51
|
Chmayssem A, Verplanck N, Tanase CE, Costa G, Monsalve-Grijalba K, Amigues S, Alias M, Gougis M, Mourier V, Vignoud S, Ghaemmaghami AM, Mailley P. Development of a multiparametric (bio)sensing platform for continuous monitoring of stress metabolites. Talanta 2021; 229:122275. [PMID: 33838777 DOI: 10.1016/j.talanta.2021.122275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
There is a growing need for real-time monitoring of metabolic products that could reflect cell damages over extended periods. In this paper, we report the design and development of an original multiparametric (bio)sensing platform that is tailored for the real-time monitoring of cell metabolites derived from cell cultures. Most attractive features of our developed electrochemical (bio)sensing platform are its easy manufacturing process, that enables seamless scale-up, modular and versatile approach, and low cost. In addition, the developed platform allows a multiparametric analysis instead of single-analyte analysis. Here we provide an overview of the sensors-based analysis of four main factors that can indicate a possible cell deterioration problem during cell-culture: pH, hydrogen peroxide, nitric oxide/nitrite and lactate. Herein, we are proposing a sensors platform based on thick-film coupled to microfluidic technology that can be integrated into any microfluidic system using Luer-lock connectors. This platform allows obtaining an accurate analysis of the secreting stress metabolites during cell/tissues culture.
Collapse
Affiliation(s)
- Ayman Chmayssem
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France.
| | - Nicolas Verplanck
- Univ. Grenoble Alpes, CEA, LETI, DTBS, LSMB, 38000, Grenoble, France
| | - Constantin Edi Tanase
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom
| | - Guillaume Costa
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | | | - Simon Amigues
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Mélanie Alias
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Maxime Gougis
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Véronique Mourier
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Séverine Vignoud
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Amir M Ghaemmaghami
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France.
| |
Collapse
|
52
|
Tan C, Robbins EM, Wu B, Cui XT. Recent Advances in In Vivo Neurochemical Monitoring. MICROMACHINES 2021; 12:208. [PMID: 33670703 PMCID: PMC7922317 DOI: 10.3390/mi12020208] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022]
Abstract
The brain is a complex network that accounts for only 5% of human mass but consumes 20% of our energy. Uncovering the mysteries of the brain's functions in motion, memory, learning, behavior, and mental health remains a hot but challenging topic. Neurochemicals in the brain, such as neurotransmitters, neuromodulators, gliotransmitters, hormones, and metabolism substrates and products, play vital roles in mediating and modulating normal brain function, and their abnormal release or imbalanced concentrations can cause various diseases, such as epilepsy, Alzheimer's disease, and Parkinson's disease. A wide range of techniques have been used to probe the concentrations of neurochemicals under normal, stimulated, diseased, and drug-induced conditions in order to understand the neurochemistry of drug mechanisms and develop diagnostic tools or therapies. Recent advancements in detection methods, device fabrication, and new materials have resulted in the development of neurochemical sensors with improved performance. However, direct in vivo measurements require a robust sensor that is highly sensitive and selective with minimal fouling and reduced inflammatory foreign body responses. Here, we review recent advances in neurochemical sensor development for in vivo studies, with a focus on electrochemical and optical probes. Other alternative methods are also compared. We discuss in detail the in vivo challenges for these methods and provide an outlook for future directions.
Collapse
Affiliation(s)
- Chao Tan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
53
|
Chmayssem A, Monsalve-Grijalba K, Alias M, Mourier V, Vignoud S, Scomazzon L, Muller C, Barthes J, Vrana NE, Mailley P. Reference method for off-line analysis of nitrogen oxides in cell culture media by an ozone-based chemiluminescence detector. Anal Bioanal Chem 2021; 413:1383-1393. [PMID: 33404746 DOI: 10.1007/s00216-020-03102-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) and its by-products are important biological signals in human physiology and pathology particularly in the vascular and immune systems. Thus, in situ determination of the NO-related molecule (NOx) levels using embedded sensors is of high importance particularly in the context of cellular biocompatibility testing. However, NOx analytical reference method dedicated to the evaluation of biomaterial biocompatibility testing is lacking. Herein, we demonstrate a PAPA-NONOate-based reference method for the calibration of NOx sensors. After, the validation of this reference method and its potentialities were demonstrated for the detection of the oxidative stress-related NO secretion of vascular endothelial cells in a 3D tissue issued from 3D printing. Such NOx detection method can be an integral part of cell response to biomaterials. Graphical abstract.
