51
|
Zeng Y, Shi W, Liu Z, Xu H, Liu L, Hang J, Wang Y, Lu M, Zhou W, Huang W, Tang F. C-terminal modification and functionalization of proteins via a self-cleavage tag triggered by a small molecule. Nat Commun 2023; 14:7169. [PMID: 37935692 PMCID: PMC10630284 DOI: 10.1038/s41467-023-42977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
The precise modification or functionalization of the protein C-terminus is essential but full of challenges. Herein, a chemical approach to modify the C-terminus is developed by fusing a cysteine protease domain on the C-terminus of the protein of interest, which could achieve the non-enzymatic C-terminal functionalization by InsP6-triggered cysteine protease domain self-cleavage. This method demonstrates a highly efficient way to achieve protein C-terminal functionalization and is compatible with a wide range of amine-containing molecules and proteins. Additionally, a reversible C-terminal de-functionalization is found by incubating the C-terminal modified proteins with cysteine protease domain and InsP6, providing a tool for protein functionalization and de-functionalization. Last, various applications of protein C-terminal functionalization are provided in this work, as demonstrated by the site-specific assembly of nanobody drug conjugates, the construction of a bifunctional antibody, the C-terminal fluorescent labeling, and the C-terminal transpeptidation and glycosylation.
Collapse
Affiliation(s)
- Yue Zeng
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wei Shi
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Zhi Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
| | - Hao Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
| | - Liya Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Jiaying Hang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Yongqin Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Mengru Lu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Wei Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China.
| |
Collapse
|
52
|
Ding W, Zhao H, Chen Y, Lin S. New Strategies for Probing the Biological Functions of Protein Post-translational Modifications in Mammalian Cells with Genetic Code Expansion. Acc Chem Res 2023; 56:2827-2837. [PMID: 37793174 DOI: 10.1021/acs.accounts.3c00460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Protein post-translational modification (PTM) is a major mechanism for functional diversification of the human genome and plays a crucial role in almost every aspect of cellular processes, and the dysregulation of the protein PTM network has been associated with a variety of human diseases. Using high-resolution mass spectrometry, protein PTMs can be efficiently discovered and profiled under various biological and physiological conditions. However, it is often challenging to address the biological function of PTMs with biochemical and mutagenesis-based approaches. Specifically, this field lacks methods that allow gain-of-function studies of protein PTMs to understand their functional consequences in living cells. In this context, the genetic code expansion (GCE) strategy has made tremendous progress in the direct installation of PTMs and their analogs in the form of noncanonical amino acids (ncAAs) for gain-of-function investigations.In addition to studying the biological functions of known protein PTMs, the discovery of new protein PTMs is even more challenging due to the lack of chemical information for designing specific enrichment methods. Genetically encoded ncAAs in the proteome can be used as specific baits to enrich and subsequently identify new PTMs by mass spectrometry.In this Account, we discuss recent developments in the investigation of the biological functions of protein PTMs and the discovery of protein PTMs using new GCE strategies. First, we leveraged a chimeric design to construct several broadly orthogonal translation systems (OTSs). These broad OTSs can be engineered to efficiently incorporate different ncAAs in both E. coli and mammalian cells. With these broad OTSs, we accomplish the following: (1) We develop a computer-aided strategy for the design and genetic incorporation of length-tunable lipidation mimics. These lipidation mimics can fully recapitulate the biochemical properties of natural lipidation in membrane association for probing its biological functions on signaling proteins and in albumin binding for designing long-acting protein drugs. (2) We demonstrate that the binding affinity between histone methylations and their corresponding readers can be substantially increased with genetically encoded electron-rich Trp derivatives. These engineered affinity-enhanced readers can be applied to enrich, image, and profile the interactome of chromatin methylations. (3) We report the identification and verification of a novel type of protein PTM, aminoacylated lysine ubiquitination, using genetically encoded PTM ncAAs as chemical probes. This approach provides a general strategy for the identification of unknown PTMs by increasing the abundance of PTM bait probes.
