioadhesives with high cytocompatibility, antibacterial properties, blood coagulation ability, and fast self-healing properties.
Collapse
Affiliation(s)
- Elham Khadem
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
- Department of Biomaterials, University of Bayreuth, 95447, Bayreuth, Germany
- Corresponding author. Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, 95447, Bayreuth, Germany
- Corresponding author.
| |
Collapse
|
59
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
60
|
Chen A, Deng S, Lai J, Li J, Chen W, Varma SN, Zhang J, Lei C, Liu C, Huang L. Hydrogels for Oral Tissue Engineering: Challenges and Opportunities. Molecules 2023; 28:3946. [PMID: 37175356 PMCID: PMC10179962 DOI: 10.3390/molecules28093946] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Oral health is crucial to daily life, yet many people worldwide suffer from oral diseases. With the development of oral tissue engineering, there is a growing demand for dental biomaterials. Addressing oral diseases often requires a two-fold approach: fighting bacterial infections and promoting tissue growth. Hydrogels are promising tissue engineering biomaterials that show great potential for oral tissue regeneration and drug delivery. In this review, we present a classification of hydrogels commonly used in dental research, including natural and synthetic hydrogels. Furthermore, recent applications of these hydrogels in endodontic restorations, periodontal tissues, mandibular and oral soft tissue restorations, and related clinical studies are also discussed, including various antimicrobial and tissue growth promotion strategies used in the dental applications of hydrogels. While hydrogels have been increasingly studied in oral tissue engineering, there are still some challenges that need to be addressed for satisfactory clinical outcomes. This paper summarizes the current issues in the abovementioned application areas and discusses possible future developments.
Collapse
Affiliation(s)
- Anfu Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Shuhua Deng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Jindi Lai
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Jing Li
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Weijia Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Swastina Nath Varma
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Jingjing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Lijia Huang
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
61
|
Zhang S, Dong J, Pan R, Xu Z, Li M, Zang R. Structures, Properties, and Bioengineering Applications of Alginates and Hyaluronic Acid. Polymers (Basel) 2023; 15:2149. [PMID: 37177293 PMCID: PMC10181120 DOI: 10.3390/polym15092149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, polymeric materials have been used in a wide range of applications in a variety of fields. In particular, in the field of bioengineering, the use of natural biomaterials offers a possible new avenue for the development of products with better biocompatibility, biodegradability, and non-toxicity. This paper reviews the structural and physicochemical properties of alginate and hyaluronic acid, as well as the applications of the modified cross-linked derivatives in tissue engineering and drug delivery. This paper summarizes the application of alginate and hyaluronic acid in bone tissue engineering, wound dressings, and drug carriers. We provide some ideas on how to replace or combine alginate-based composites with hyaluronic-acid-based composites in tissue engineering and drug delivery to achieve better eco-economic value.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.D.)
| | | | | | | | | | | |
Collapse
|
62
|
Gruhn T, Monsalve CO, Müller C, Heid S, Boccaccini AR, Salehi S. Fabrication of Hydrogel-Based Composite Fibers and Computer Simulation of the Filler Dynamics in the Composite Flow. Bioengineering (Basel) 2023; 10:bioengineering10040448. [PMID: 37106635 PMCID: PMC10135958 DOI: 10.3390/bioengineering10040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Fibrous structures with anisotropic fillers as composites have found increasing interest in the field of biofabrication since they can mimic the extracellular matrix of anisotropic tissues such as skeletal muscle or nerve tissue. In the present work, the inclusion of anisotropic fillers in hydrogel-based filaments with an interpenetrating polymeric network (IPN) was evaluated and the dynamics of such fillers in the composite flow were analyzed using computational simulations. In the experimental part, microfabricated rods (200 and 400 μm length, 50 μm width) were used as anisotropic fillers in extrusion of composite filaments using two techniques of wet spinning and 3D printing. Hydrogels such as oxidized alginate (ADA) and methacrylated gelatin (GelMA) were used as matrices. In the computational simulation, a combination of computational fluid dynamics and coarse-grained molecular dynamics was used to study the dynamics of rod-like fillers in the flow field of a syringe. It showed that, during the extrusion process, microrods are far from being well aligned. Instead, many of them tumble on their way through the needle leading to a random orientation in the fiber which was confirmed experimentally.
Collapse
Affiliation(s)
- Thomas Gruhn
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| | - Camilo Ortiz Monsalve
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
- Invertec-eV, Gottlieb-Keim-Straße 60, 95448 Bayreuth, Germany
| | - Claudia Müller
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| | - Susanne Heid
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| |
Collapse
|
63
|
Karakaya E, Schöbel L, Zhong Y, Hazur J, Heid S, Forster L, Teßmar J, Boccaccini AR, Detsch R. How to Determine a Suitable Alginate for Biofabrication Approaches using an Extensive Alginate Library? Biomacromolecules 2023. [DOI: 10.1021/acs.biomac.2c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- Emine Karakaya
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Lisa Schöbel
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Yu Zhong
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Jonas Hazur
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Susanne Heid
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Leonard Forster
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Jörg Teßmar
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| |
Collapse
|
64
|
Tan J, Luo Y, Guo Y, Zhou Y, Liao X, Li D, Lai X, Liu Y. Development of alginate-based hydrogels: Crosslinking strategies and biomedical applications. Int J Biol Macromol 2023; 239:124275. [PMID: 37011751 DOI: 10.1016/j.ijbiomac.2023.124275] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Natural polysaccharide-based hydrogels have drawn much concern in the biomedical fields. Among them, alginate, a natural polyanionic polysaccharide, has become one of the research hotspots, because of its abundant source, biodegradability, biocompatibility, solubility, modification flexibility, and other characteristics or physiological functions. Recently, through adopting various physical or chemical crosslinking strategies, selecting suitable crosslinking or modification reagents, precisely controlling the reaction conditions, or introducing organic or inorganic functional materials, a variety of alginate-based hydrogels with excellent performance have been continuously developed, considerably expanding the breadth and depth of their applications. Here, various crosslinking strategies in the preparation of alginate-based hydrogels are comprehensively introduced. The representative application progress of alginate-based hydrogels in drug carrier, wound dressing and tissue engineering is also summarized. Meanwhile, the application prospects, challenges and development trends of alginate-based hydrogels are discussed. It is expected to provide guidance and reference for the further development of alginate-based hydrogels.