Collapse
Affiliation(s)
- Ayman Chmayssem
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, Grenoble, F-38000, France.
| | | | - Mélanie Alias
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, Grenoble, F-38000, France
| | - Véronique Mourier
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, Grenoble, F-38000, France
| | - Séverine Vignoud
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, Grenoble, F-38000, France
| | - Loïc Scomazzon
- Inserm UMR 1121, 11 rue Humann, 67085, Strasbourg, France
| | - Céline Muller
- Inserm UMR 1121, 11 rue Humann, 67085, Strasbourg, France
| | - Julien Barthes
- Inserm UMR 1121, 11 rue Humann, 67085, Strasbourg, France
| | - Nihal Engin Vrana
- Spartha Medical, 14B Rue de la Canardière, 67100, Strasbourg, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, Grenoble, F-38000, France.
| |
Collapse
|
54
|
Lin X, Xiong M, Zhang J, He C, Ma X, Zhang H, Kuang Y, Yang M, Huang Q. Carbon dots based on natural resources: Synthesis and applications in sensors. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105604] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Zhang Y, Guo CX, Wu C, Du H, Chen Q, Gao JC, Shi Z, Tang KL, Li CM. Electrochemically tuning Li1+xFePO4 for high oxidation state of rich Li+ toward highly sensitive detection of nitric oxide. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
56
|
Zhou Y, Yang T, Namivandi-Zangeneh R, Boyer C, Liang K, Chandrawati R. Copper-doped metal–organic frameworks for the controlled generation of nitric oxide from endogenous S-nitrosothiols. J Mater Chem B 2021; 9:1059-1068. [DOI: 10.1039/d0tb02709j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the synthesis of a catalyst, copper-doped zeolitic imidazolate framework ZIF-8, that generates nitric oxide from naturally occurring endogenous nitric oxide donors, S-nitrosoglutathione and S-nitrosocysteine.
Collapse
Affiliation(s)
- Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| | - Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| | - Rashin Namivandi-Zangeneh
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
- Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney)
- Sydney
| | - Cyrille Boyer
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
- Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney)
- Sydney
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
- Graduate School of Biomedical Engineering, The University of New South Wales (UNSW Sydney)
- Sydney
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| |
Collapse
|
57
|
Updating NO •/HNO interconversion under physiological conditions: A biological implication overview. J Inorg Biochem 2020; 216:111333. [PMID: 33385637 DOI: 10.1016/j.jinorgbio.2020.111333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
Abstract
Azanone (HNO/NO-), also called nitroxyl, is a highly reactive compound whose biological role is still a matter of debate. A key issue that remains to be clarified regarding HNO and its biological activity is that of its endogenous formation. Given the overlap of the molecular targets and reactivity of nitric oxide (NO•) and HNO, its chemical biology was perceived to be similar to that of NO• as a biological signaling agent. However, despite their closely related reactivity, NO• and HNO's biochemical pathways are quite different. Moreover, the reduction of nitric oxide to azanone is possible but necessarily coupled to other reactions, which drive the reaction forward, overcoming the unfavorable thermodynamic barrier. The mechanism of this NO•/HNO interplay and its downstream effects in different contexts were studied recently, showing that more than fifteen moderate reducing agents react with NO• producing HNO. Particularly, it is known that the reaction between nitric oxide and hydrogen sulfide (H2S) produces HNO. However, this rate constant was not reported yet. In this work, firstly the NO•/H2S effective rate constant was measured as a function of the pH. Then, the implications of these chemical (non-enzymatic), biologically compatible, routes to endogenous HNO formation was discussed. There is no doubt that HNO could be (is?) a new endogenously produced messenger that mediates specific physiological responses, many of which were attributed yet to direct NO• effects.
Collapse
|
58
|
Maduraiveeran G. Metal Nanocomposites Based Electrochemical Sensor Platform for few Emerging Biomarkers. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016999201117094213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Design of high-performance electrochemical sensor and biosensor platforms has attracted much devotion for
the sensitive and selective detection of emergent biomarkers. Electrochemical sensor offers numerous advantageous
features include cost-effective and ease of miniaturization, rapid and online monitoring, simultaneous detection ability,
etc., which have captivated the potential interdisciplinary research. In this review, the advances and challenges towards
the electrochemical detection of emergent biomarkers such as hydrogen peroxide, nitric oxide, β-nicotinamide adenine
acetaminophen, dinucleotide (NADH) in biofluids are highlighted based on the recent research outcomes. In fact, the
effective utility and benefits of transition metal nanocomposites without the utilization of biological materials, including
enzymes, antibodies, etc. as electrode materials towards the detection of selected biomarkers in practical biofluids,
monitoring early-stage and diagnosis of disease related biomarkers, are also described. These promising metal
nanomaterials based electrochemical sensor platforms concrete the tactic for a new generation of sensing devices.