Collapse
Affiliation(s)
- Wenlong Ding
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hongxia Zhao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yulin Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
| | - Shixian Lin
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
53
|
Abstract
Deposits of the microtubule-associated protein Tau (MAPT) serve as a hallmark of neurodegenerative diseases known as tauopathies. Numerous studies have demonstrated that in diseases such as Alzheimer's disease (AD), Tau undergoes extensive remodeling. The attachment of post-translational modifications distributed throughout the entire sequence of the protein correlates with clinical presentation. A systematic examination of these protein alterations can shed light on their roles in both healthy and diseased states. However, the ability to access these modifications in the entire protein chain is limited as Tau can only be produced recombinantly or through semisynthesis. In this article, we describe the first chemical synthesis of the longest 2N4R isoform of Tau, consisting of 441 amino acids. The 2N4R Tau was divided into 3 major segments and a total of 11 fragments, all of which were prepared via solid-phase peptide synthesis. The successful chemical strategy has relied on the strategic use of two cysteine sites (C291 and C322) for the native chemical ligations (NCLs). This was combined with modern preparative protein chemistries, such as mercaptothreonine ligation (T205), diselenide-selenoester ligation (D358), and mutations of mercaptoamino acids into native residues via homogeneous radical desulfurization (A40, A77, A119, A157, A246, and A390). The successful completion of the synthesis has established a robust and scalable route to the native protein in multimilligram quantities and high purity. In broader terms, the presented strategy can be applied to the preparation of other shorter isoforms of Tau as well as to introduce all post-translational modifications that are characteristic of tauopathies such as AD.
Collapse
Affiliation(s)
- Wyatt C Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
54
|
Wei T, Liu J, Li C, Tan Y, Wei R, Wang J, Wu H, Li Q, Liu H, Tang Y, Li X. Revealing the extracellular function of HMGB1 N-terminal region acetylation assisted by a protein semi-synthesis approach. Chem Sci 2023; 14:10297-10307. [PMID: 37772093 PMCID: PMC10530822 DOI: 10.1039/d3sc01109g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
HMGB1 (high-mobility group box 1) is a non-histone chromatin-associated protein that has been widely reported as a representative damage-associated molecular pattern (DAMP) and to play a pivotal role in the proinflammatory process once it is in an extracellular location. Accumulating evidence has shown that HMGB1 undergoes extensive post-translational modifications (PTMs) that actively regulate its conformation, localization, and intermolecular interactions. However, fully characterizing the functional implications of these PTMs has been challenging due to the difficulty in accessing homogeneous HMGB1 with site-specific PTMs of interest. In this study, we developed a streamlined protein semi-synthesis strategy via salicylaldehyde ester-mediated chemical ligations (Ser/Thr ligation and Cys/Pen ligation, STL/CPL). This methodology enabled us to generate a series of N-terminal region acetylated HMGB1 proteins. Further studies revealed that acetylation regulates HMGB1-heparin interaction and modulates HMGB1's stability against thrombin, representing a regulatory switch to control HMGB1's extracellular activity.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Can Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ruohan Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jinzheng Wang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongxiang Wu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Qingrong Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yubo Tang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
55
|
Moon S, Wang B, Ahn BS, Ryu AH, Hard ER, Javed A, Pratt MR. O-GlcNAc Modification Alters the Chaperone Activity of HSP27 Charcot-Marie-Tooth Type 2 (CMT2) Variants in a Mutation-Selective Fashion. ACS Chem Biol 2023; 18:1705-1712. [PMID: 37540114 PMCID: PMC10442854 DOI: 10.1021/acschembio.3c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Increased O-GlcNAc is a common feature of cellular stress, and the upregulation of this dynamic modification is associated with improved survival under these conditions. Likewise, the heat shock proteins are also increased under stress and prevent protein misfolding and aggregation. We previously linked these two phenomena by demonstrating that O-GlcNAc directly increases the chaperone of certain small heat shock proteins, including HSP27. Here, we examine this linkage further by exploring the potential function of O-GlcNAc on mutants of HSP27 that cause a heritable neuropathy called Charcot-Marie-Tooth type 2 (CMT2) disease. Using synthetic protein chemistry, we prepared five of these mutants bearing an O-GlcNAc at the major site of modification. Upon subsequent biochemical analysis of these proteins, we found that O-GlcNAc has different effects, depending on the location of the individual mutants. We believe that this has important implications for O-GlcNAc and other PTMs in the context of polymorphisms or diseases with high levels of protein mutation.