Collapse
|
65
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
66
|
Tomar S, Pandey R, Surya P, Verma R, Mathur R, Gangenahalli G, Singh S. Multifunctional, Adhesive, and PDA-Coated Bioactive Glass Reinforced Composite Hydrogel for Regenerative Wound Healing. ACS Biomater Sci Eng 2023; 9:1520-1540. [PMID: 36826450 DOI: 10.1021/acsbiomaterials.2c01223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Effective wound management imposes several challenges in clinical outcomes due to the complexity of the wound microenvironment, bacterial infections, impaired angiogenesis, aggravated inflammation, and enduring pain. In addition, adhesion on wet biological tissue is another extremely challenging task. Addressing all the issues is necessary for an effective wound healing process. Herein, we developed a unique multifunctional, adhesive composite hydrogel composed of gelatin, chitosan, polydopamine-coated bioactive glass (BG), and curcumin-capped silver nanoparticles (Cur-AgNPs) to target the multifaceted complexity of the wound. The PDA-coated BG serves multiple purposes: (1) adhesivity: catechol groups of PDA and Ca ion released from BG chelate the group present in the hydrogel network and surrounding tissues, (2) angiogenesis: promotes vascularization due to the release of Si from BG, and (3) BG also serves as the "reservoir" for the pain-relieving diclofenac sodium drug with a sustained-release behavior. Cur-AgNPs provide excellent bactericidal and anti-inflammatory properties to the composite hydrogel. In situ application of the composite hydrogel could serve the purpose of a "skin biomimetic" and work as a barrier along with bactericidal properties to inhibit the microbial growth. The multifunctional composite hydrogel (MCH) targeted multiple aspects of wound repair including pain alleviation, elimination of microbes (up to 99%), reduced inflammation, high adhesivity, and increased angiogenesis for effective skin regeneration. The MCH showed excellent wound healing potential as significant wound closure was observed at day 7 and also significantly upregulated the expression of crucial genes involved in the skin regeneration process along with increasing vascularization in the wound area.
Collapse
Affiliation(s)
- Sarika Tomar
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Rakesh Pandey
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Priyanka Surya
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Ranjan Verma
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Rashi Mathur
- Radiological Nuclear Imaging and Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Sweta Singh
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| |
Collapse
|
67
|
Zeng J, Sun P, Zhao Y, Fang X, Wu Z, Qi X. Bone Mesenchymal Stem Cell-derived Exosomes Involved Co-delivery and Synergism Effect with Icariin via Mussel-inspired Multifunctional Hydrogel for Cartilage Protection. Asian J Pharm Sci 2023. [DOI: 10.1016/j.ajps.2023.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
68
|
Barceló X, Eichholz KF, Gonçalves IF, Garcia O, Kelly DJ. Bioprinting of structurally organized meniscal tissue within anisotropic melt electrowritten scaffolds. Acta Biomater 2023; 158:216-227. [PMID: 36638941 DOI: 10.1016/j.actbio.2022.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
The meniscus is characterised by an anisotropic collagen fibre network which is integral to its biomechanical functionality. The engineering of structurally organized meniscal grafts that mimic the anisotropy of the native tissue remains a significant challenge. In this study, inkjet bioprinting was used to deposit a cell-laden bioink into additively manufactured scaffolds of differing architectures to engineer fibrocartilage grafts with user defined collagen architectures. Polymeric scaffolds consisting of guiding fibre networks with varying aspect ratios (1:1; 1:4; 1:16) were produced using either fused deposition modelling (FDM) or melt electrowriting (MEW), resulting in scaffolds with different internal architectures and fibre diameters. Scaffold architecture was found to influence the spatial organization of the collagen network laid down by the jetted cells, with higher aspect ratios (1:4 and 1:16) supporting the formation of structurally anisotropic tissues. The MEW scaffolds supported the development of a fibrocartilaginous tissue with compressive mechanical properties similar to that of native meniscus, while the anisotropic tensile properties of these constructs could be tuned by altering the fibre network aspect ratio. This MEW framework was then used to generate scaffolds with spatially distinct fibre patterns, which in turn supported the development of heterogenous tissues consisting of isotropic and anisotropic collagen networks. Such bioprinted tissues could potentially form the basis of new treatment options for damaged and diseased meniscal tissue. STATEMENT OF SIGNIFICANCE: This study describes a multiple tool biofabrication strategy which enables the engineering of spatially organized fibrocartilage tissues. The architecture of MEW scaffolds can be tailored to not only modulate the directionality of the collagen fibres laid down by cells, but also to tune the anisotropic tensile mechanical properties of the resulting constructs, thereby enabling the engineering of biomimetic meniscal-like tissues. Furthermore, the inherent flexibility of MEW enables the development of zonally defined and potentially patient-specific implants.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland
| | - Kian F Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland
| | - Inês F Gonçalves
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, CA, USA
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland; Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 R590, Ireland; Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, D02 F6N2, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland.
| |
Collapse
|
69
|
Guo F, Liu Y, Chen S, Lin Y, Yue Y. A Schiff base hydrogel dressing loading extracts from Periplaneta Americana for diabetic wound healing. Int J Biol Macromol 2023; 230:123256. [PMID: 36641022 DOI: 10.1016/j.ijbiomac.2023.123256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
As a common complication of diabetic patients, the chronic wound of diabetes has a high incidence, expensive treatment, and recurrence probability, which causes long-term negative impacts on patients' daily life. In this study, the hydrogel was formed by Schiff base reaction between oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CMCS), and the composite hydrogel dressing was prepared by adding the active polypeptides extract of Periplaneta Americana (PAE). By mass spectrometer determined, PAE mainly includes vitellogenins that can trigger an immune response. The composite hydrogel has good swelling properties, proper fluidity, and a regular 3D network structure. The hydrogel has good cytocompatibility and can promote cell proliferation by L929 fibroblast assay. Finally, it was used to evaluate the effect of diabetic wound repair. The results showed that it could effectively promote wound healing, promote tissue and vascular regeneration, inhibit inflammatory factors, and promote the expression of growth factors. The OHA/CMCS/PAE hydrogels would be promising candidates for chronic wound healing applications.
Collapse
Affiliation(s)
- Fengbiao Guo
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Shengqin Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yukai Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yan Yue
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
70
|
Kara Özenler A, Distler T, Tihminlioglu F, Boccaccini AR. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Biofabrication 2023; 15. [PMID: 36706451 DOI: 10.1088/1758-5090/acb6b7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
The development of biomaterial inks suitable for biofabrication and mimicking the physicochemical properties of the extracellular matrix is essential for the application of bioprinting technology in tissue engineering (TE). The use of animal-derived proteinous materials, such as jellyfish collagen, or fish scale (FS) gelatin (GEL), has become an important pillar in biomaterial ink design to increase the bioactivity of hydrogels. However, besides the extraction of proteinous structures, the use of structurally intact FS as an additive could increase biocompatibility and bioactivity of hydrogels due to its organic (collagen) and inorganic (hydroxyapatite) contents, while simultaneously enhancing mechanical strength in three-dimensional (3D) printing applications. To test this hypothesis, we present here a composite biomaterial ink composed of FS and alginate dialdehyde (ADA)-GEL for 3D bioprinting applications. We fabricate 3D cell-laden hydrogels using mouse pre-osteoblast MC3T3-E1 cells. We evaluate the physicochemical and mechanical properties of FS incorporated ADA-GEL biomaterial inks as well as the bioactivity and cytocompatibility of cell-laden hydrogels. Due to the distinctive collagen orientation of the FS, the compressive strength of the hydrogels significantly increased with increasing FS particle content. Addition of FS also provided a tool to tune hydrogel stiffness. FS particles were homogeneously incorporated into the hydrogels. Particle-matrix integration was confirmed via scanning electron microscopy. FS incorporation in the ADA-GEL matrix increased the osteogenic differentiation of MC3T3-E1 cells in comparison to pristine ADA-GEL, as FS incorporation led to increased ALP activity and osteocalcin secretion of MC3T3-E1 cells. Due to the significantly increased stiffness and supported osteoinductivity of the hydrogels, FS structure as a natural collagen and hydroxyapatite source contributed to the biomaterial ink properties for bone engineering applications. Our findings indicate that ADA-GEL/FS represents a new biomaterial ink formulation with great potential for 3D bioprinting, and FS is confirmed as a promising additive for bone TE applications.