Collapse
Affiliation(s)
- Govindhan Maduraiveeran
- Department of Chemistry, Materials Electrochemistry Laboratory, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chennai, Tamil Nadu, India
| |
Collapse
|
59
|
Nasuno R, Shino S, Yoshikawa Y, Yoshioka N, Sato Y, Kamiya K, Takagi H. Detection system of the intracellular nitric oxide in yeast by HPLC with a fluorescence detector. Anal Biochem 2020; 598:113707. [DOI: 10.1016/j.ab.2020.113707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
|
60
|
Meiller A, Sequeira E, Marinesco S. Electrochemical Nitric Oxide Microsensors Based on a Fluorinated Xerogel Screening Layer for in Vivo Brain Monitoring. Anal Chem 2020; 92:1804-1810. [PMID: 31872758 DOI: 10.1021/acs.analchem.9b03621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitric oxide (NO) is an important free radical synthesized and released by brain cells. At low (nanomolar) levels, it modulates synaptic transmission and neuronal activity, but at much higher levels mediates neuronal injury through oxidative stress. However, the precise concentrations at which these biological actions are exerted are still poorly defined. Electrochemical detection of NO in vivo requires rigorous exclusion of endogenous redox molecules such as ascorbate or nitrite. A fluorinated xerogel composed of trimethoxymethylsilane and heptadecafluoro-1,1,2,2-tetrahydrodecyl silane has been proposed to create a screening layer around NO sensors, protecting against such chemical interference in vitro. Here we detected NO in the living brain using carbon fiber microelectrodes covered with nickel porphyrin and this fluorinated xerogel. These microsensors were insensitive to interfering redox molecules and surpassed similar microelectrodes coated with a Nafion screening layer. In vivo, in the rat parietal cortex, these electrodes could detect brain NO released by local microinjection of the glutamatergic agonist N-methyl-d-aspartate (NMDA). NMDA-evoked NO release peaked at 1.1 μM and lasted more than 20 min. This fluorinated xerogel screening layer can therefore be applied in vivo, allowing for the fabrication of highly specific microsensors to study NO physio-pathological actions in the brain.
Collapse
Affiliation(s)
- Anne Meiller
- AniRA-Neurochem Technological Platform , Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292 , 69675 Bron cedex, France.,Université Claude Bernard Lyon 1 , 69100 Villeurbanne , France
| | - Ellora Sequeira
- AniRA-Neurochem Technological Platform , Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292 , 69675 Bron cedex, France.,Université Claude Bernard Lyon 1 , 69100 Villeurbanne , France
| | - Stéphane Marinesco
- AniRA-Neurochem Technological Platform , Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292 , 69675 Bron cedex, France.,Team TIGER , Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292 , 69675 Bron , France.,Université Claude Bernard Lyon 1 , 69100 Villeurbanne , France
| |
Collapse
|
61
|
Ge M, Wu Q, Yin L, Xu M, Yuan Y, Guo Q, Yao J. Surface enhanced Raman spectroscopic studies on the adsorption behaviour of nitric oxide on a Ru covered Au nanoparticle film. RSC Adv 2020; 10:12339-12346. [PMID: 35497607 PMCID: PMC9050915 DOI: 10.1039/d0ra00430h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023] Open
Abstract
Nitric oxide (NO) is very interesting because of its effects on air pollution and especially biological systems. The adsorption behavior of NO molecules has fundamental importance with great technical challenges due to complex processes and species identification. Herein, the NO adsorption behavior on a Ru surface has been investigated using well-designed surface enhanced Raman spectroscopy (SERS) substrates. A Au nanoparticle monolayer film on ITO was employed as the electrode and Ru layers were electrochemically deposited. The internal SERS effect from the Au nanoparticles with high sensitivity and the metallic surfaces of Ru with practical application were integrated into a composite Au/Ru substrate. The molecular adsorption and dissociation of NO were observed simultaneously by SERS. A competitive relationship between adsorption and dissociation was observed at higher NO pressure, and the 3-fold and 2-fold bridge and top adsorption configurations appeared on the surface and were associated with different νNO vibrational frequencies. The results indicated that 3-fold bridge sites are preferred for dissociation over other structures. The dissociation of NO produced adsorbed atomic nitrogen and oxygen species to form Ru–N and Ru–O bonds, respectively. The dissociation process, especially for linear NO, was site dependent and blocked at higher pressure or coverage. Due to the change in adsorption energy and coverage, a conversion of the adsorption configuration from bridge to top was observed in the initial stage of NO adsorption, and this was followed by a mixture of bridge and top configurations of NO and dissociated species. A two-step dissociation mechanism and the steps of NO adsorption were proposed. The present study suggested that the SERS technique with appropriate attractive metal overlayers provided a significant and possibly even a valuable approach to explore adsorption behavior and kinetics at gas–solid interfaces. A SERS borrowing strategy with well-designed substrates has been developed to monitor the adsorption and dissociation of NO at Au/Ru surfaces.![]()
Collapse
Affiliation(s)
- Ming Ge
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Qian Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lu Yin
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Minmin Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yaxian Yuan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Qinghua Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Jianlin Yao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|