Collapse
Affiliation(s)
- Stuart
P. Moon
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Binyou Wang
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Benjamin S. Ahn
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Andrew H. Ryu
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Eldon R. Hard
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Afraah Javed
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Matthew R. Pratt
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
56
|
Hong ZZ, Yu RR, Zhang X, Webb AM, Burge NL, Poirier MG, Ottesen JJ. Development of Convergent Hybrid Phase Ligation for Efficient and Convenient Total Synthesis of Proteins. Pept Sci (Hoboken) 2023; 115:e24323. [PMID: 37692919 PMCID: PMC10488053 DOI: 10.1002/pep2.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023]
Abstract
Simple and efficient total synthesis of homogeneous and chemically modified protein samples remains a significant challenge. Here, we report development of a convergent hybrid phase native chemical ligation (CHP-NCL) strategy for facile preparation of proteins. In this strategy, proteins are split into ~100-residue blocks, and each block is assembled on solid support from synthetically accessible peptide fragments before ligated together into full-length protein in solution. With the new method, we increase the yield of CENP-A synthesis by 2.5-fold compared to the previous hybrid phase ligation approach. We further extend the new strategy to the total chemical synthesis of 212-residue linker histone H1.2 in unmodified, phosphorylated, and citrullinated forms, each from eight peptide segments with only one single purification. We demonstrate that fully synthetic H1.2 replicates the binding interactions of linker histones to intact mononucleosomes, as a proxy for the essential function of linker histones in the formation and regulation of higher order chromatin structure.
Collapse
Affiliation(s)
- Ziyong Z. Hong
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Ruixuan R. Yu
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| | - Xiaoyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Allison M. Webb
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Nathaniel L. Burge
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| | - Michael G. Poirier
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
- Department of Physics, Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Jennifer J. Ottesen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
57
|
Pan B, Gardner SM, Schultz K, Perez RM, Deng S, Shimogawa M, Sato K, Rhoades E, Marmorstein R, Petersson EJ. Semi-Synthetic CoA-α-Synuclein Constructs Trap N-Terminal Acetyltransferase NatB for Binding Mechanism Studies. J Am Chem Soc 2023; 145:14019-14030. [PMID: 37319422 PMCID: PMC10728591 DOI: 10.1021/jacs.3c03887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases. A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here, we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes as well as their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.
Collapse
Affiliation(s)
- Buyan Pan
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Sarah M. Gardner
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kollin Schultz
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryann M. Perez
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Sunbin Deng
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Kohei Sato
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Elizabeth Rhoades
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
58
|
Harrison K, Mackay AS, Kambanis L, Maxwell JWC, Payne RJ. Synthesis and applications of mirror-image proteins. Nat Rev Chem 2023; 7:383-404. [PMID: 37173596 DOI: 10.1038/s41570-023-00493-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/15/2023]
Abstract
The homochirality of biomolecules in nature, such as DNA, RNA, peptides and proteins, has played a critical role in establishing and sustaining life on Earth. This chiral bias has also given synthetic chemists the opportunity to generate molecules with inverted chirality, unlocking valuable new properties and applications. Advances in the field of chemical protein synthesis have underpinned the generation of numerous 'mirror-image' proteins (those comprised entirely of D-amino acids instead of canonical L-amino acids), which cannot be accessed using recombinant expression technologies. This Review seeks to highlight recent work on synthetic mirror-image proteins, with a focus on modern synthetic strategies that have been leveraged to access these complex biomolecules as well as their applications in protein crystallography, drug discovery and the creation of mirror-image life.