Collapse
Affiliation(s)
- Aylin Kara Özenler
- Department of Bioengineering, İzmir Institute of Technology, İzmir 35433, Turkey.,Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Thomas Distler
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Funda Tihminlioglu
- Department of Chemical Engineering, İzmir Institute of Technology, İzmir 35433, Turkey
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
71
|
Kong B, Liu R, Cheng Y, Cai X, Liu J, Zhang D, Tan H, Zhao Y. Natural biopolymers derived hydrogels with injectable, self-healing, and tissue adhesive abilities for wound healing. NANO RESEARCH 2023; 16:2798-2807. [DOI: 10.1007/s12274-022-4936-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/06/2025]
|
72
|
Fattahi R, Soleimani M, Khani MM, Rasouli M, Hosseinzadeh S. A three-dimensional structure with osteoconductive function made of O-carboxymethyl chitosan using aspirin as a cross-linker. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2155156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Roya Fattahi
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rasouli
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
Derakhshankhah H, Eskandani M, Akbari Nakhjavani S, Tasoglu S, Vandghanooni S, Jaymand M. Electro-conductive silica nanoparticles-incorporated hydrogel based on alginate as a biomimetic scaffold for bone tissue engineering application. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2155159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sattar Akbari Nakhjavani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- Department of Mechanical Engineering, Koç University, Istanbul, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
74
|
Hu S, Liu L, Li H, Pahovnik D, Hadjichristidis N, Zhou X, Zhao J. Tuning the Properties of Ester-Based Degradable Polymers by Inserting Epoxides into Poly(ϵ-caprolactone). Chem Asian J 2023; 18:e202201097. [PMID: 36424185 DOI: 10.1002/asia.202201097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/08/2022] [Indexed: 11/26/2022]
Abstract
A series of ester-ether copolymers were obtained via the reaction between α,ω-dihydroxyl poly(ϵ-caprolactone) (PCL) and ethylene oxide (EO) or monosubstituted epoxides catalyzed by strong phosphazene bases. The two types of monomeric units were distributed in highly random manners due to the concurrence of epoxide ring-opening and fast transesterification reactions. The substituent of epoxide showed an interesting bidirectional effect on the enzymatic degradability of the copolymer. Compared with PCL, copolymers derived from EO exhibited enhanced hydrophilicity and decreased crystallinity which then resulted in higher degradability. For the copolymers derived from propylene oxide and 1,2-butylene oxide, the hydrophobic alkyl pendant groups also allowed lower crystallinity of the copolymers thus higher degradation rates. However, further enlarging the pendant groups by using styrene oxide or 2-ethylhexyl glycidyl ether caused a decrease in the degradation rate, which might be ascribed to the higher bulkiness hindering the contact of ester groups with lipase.
Collapse
Affiliation(s)
- Shuangyan Hu
- Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, P. R. China.,Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China.,College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Lijun Liu
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Heng Li
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
75
|
Garshasbi HR, Naghib SM. Smart Stimuli-responsive Alginate Nanogels for Drug Delivery Systems and Cancer Therapy: A Review. Curr Pharm Des 2023; 29:3546-3562. [PMID: 38115614 DOI: 10.2174/0113816128283806231211073031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Nanogels are three-dimensional networks at the nanoscale level that can be fabricated through physical or chemical processes using polymers. These nanoparticles' biocompatibility, notable stability, efficacious drug-loading capacity, and ligand-binding proficiency make them highly suitable for employment as drug-delivery vehicles. In addition, they exhibit the ability to react to both endogenous and exogenous stimuli, which may include factors such as temperature, illumination, pH levels, and a diverse range of other factors. This facilitates the consistent administration of the drug to the intended site. Alginate biopolymers have been utilized to encapsulate anticancer drugs due to their biocompatible nature, hydrophilic properties, and cost-effectiveness. The efficacy of alginate nano gel-based systems in cancer treatment has been demonstrated through multiple studies that endorse their progress toward clinical implementation. This paper comprehensively reviews alginate and its associated systems in drug delivery systems.
Collapse
Affiliation(s)
- Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| |
Collapse
|
76
|
Volpatti LR, Bochenek MA, Facklam AA, Burns DM, MacIsaac C, Morgart A, Walters B, Langer R, Anderson DG. Partially Oxidized Alginate as a Biodegradable Carrier for Glucose-Responsive Insulin Delivery and Islet Cell Replacement Therapy. Adv Healthc Mater 2023; 12:e2201822. [PMID: 36325648 PMCID: PMC9840661 DOI: 10.1002/adhm.202201822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Self-regulated insulin delivery that mimics native pancreas function has been a long-term goal for diabetes therapies. Two approaches towards this goal are glucose-responsive insulin delivery and islet cell transplantation therapy. Here, biodegradable, partially oxidized alginate carriers for glucose-responsive nanoparticles or islet cells are developed. Material composition and formulation are tuned in each of these contexts to enable glycemic control in diabetic mice. For injectable, glucose-responsive insulin delivery, 0.5 mm 2.5% oxidized alginate microgels facilitate repeat dosing and consistently provide 10 days of glycemic control. For islet cell transplantation, 1.5 mm capsules comprised of a blend of unoxidized and 2.5% oxidized alginate maintain cell viability and glycemic control over a period of more than 2 months while reducing the volume of nondegradable material implanted. These data show the potential of these biodegradable carriers for controlled drug and cell delivery for the treatment of diabetes with limited material accumulation in the event of multiple doses.
Collapse
Affiliation(s)
- Lisa R. Volpatti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew A. Bochenek
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Amanda A. Facklam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Delaney M. Burns
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Corina MacIsaac
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander Morgart
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Benjamin Walters
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
77
|
An injectable and self-healing cellulose nanofiber-reinforced alginate hydrogel for bone repair. Carbohydr Polym 2023; 300:120243. [PMID: 36372478 DOI: 10.1016/j.carbpol.2022.120243] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Biomedical materials are in high demand for transplantation in cases of diseased or damaged bone tissue. Hydrogels are potential candidates for bone defect repair; however, traditional hydrogels lack the necessary strength and multiple functions. Herein, we effectively synthesized a cellulose nanofiber (CNF)-reinforced oxidized alginate (OSA)/gelatin (Gel) semi-interpenetrating network hydrogel through a facile one-step approach without a cross-linker by using the synergistic effects of dynamic imine bonds and hydrogen bonds. The OSA/Gel/CNF sample showed a notable compressive modulus (up to 361.3 KPa). The gelation time (~150 s) ensured excellent injectability. Self-healing exhibited a high efficiency of up to 92 %, which would enable minimally invasive, dynamic adjustments and personalized therapies. Furthermore, the OSA/Gel/CNF hydrogel showed excellent biomineralization (Ca/P ratio ~ 1.69) and enhanced preosteoblast cell (MC3T3-E1) viability (over 96 %), proliferation, and osteogenic differentiation. Thus, this multifunctional hydrogel has promising potential for using in the bone tissue repairs.