Collapse
Affiliation(s)
- Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucas Kambanis
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
59
|
Pasch T, Schröder A, Kattelmann S, Eisenstein M, Pietrokovski S, Kümmel D, Mootz HD. Structural and biochemical analysis of a novel atypically split intein reveals a conserved histidine specific to cysteine-less inteins. Chem Sci 2023; 14:5204-5213. [PMID: 37206380 PMCID: PMC10189870 DOI: 10.1039/d3sc01200j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
Protein trans-splicing mediated by a split intein reconstitutes a protein backbone from two parts. This virtually traceless autoprocessive reaction provides the basis for numerous protein engineering applications. Protein splicing typically proceeds through two thioester or oxyester intermediates involving the side chains of cysteine or serine/threonine residues. A cysteine-less split intein has recently attracted particular interest as it can splice under oxidizing conditions and is orthogonal to disulfide or thiol bioconjugation chemistries. Here, we report the split PolB16 OarG intein, a second such cysteine-independent intein. As a unique trait, it is atypically split with a short intein-N precursor fragment of only 15 amino acids, the shortest characterized to date, which was chemically synthesized to enable protein semi-synthesis. By rational engineering we obtained a high-yielding, improved split intein mutant. Structural and mutational analysis revealed the dispensability of the usually crucial conserved motif N3 (block B) histidine as an obvious peculiar property. Unexpectedly, we identified a previously unnoticed histidine in hydrogen-bond forming distance to the catalytic serine 1 as critical for splicing. This histidine has been overlooked so far in multiple sequence alignments and is highly conserved only in cysteine-independent inteins as a part of a newly discovered motif NX. The motif NX histidine is thus likely of general importance to the specialized environment in the active site required in this intein subgroup. Together, our study advances the toolbox as well as the structural and mechanistic understanding of cysteine-less inteins.
Collapse
Affiliation(s)
- Tim Pasch
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Alexander Schröder
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Sabrina Kattelmann
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 Israel
| | - Daniel Kümmel
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Henning D Mootz
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| |
Collapse
|
60
|
Niu W, Guo J. Co-translational Installation of Posttranslational Modifications by Non-canonical Amino Acid Mutagenesis. Chembiochem 2023; 24:e202300039. [PMID: 36853967 PMCID: PMC10202221 DOI: 10.1002/cbic.202300039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Protein posttranslational modifications (PTMs) play critical roles in regulating cellular activities. Here we provide a survey of genetic code expansion (GCE) methods that were applied in the co-translational installation and studies of PTMs through noncanonical amino acid (ncAA) mutagenesis. We begin by reviewing types of PTM that have been installed by GCE with a focus on modifications of tyrosine, serine, threonine, lysine, and arginine residues. We also discuss examples of applying these methods in biological studies. Finally, we end the piece with a short discussion on the challenges and the opportunities of the field.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, N-68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE-68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE-68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE-68588, USA
| |
Collapse
|
61
|
Obeng EM, Fulcher AJ, Wagstaff KM. Harnessing sortase A transpeptidation for advanced targeted therapeutics and vaccine engineering. Biotechnol Adv 2023; 64:108108. [PMID: 36740026 DOI: 10.1016/j.biotechadv.2023.108108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The engineering of potent prophylactic and therapeutic complexes has always required careful protein modification techniques with seamless capabilities. In this light, methods that favor unobstructed multivalent targeting and correct antigen presentations remain essential and very demanding. Sortase A (SrtA) transpeptidation has exhibited these attributes in various settings over the years. However, its applications for engineering avidity-inspired therapeutics and potent vaccines have yet to be significantly noticed, especially in this era where active targeting and multivalent nanomedications are in great demand. This review briefly presents the SrtA enzyme and its associated transpeptidation activity and describes interesting sortase-mediated protein engineering and chemistry approaches for achieving multivalent therapeutic and antigenic responses. The review further highlights advanced applications in targeted delivery systems, multivalent therapeutics, adoptive cellular therapy, and vaccine engineering. These innovations show the potential of sortase-mediated techniques in facilitating the development of simple plug-and-play nanomedicine technologies against recalcitrant diseases and pandemics such as cancer and viral infections.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
62
|
Pan B, Gardner S, Schultz K, Perez RM, Deng S, Shimogawa M, Sato K, Rhoades E, Marmorstein R, Petersson EJ. Semi-synthetic CoA-α-Synuclein Constructs Trap N-terminal Acetyltransferase NatB for Binding Mechanism Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535351. [PMID: 37066334 PMCID: PMC10104007 DOI: 10.1101/2023.04.03.535351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases (NATs). A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes and their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.