Collapse
|
78
|
Multifunctionalized alginate/polydopamine cryogel for hemostasis, antibacteria and promotion of wound healing. Int J Biol Macromol 2023; 224:1373-1381. [PMID: 36550789 DOI: 10.1016/j.ijbiomac.2022.10.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
Hemostasis and anti-infection are crucial for emergency treatment of severe trauma. Developing functional biomaterial with efficient hemostasis, antibacterial activity and wound healing is of great social significance and clinical value to fast stop bleeding and save lives, but it is still challenged. Here we designed a series of multifunctionalized SA/PDA cryogels by using two-step cross-linking of dopamine and sodium alginate. The resulting interpenetrating network structure had good swelling ratio, excellent mechanical and shape memory properties. Compared with cotton gauze and gelatin sponge, the cryogels exhibited excellent activation of coagulation cascade, more blood cells and platelet adhesion. Due to the action of polydopamine, the cryogel also showed good antioxidant activity and photothermal antibacterial ability assisted by near-infrared radiation, as well as better wound healing performance than gelatin sponge and Tegaderm™ film. Moreover, in the tests of mouse tail docking model, rat femoral artery hemostasis model and non-compressible rabbit liver defect model, the treatment by SA/PDA cryogels presented less blood loss and shorter hemostasis time than cotton gauze and gelatin sponge. Therefore, SA/PDA cryogels with simple preparation process, low cost, and good biocompatibility would be applied in the variety of great clinical applications in bleeding control, anti-infection and wound healing, etc.
Collapse
|
79
|
Ma J, Wang P, Tang C, Liao H, Zhang W, Yang R, Shi T, Tan X, Chi B. Injectable shear-thinning sodium alginate hydrogels with sustained submucosal lift for endoscopic submucosal dissection. Int J Biol Macromol 2022; 223:939-949. [PMID: 36395937 DOI: 10.1016/j.ijbiomac.2022.11.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Endoscopic submucosal dissection (ESD) is one of the most effective approaches for the minimally invasive treatment of early gastrointestinal cancers. Submucosal injections help safely and successfully remove lesions during ESD by elevating the mucosa and separating the submucosal muscle layer. Herein, we report dynamic injectable sodium alginate hydrogels (ISAHs) with shear-thinning for ESD surgery, which were easily fabricated by the sulfhydryl group of GSH-modified sodium alginate (SA-GSH) reacting with the aldehyde group of oxidized sodium alginate (OSA) at room temperature. ISAHs have advantageous self-healing abilities and antioxidant activity. Additionally, according to an in vitro test on porcine colorectal submucosal lifting, the submucosal elevation heights created by ISAHs were 13 % -18 % greater than those created by commercial ESD solutions (0.4 w/v% sodium hyaluronate). These properties and biocompatibility were confirmed in vitro and in vivo experiments. ISAHs will hopefully become a novel submucosal injectable hydrogel to assist ESD surgery.
Collapse
Affiliation(s)
- Juping Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Chuanfei Tang
- Jiangsu Yangtze River Medical Technology Corp, Taizhou 225300, China
| | - Huiyun Liao
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Tianqi Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
80
|
Hu Y, Shin Y, Park S, Jeong JP, Kim Y, Jung S. Multifunctional Oxidized Succinoglycan/Poly(N-isopropylacrylamide-co-acrylamide) Hydrogels for Drug Delivery. Polymers (Basel) 2022; 15:polym15010122. [PMID: 36616471 PMCID: PMC9824477 DOI: 10.3390/polym15010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
We prepared the self-healing and temperature/pH-responsive hydrogels using oxidized succinoglycan (OSG) and a poly (N-isopropyl acrylamide-co-acrylamide) [P(NIPAM-AM)] copolymer. OSG was synthesized by periodate oxidation of succinoglycan (SG) isolated directly from soil microorganisms, Sinorhizobium meliloti Rm1021. The OSG/P(NIPAM-AM) hydrogels were obtained by introducing OSG into P(NIPAM-AM) networks. The chemical structure and physical properties of these hydrogels were characterized by ATR-FTIR, XRD, TGA, and FE-SEM. The OSG/P(NIPAM-AM) hydrogels showed improved elasticity, increased thermal stability, new self-healing ability, and 4-fold enhanced tensile strength compared with the P(NIPAM-AM) hydrogels. Furthermore, the 5-FU-loaded OSG/P(NIPAM-AM) hydrogels exhibited effective temperature/pH-responsive drug release. Cytotoxicity experiments showed that the OSG/P(NIPAM-AM) hydrogels were non-toxic, suggesting that OSG/P(NIPAM-AM) hydrogels could have the potential for biomedical applications, such as stimuli-responsive drug delivery systems, wound healing, smart scaffolds, and tissue engineering.
Collapse
Affiliation(s)
- Yiluo Hu
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Younghyun Shin
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Sohyun Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-pil Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Yohan Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk Univesity, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-3520
| |
Collapse
|
81
|
Lertwimol T, Sonthithai P, Hankamolsiri W, Kaewkong P, Uppanan P. Development of chondrocyte-laden alginate hydrogels with modulated microstructure and properties for cartilage regeneration. Biotechnol Prog 2022; 39:e3322. [PMID: 36564904 DOI: 10.1002/btpr.3322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Alginate hydrogel is an attractive biomaterial for cell microencapsulation. The microarchitecture of hydrogels can regulate cellular functions. This study aims to investigate the applicability of sodium citrate buffer (SCB) as a culture medium supplement for modulating the microstructure of alginate microbeads to provide a favorable microenvironment for chondrogenic induction. The chondrocyte-laden microbeads, with and without TGF-β3 incorporation, were produced through an encapsulator. The obtained small-sized microbeads (~300 μm) were exposed to a treatment medium containing SCB, composed of varied concentrations of sodium citrate (1.10-1.57 mM), sodium chloride (3.00-4.29 mM), and ethylenediaminetetraacetic acid (0.60-0.86 mM) to partially degrade their crosslinked structure for 3 days, followed by culture in a normal medium until day 21. Scanning electron microscope micrographs demonstrated a loose hydrogel network with an enhanced pore size in the SCB-treated microbeads. Increasing the concentration of SCB in the treatment medium reduced the calcium content of the microbeads via a Na+ /Ca2+ exchange process and improved the water absorption of the microbeads, resulting in a higher swelling ratio. All the tested SCB concentrations were non-cytotoxic. Increases in aggrecan and type II collagen gene expression and their corresponding extracellular matrix accumulation, glycosaminoglycans, and type II collagen were vividly detected in the TGF-β3-containing microbeads with increasing SCB concentrations in the treatment medium. Our findings highlighted that the combination of SCB treatment and TGF-β3 incorporation in the chondrocyte-laden microbeads is a promising strategy for enhancing cartilage regeneration, which may contribute to a versatile application in cell delivery and tissue engineering.
Collapse
Affiliation(s)
- Tareerat Lertwimol
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Pacharapan Sonthithai
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Weerawan Hankamolsiri
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Pakkanun Kaewkong
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Paweena Uppanan
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| |
Collapse
|
82
|
Lee K, Noh Y, Bae Y, Kang S, Cha C. Tunable Physicomechanical and Drug Release Properties of In Situ Forming Thermoresponsive Elastin-like Polypeptide Hydrogels. Biomacromolecules 2022; 23:5193-5201. [PMID: 36378752 DOI: 10.1021/acs.biomac.2c01001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the continued advancement in the design and engineering of hydrogels for biomedical applications, there is a growing interest in imparting stimuli-responsiveness to the hydrogels in order to control their physicomechanical properties in a more programmable manner. In this study, an in situ forming hydrogel is developed by cross-linking alginate with an elastin-like polypeptide (ELP). Lysine-rich ELP synthesized by recombinant DNA technology is reacted with alginate presenting an aldehyde via Schiff base formation, resulting in facile hydrogel formation under physiological conditions. The physicomechanical properties of alginate-ELP hydrogels can be controlled in a wide range by the concentrations of alginate and ELP. Owing to the thermoresponsive properties of the ELP, the alginate-ELP hydrogels undergo swelling/deswelling near the physiological temperature. Taking advantage of these highly attractive properties of alginate-ELP, drug release kinetics were measured to evaluate their potential as a thermoresponsive drug delivery system. Furthermore, an ex vivo model was used to demonstrate the minimally invasive tissue injectability.
Collapse
Affiliation(s)
- Kangseok Lee
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yeongjin Noh
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yoonji Bae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Chaenyung Cha
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| |
Collapse
|
83
|
A Bioengineered Quercetin-Loaded 3D Bio-Polymeric Graft for Tissue Regeneration and Repair. Biomedicines 2022; 10:biomedicines10123157. [PMID: 36551913 PMCID: PMC9775630 DOI: 10.3390/biomedicines10123157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Phytochemicals extracted from plant sources have potential remedial effects to cure a broad range of acute to severe illnesses and ailments. Quercetin is a flavonoid isolated from different dietary sources such as vegetables and fruits, exhibiting strong anti-inflammatory, anti-oxidative and non-toxic effects on the biological system. However, the direct uptake or administration of quercetin results in loss of functionality, poor activity, and reduced shelf-life of the bioactive component. In this regard, to improve the uptake, potential, and efficiency of natural components with prolonged storage in the host's body after administration, numerous polymer drug delivery systems have been created. In the current study, three-dimensional (3D) porous (porosity: 92%; pore size: 81 µm) bio-polymeric foaming gelatin-alginate (GA) beads were fabricated for the entrapment of quercetin as therapeutic drug molecules-gelatin-alginate-quercetin (GAQ). The GAQ beads showed a significant uptake of quercetin molecules resulting in a reduction of reduced porosity up to 64% and pore size 63 µm with a controlled release profile in the PBS medium, showing ~80% release within 24 h. Subsequently, the GAQ beads showed remarkable antioxidant effects, and 95% anti-inflammatory activities along with remarkable in vitro cell culture growth and the observed proliferation of seeded fibroblast cells. Thus, we can conclude that the consistent release of quercetin showed non-toxic effects on normal cell lines and the bioactive surface of the GAQ beads enhances cell adhesion, proliferation, and differentiation more effectively than control GA polymeric beads and tissue culture plates (TCP). In summary, these findings show that these GAQ beads act as a biocompatible 3D construct with enormous potential in medicinal administration and tissue regeneration for accelerated healing.
Collapse
|
84
|
Guo Y, Wang X, Li B, Shen Y, Shen L, Wu J, Yang J. Oxidized sodium alginate crosslinked silk fibroin composite scaffold for skin tissue engineering. J Biomed Mater Res B Appl Biomater 2022; 110:2667-2675. [PMID: 35757971 DOI: 10.1002/jbm.b.35119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
Engineering skin substitutes represent a prospective source of advanced therapy in repairing severe traumatic wounds. Sodium alginate (SA) and silk fibroin (SF) are natural biomaterials, which are widely used in tissue engineering and other fields because of their low price, high safety, and good biocompatibility. However, SA itself degrades slowly, its degradation mode is difficult to control, and the degradation products are difficult to remove from the body because of its high molecular weight. Therefore, the composite scaffolds were prepared by freeze-drying composite technology by using the Schiff base reaction between biocompatible SF and permeable oxidized sodium alginate (OSA). Sodium periodate was used as oxidant to modify SA. The results showed that higher oxidation degree of OSA could be obtained by increasing the proportion of oxidant, and the relative molecular weight of the oxidized products could also be reduced. The composite scaffolds were prepared by using sodium tetraborate as a crosslinking accelerator of the Schiff base reaction between OSA and SF. FT-IR confirmed that the Schiff base group appeared in the material. In vitro biodegradation experiments showed that the biodegradation of the composite scaffolds was controllable, and the cytocompatibility experiment showed that the composite scaffolds had good biocompatibility.
Collapse
Affiliation(s)
- Yajin Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, People's Republic of China.,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, People's Republic of China.,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People's Republic of China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, People's Republic of China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, People's Republic of China.,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Ying Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, People's Republic of China.,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Linyi Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China.,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Jiaxin Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, People's Republic of China.,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of Technology, Wuhan, People's Republic of China
| |
Collapse
|
85
|
Zhang H, Guo J, Wang Y, Shang L, Chai R, Zhao Y. Natural Polymer‐Derived Bioscaffolds for Peripheral Nerve Regeneration. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202203829] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 01/06/2025]
Abstract
AbstractIn recent decades, artificial nerve scaffolds have become a promising substitute for peripheral nerve repair. Considerable efforts have been devoted to improving the therapeutic effectiveness of artificial scaffolds. Among numerous biomaterials for tissue engineering scaffolds fabrication, natural polymers are considered as tremendous candidates because of their excellent biocompatibility, low toxicity, high cell affinity, wide source, and environmental protection. With the development of engineering technology, a variety of natural polymer‐derived nerve scaffolds have emerged, which are endowed with biological properties and appropriate physicochemical performances to gradually adapt to the needs of nerve regeneration. Significantly, the intergradation of exogenous biomolecules onto the artificial scaffolds is able to avoid low stability, rapid degradation, and redistribution of direct therapeutic drugs in vivo, thereby enhancing nerve regeneration and functional reconstruction. Here, the development of nerve scaffolds derived from natural polymers, and their applications in continuous administration and peripheral nerve regeneration are comprehensively and carefully reviewed, providing an advanced perspective of the field.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Life Science and Technology Southeast University Nanjing 210096 China
| | - Jiahui Guo
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Life Science and Technology Southeast University Nanjing 210096 China
| | - Yu Wang
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Life Science and Technology Southeast University Nanjing 210096 China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology) Institutes of Biomedical Sciences Fudan University Shanghai 200433 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics Department of Otolaryngology Head and Neck Surgery Zhongda Hospital School of Life Sciences Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical Research Southeast University 87# Dingjiaqiao Nanjing 210096 China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Life Science and Technology Southeast University Nanjing 210096 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
| |
Collapse
|
86
|
Shen KH, Yeh YY, Chiu TH, Wang R, Yeh YC. Dual Dynamic Covalently Crosslinked Alginate Hydrogels with Tunable Properties and Multiple Stimuli-Responsiveness. ACS Biomater Sci Eng 2022; 8:4249-4261. [PMID: 36173708 DOI: 10.1021/acsbiomaterials.2c00571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alginate is a biopolymer that can be crosslinked with calcium ions to fabricate cytocompatible hydrogels. However, using calcium ions to crosslink alginate provides limited properties and functions to alginate hydrogels, restricting their biomedical applications. Here, phenylboronic acid-functionalized polyethyleneimine (PBA-PEI) was developed to introduce two orthogonal dynamic covalent crosslinks in the alginate hydrogels, where PBA-PEI was used to crosslink alginate dialdehyde (ADA) through imine bonds and boronate ester bonds. The grafting degree of PBA in the PEI structure was applied to fine-tune the properties of PBA-PEI/ADA hydrogels, including the rheological property, mechanical strength, swelling behavior, and antibacterial activity. In particular, the highly sensitive boronate ester bonds in the network enabled PBA-PEI/ADA hydrogels to be responsive to several stimuli, such as glucose, fructose, and hydrogen peroxide. Taken together, PBA-PEI/ADA hydrogels with tunable properties and multiple stimuli-responsiveness have been demonstrated as smart biomaterials for advanced biomedical applications.
Collapse
Affiliation(s)
- Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Yu Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Hsiang Chiu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei 10055, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
87
|
Pan RL, Martyniak K, Karimzadeh M, Gelikman DG, DeVries J, Sutter K, Coathup M, Razavi M, Sawh-Martinez R, Kean TJ. Systematic review on the application of 3D-bioprinting technology in orthoregeneration: current achievements and open challenges. J Exp Orthop 2022; 9:95. [PMID: 36121526 PMCID: PMC9485345 DOI: 10.1186/s40634-022-00518-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Joint degeneration and large or complex bone defects are a significant source of morbidity and diminished quality of life worldwide. There is an unmet need for a functional implant with near-native biomechanical properties. The potential for their generation using 3D bioprinting (3DBP)-based tissue engineering methods was assessed. We systematically reviewed the current state of 3DBP in orthoregeneration. METHODS This review was performed using PubMed and Web of Science. Primary research articles reporting 3DBP of cartilage, bone, vasculature, and their osteochondral and vascular bone composites were considered. Full text English articles were analyzed. RESULTS Over 1300 studies were retrieved, after removing duplicates, 1046 studies remained. After inclusion and exclusion criteria were applied, 114 articles were analyzed fully. Bioink material types and combinations were tallied. Cell types and testing methods were also analyzed. Nearly all papers determined the effect of 3DBP on cell survival. Bioink material physical characterization using gelation and rheology, and construct biomechanics were performed. In vitro testing methods assessed biochemistry, markers of extracellular matrix production and/or cell differentiation into respective lineages. In vivo proof-of-concept studies included full-thickness bone and joint defects as well as subcutaneous implantation in rodents followed by histological and µCT analyses to demonstrate implant growth and integration into surrounding native tissues. CONCLUSIONS Despite its relative infancy, 3DBP is making an impact in joint and bone engineering. Several groups have demonstrated preclinical efficacy of mechanically robust constructs which integrate into articular joint defects in small animals. However, notable obstacles remain. Notably, researchers encountered pitfalls in scaling up constructs and establishing implant function and viability in long term animal models. Further, to translate from the laboratory to the clinic, standardized quality control metrics such as construct stiffness and graft integration metrics should be established with investigator consensus. While there is much work to be done, 3DBP implants have great potential to treat degenerative joint diseases and provide benefit to patients globally.
Collapse
Affiliation(s)
- Rachel L Pan
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kari Martyniak
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Makan Karimzadeh
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - David G Gelikman
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jonathan DeVries
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kelly Sutter
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Mehdi Razavi
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Rajendra Sawh-Martinez
- College of Medicine, University of Central Florida, Orlando, FL, USA.,Plastic and Reconstructive Surgery, AdventHealth, Orlando, FL, USA
| | - Thomas J Kean
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| |
Collapse
|
88
|
Tang Y, Wang Z, Xiang L, Zhao Z, Cui W. Functional biomaterials for tendon/ligament repair and regeneration. Regen Biomater 2022; 9:rbac062. [PMID: 36176715 PMCID: PMC9514853 DOI: 10.1093/rb/rbac062] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
With an increase in life expectancy and the popularity of high-intensity exercise, the frequency of tendon and ligament injuries has also increased. Owing to the specificity of its tissue, the rapid restoration of injured tendons and ligaments is challenging for treatment. This review summarizes the latest progress in cells, biomaterials, active molecules and construction technology in treating tendon/ligament injuries. The characteristics of supports made of different materials and the development and application of different manufacturing methods are discussed. The development of natural polymers, synthetic polymers and composite materials has boosted the use of scaffolds. In addition, the development of electrospinning and hydrogel technology has diversified the production and treatment of materials. First, this article briefly introduces the structure, function and biological characteristics of tendons/ligaments. Then, it summarizes the advantages and disadvantages of different materials, such as natural polymer scaffolds, synthetic polymer scaffolds, composite scaffolds and extracellular matrix (ECM)-derived biological scaffolds, in the application of tendon/ligament regeneration. We then discuss the latest applications of electrospun fiber scaffolds and hydrogels in regeneration engineering. Finally, we discuss the current problems and future directions in the development of biomaterials for restoring damaged tendons and ligaments.
Collapse
Affiliation(s)
- Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| |
Collapse
|
89
|
Li Y, He L, Chen J, Wang J, Zhao S, Liu X, Guo X, Wu Y, Shen X, Li C. 3d oxidized alginate-porcine liver acellular collagen droplets for tumor microenvironment mimicking. Int J Biol Macromol 2022; 215:665-674. [PMID: 35777510 DOI: 10.1016/j.ijbiomac.2022.06.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
The traditional 2d culture has been proved inferior to reproduce the subtle interaction between cell-to-cell and cell-to-extracellular matrix (ECM) in tumor microenvironment (TME) and collagen in ECM contributes to various malignancies of tumors. Hence, the 3d model contained with collagen may overcome the shortcomings of 2d culture. In this study, the in vitro TME mimicking matrix was prepared by coupling porcine liver-derived collagen (COL) and the dialdehyde group of partially oxidized alginate (OA), namely OA-COL, and the 3d OA-COL droplets were polymerized by divalent calcium ions. In the 3d OA-COL droplets, cancer cells displayed vigorous proliferation, and the cells grew in clusters and formed a unique spindle like clone. Quantitative analysis proved that various gene transcription and protein expression were up-regulated for the cells in the 3d OA-COL droplets, including F-actin reassembling, focal adhesion, pseudopodia formation, and the proteins involved in epithelial-to-mesenchymal transition (EMT). The 3d OA-COL droplets induced the cells with strengthened polarity, invasiveness, higher IC50, and manifested stronger tumorigenicity in vivo. The fabricated 3d OA-COL droplets reproduced a variety of TME parameters, constructed an in vitro model similar to the TME in vivo, and it may facilitate many investigations in cell biology and tumor biology.
Collapse
Affiliation(s)
- Yanan Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Lingyun He
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Jiamin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Jinfeng Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Shujing Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Xingxing Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Xiaoling Guo
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Ying Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Xian Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China.
| | - Chao Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China.
| |
Collapse
|
90
|
Panebianco CJ, Rao S, Hom WW, Meyers JH, Lim TY, Laudier DM, Hecht AC, Weir MD, Weiser JR, Iatridis JC. Genipin-crosslinked fibrin seeded with oxidized alginate microbeads as a novel composite biomaterial strategy for intervertebral disc cell therapy. Biomaterials 2022; 287:121641. [PMID: 35759923 PMCID: PMC9758274 DOI: 10.1016/j.biomaterials.2022.121641] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Discectomy procedures alleviate disability caused by intervertebral disc (IVD) herniation, but do not repair herniation-induced annulus fibrosus (AF) defects. Cell therapy shows promise for IVD repair, yet cell delivery biomaterials capable of sealing AF defects and restoring biomechanical function have poor biological performance. To balance the biomechanical and biological demands of IVD cell delivery biomaterials, we engineered an injectable composite biomaterial using cell-laden, degradable oxidized alginate (OxAlg) microbeads (MBs) to deliver AF cells within high-modulus genipin-crosslinked fibrin (FibGen) hydrogels (FibGen + MB composites). Conceptually, the high-modulus FibGen would immediately stabilize injured IVDs, while OxAlg MBs would protect and release cells required for long-term healing. We first showed that AF cells microencapsulated in OxAlg MBs maintained high viability and, upon release, displayed phenotypic AF cell morphology and gene expression. Next, we created cell-laden FibGen + MB composites and demonstrated that OxAlg MBs functionalized with RGD peptides (MB-RGD) minimized AF cell apoptosis and retained phenotypic gene expression. Further, we showed that cell-laden FibGen + MB composites are biomechanically stable and promote extracellular matrix (ECM) synthesis in long-term in vitro culture. Lastly, we evaluated cell-laden FibGen + MB-RGD composites in a long-term bovine caudal IVD organ culture bioreactor and found that composites had low herniation risk, provided superior biomechanical and biological repair to discectomy controls, and retained anabolic cells within the IVD injury space. This novel injectable composite hydrogel strategy shows promise as an IVD cell delivery sealant with potentially broad applications for its capacity to balance biomechanical and biological performance.
Collapse
Affiliation(s)
- Christopher J Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjna Rao
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - Warren W Hom
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James H Meyers
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiffany Y Lim
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Damien M Laudier
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew C Hecht
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jennifer R Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
91
|
Stagnoli S, Garro C, Ertekin O, Heid S, Seyferth S, Soria G, Mariano Correa N, Leal-Egaña A, Boccaccini AR. Topical Systems for the Controlled Release of Antineoplastic Drugs: Oxidized Alginate-Gelatin Hydrogel/Unilamellar Vesicles. J Colloid Interface Sci 2022; 629:1066-1080. [DOI: 10.1016/j.jcis.2022.08.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022]
|
92
|
Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, Kennedy JF, Fayaz U, Khan SA. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int J Biol Macromol 2022; 213:987-1006. [PMID: 35705126 DOI: 10.1016/j.ijbiomac.2022.06.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022]
Abstract
Hydrogels are ideal for various food applications because of their softness, elasticity, absorbent nature, flexibility, and hygroscopic nature. Polysaccharide hydrogels are particularly suitable because of the hydrophilic nature, their food compatibility, and their non-immunogenic character. Such hydrogels offer a wide range of successful applications such as food preservation, pharmaceuticals, agriculture, and food packaging. Additionally, polysaccharide hydrogels have proven to play a significant role in the formulation of food flavor carrier systems, thus diversifying the horizons of newer developments in food processing sector. Polysaccharide hydrogels are comprised of natural polymers such as alginate, chitosan, starch, pectin and hyaluronic acid when crosslinked physically or chemically. Hydrogels with interchangeable, antimicrobial and barrier properties are referred to as smart hydrogels. This review brings together the recent and relevant polysaccharide research in these polysaccharide hydrogel applications areas and seeks to point the way forward for future research and interventions. Applications in carrying out the process of flavor carrier system directly through their incorporation in food matrices, broadening the domain for food application innovations. The classification and important features of polysaccharide-based hydrogels in food processing are the topics of the current review study.
Collapse
Affiliation(s)
- Arshied Manzoor
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U., Aligarh, 202002, UP, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India.
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Rafeeya Shams
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology Longowal, 148106, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire WR15 8SG, United Kingdom
| | - Ufaq Fayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir 190025, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India
| |
Collapse
|
93
|
Alginate-Based Composites for Corneal Regeneration: The Optimization of a Biomaterial to Overcome Its Limits. Gels 2022; 8:gels8070431. [PMID: 35877516 PMCID: PMC9316786 DOI: 10.3390/gels8070431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
For many years, corneal transplantation has been the first-choice treatment for irreversible damage affecting the anterior part of the eye. However, the low number of cornea donors and cases of graft rejection highlighted the need to replace donor corneas with new biomaterials. Tissue engineering plays a fundamental role in achieving this goal through challenging research into a construct that must reflect all the properties of the cornea that are essential to ensure correct vision. In this review, the anatomy and physiology of the cornea are described to point out the main roles of the corneal layers to be compensated and all the requirements expected from the material to be manufactured. Then, a deep investigation of alginate as a suitable alternative to donor tissue was conducted. Thanks to its adaptability, transparency and low immunogenicity, alginate has emerged as a promising candidate for the realization of bioengineered materials for corneal regeneration. Chemical modifications and the blending of alginate with other functional compounds allow the control of its mechanical, degradation and cell-proliferation features, enabling it to go beyond its limits, improving its functionality in the field of corneal tissue engineering and regenerative medicine.
Collapse
|
94
|
Abdelbasset WK, Jasim SA, Bokov DO, Shalaby MN, Opulencia MJC, Thangavelu L, Alkadir OKA, Ansari MJ, Kzar HH, Al-Gazally ME. Polysaccharides, as biological macromolecule-based platforms in skeletal muscle tissue engineering: a systematic review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Research Center of Nutrition, Biotechnology and Food Safety, Laboratory of Food Chemistry, Moscow, Russia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Sheikh Zayed City, Egypt
| | | | - Lakshmi Thangavelu
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | | | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hamzah H. Kzar
- College of Veterinary Medicine, Al Qasim Green University, Iraq
| | | |
Collapse
|
95
|
Tuning the Degradation Rate of Alginate-Based Bioinks for Bioprinting Functional Cartilage Tissue. Biomedicines 2022; 10:biomedicines10071621. [PMID: 35884926 PMCID: PMC9312793 DOI: 10.3390/biomedicines10071621] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 01/05/2023] Open
Abstract
Negative foreign body responses following the in vivo implantation of bioprinted implants motivate the development of novel bioinks which can rapidly degrade with the formation of functional tissue, whilst still maintaining desired shapes post-printing. Here, we investigated the oxidation of alginate as a means to modify the degradation rate of alginate-based bioinks for cartilage tissue engineering applications. Raw and partially oxidized alginate (OA) were combined at different ratios (Alginate:OA at 100:0; 75:25; 50:50; 25:75; 0:100) to provide finer control over the rate of bioink degradation. These alginate blends were then combined with a temporary viscosity modifier (gelatin) to produce a range of degradable bioinks with rheological properties suitable for extrusion bioprinting. The rate of degradation was found to be highly dependent on the OA content of the bioink. Despite this high mass loss, the initially printed geometry was maintained throughout a 4 week in vitro culture period for all bioink blends except the 0:100 group. All bioink blends also supported robust chondrogenic differentiation of mesenchymal stem/stromal cells (MSCs), resulting in the development of a hyaline-like tissue that was rich in type II collagen and negative for calcific deposits. Such tuneable inks offer numerous benefits to the field of 3D bioprinting, from providing space in a controllable manner for new extracellular matrix deposition, to alleviating concerns associated with a foreign body response to printed material inks in vivo.
Collapse
|
96
|
Varaprasad K, Karthikeyan C, Yallapu MM, Sadiku R. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Int J Biol Macromol 2022; 212:561-578. [DOI: 10.1016/j.ijbiomac.2022.05.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
97
|
Kitsuka T, Hama R, Ulziibayar A, Matsuzaki Y, Kelly J, Shinoka T. Clinical Application for Tissue Engineering Focused on Materials. Biomedicines 2022; 10:1439. [PMID: 35740460 PMCID: PMC9220152 DOI: 10.3390/biomedicines10061439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular-related medical conditions remain a significant cause of death worldwide despite the advent of tissue engineering research more than half a century ago. Although autologous tissue is still the preferred treatment, donor tissue is limited, and there remains a need for tissue-engineered vascular grafts (TEVGs). The production of extensive vascular tissue (>1 cm3) in vitro meets the clinical needs of tissue grafts and biological research applications. The use of TEVGs in human patients remains limited due to issues related to thrombogenesis and stenosis. In addition to the advancement of simple manufacturing methods, the shift of attention to the combination of synthetic polymers and bio-derived materials and cell sources has enabled synergistic combinations of vascular tissue development. This review details the selection of biomaterials, cell sources and relevant clinical trials related to large diameter vascular grafts. Finally, we will discuss the remaining challenges in the tissue engineering field resulting from complex requirements by covering both basic and clinical research from the perspective of material design.
Collapse
Affiliation(s)
- Takahiro Kitsuka
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - Rikako Hama
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei 184-8588, Japan
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - John Kelly
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
- Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
98
|
Mohabatpour F, Yazdanpanah Z, Papagerakis S, Chen X, Papagerakis P. Self-Crosslinkable Oxidized Alginate-Carboxymethyl Chitosan Hydrogels as an Injectable Cell Carrier for In Vitro Dental Enamel Regeneration. J Funct Biomater 2022; 13:jfb13020071. [PMID: 35735926 PMCID: PMC9225469 DOI: 10.3390/jfb13020071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Injectable hydrogels, as carriers, offer great potential to incorporate cells or growth factors for dental tissue regeneration. Notably, the development of injectable hydrogels with appropriate structures and properties has been a challenging task, leaving much to be desired in terms of cytocompatibility, antibacterial and self-healing properties, as well as the ability to support dental stem cell functions. This paper presents our study on the development of a novel self-cross-linkable hydrogel composed of oxidized alginate and carboxymethyl chitosan and its characterization as a cell carrier for dental enamel regeneration in vitro. Oxidized alginate was synthesized with 60% theoretical oxidation degree using periodate oxidation and characterized by Fourier Transform Infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and Ultraviolet-visible absorption spectroscopy. Then, hydrogels were prepared at three varying weight ratios of oxidized alginate to carboxymethyl chitosan (4:1, 3:1, and 2:1) through Schiff base reactions, which was confirmed by Fourier Transform Infrared spectroscopy. The hydrogels were characterized in terms of gelation time, swelling ratio, structure, injectability, self-healing, antibacterial properties, and in vitro characterization for enamel regeneration. The results demonstrated that, among the three hydrogels examined, the one with the highest ratio of oxidized alginate (i.e., 4:1) had the fastest gelation time and the lowest swelling ability, and that all hydrogels were formed with highly porous structures and were able to be injected through a 20-gauge needle without clogging. The injected hydrogels could be rapidly reformed with the self-healing property. The hydrogels also showed antibacterial properties against two cariogenic bacteria: Streptococcus mutans and Streptococcus sobrinus. For in vitro enamel regeneration, a dental epithelial cell line, HAT-7, was examined, demonstrating a high cell viability in the hydrogels during injection. Furthermore, HAT-7 cells encapsulated in the hydrogels showed alkaline phosphatase production and mineral deposition, as well as maintaining their round morphology, after 14 days of in vitro culture. Taken together, this study has provided evidence that the oxidized alginate-carboxymethyl chitosan hydrogels could be used as an injectable cell carrier for dental enamel tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| |
Collapse
|
99
|
Dong Q, Wu D, Li M, Dong W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022; 76:101782. [PMID: 35339801 DOI: 10.1016/j.tice.2022.101782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Corneal-related diseases and injuries are the leading causes of vision loss, estimated to affect over 10 million people worldwide. Currently, cadaveric corneal grafts are considered the gold standard of treatment to restore cornea-related vision. However, this treatment modality faces different challenges such as donor shortage and graft failure. Therefore, the need for alternative solutions continues to grow. Tissue engineering has dramatically progressed to produce artificial cornea implants in order to repair, regenerate, or replace the damaged cornea. In this regard, a variety of polysaccharides such as cellulose, chitosan, alginate, agarose, and hyaluronic acid have been widely explored as scaffolding biomaterials for the production of tissue-engineered cornea. These polymers are known for their excellent biocompatibility, versatile properties, and processability. Recent progress and future perspectives of polysaccharide-based biomaterials in cornea tissue engineering is reviewed here.
Collapse
Affiliation(s)
- Qiwei Dong
- School of medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dingkun Wu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China, 116024
| | - Moqiu Li
- Center for Cancer Prevention Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Dong
- School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
100
|
Abka-khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, Michaud P. Structures, Properties and Applications of Alginates. Mar Drugs 2022; 20:364. [PMID: 35736167 PMCID: PMC9225620 DOI: 10.3390/md20060364] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Alginate is a hydrocolloid from algae, specifically brown algae, which is a group that includes many of the seaweeds, like kelps and an extracellular polymer of some bacteria. Sodium alginate is one of the best-known members of the hydrogel group. The hydrogel is a water-swollen and cross-linked polymeric network produced by the simple reaction of one or more monomers. It has a linear (unbranched) structure based on d-mannuronic and l-guluronic acids. The placement of these monomers depending on the source of its production is alternating, sequential and random. The same arrangement of monomers can affect the physical and chemical properties of this polysaccharide. This polyuronide has a wide range of applications in various industries including the food industry, medicine, tissue engineering, wastewater treatment, the pharmaceutical industry and fuel. It is generally recognized as safe when used in accordance with good manufacturing or feeding practice. This review discusses its application in addition to its structural, physical, and chemical properties.
Collapse
Affiliation(s)
- Roya Abka-khajouei
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84154, Iran;
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| | - Latifa Tounsi
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Nasim Shahabi
- Department of Food Hygiene and Quality, College of Veterinary Medicine, Shahrekord 88186, Chahar Mahal Bakhtiari, Iran;
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| |
Collapse
|