Collapse
|
63
|
Liu Y, Nomura K, Abe J, Kajihara Y. Recent advances on the synthesis of N-linked glycoprotein for the elucidation of glycan functions. Curr Opin Chem Biol 2023; 73:102263. [PMID: 36746076 DOI: 10.1016/j.cbpa.2023.102263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023]
Abstract
Glycoproteins play roles in many biological events, while, the glycan structure-function relationship has remained to be studied. In order to understand glycan function, homogeneous glycoproteins have been synthesized. This review introduced recent progress of their synthetic approaches.
Collapse
Affiliation(s)
- Yanbo Liu
- Department of Chemistry Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Japan
| | - Kota Nomura
- Department of Chemistry Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Japan
| | - Junpei Abe
- Department of Chemistry Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Japan
| | - Yasuhiro Kajihara
- Department of Chemistry Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Japan.
| |
Collapse
|
64
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
65
|
Wang Y, Yu L, Shao J, Zhu Z, Zhang L. Structure-driven protein engineering for production of valuable natural products. TRENDS IN PLANT SCIENCE 2023; 28:460-470. [PMID: 36473772 DOI: 10.1016/j.tplants.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/25/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Proteins are the most frequently used biocatalysts, and their structures determine their functions. Modifying the functions of proteins on the basis of their structures lies at the heart of protein engineering, opening a new horizon for metabolic engineering by efficiently generating stable enzymes. Many attempts at classical metabolic engineering have focused on improving specific metabolic fluxes and producing more valuable natural products by increasing gene expression levels and enzyme concentrations. However, most naturally occurring enzymes show limitations, and such limitations have hindered practical applications. Here we review recent advances in protein engineering in synthetic biology, chemoenzymatic synthesis, and plant metabolic engineering and describe opportunities for designing and constructing novel enzymes or proteins with desirable properties to obtain more active natural products.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China; Biomedical Innovation R&D Centre, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jie Shao
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China; Biomedical Innovation R&D Centre, School of Medicine, Shanghai University, Shanghai 200444, China; Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
66
|
Harel O, Jbara M. Chemical Synthesis of Bioactive Proteins. Angew Chem Int Ed Engl 2023; 62:e202217716. [PMID: 36661212 DOI: 10.1002/anie.202217716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
Nature has developed a plethora of protein machinery to operate and maintain nearly every task of cellular life. These processes are tightly regulated via post-expression modifications-transformations that modulate intracellular protein synthesis, folding, and activation. Methods to prepare homogeneously and precisely modified proteins are essential to probe their function and design new bioactive modalities. Synthetic chemistry has contributed remarkably to protein science by allowing the preparation of novel biomacromolecules that are often challenging or impractical to prepare via common biological means. The ability to chemically build and precisely modify proteins has enabled the production of new molecules with novel physicochemical properties and programmed activity for biomedical research, diagnostic, and therapeutic applications. This minireview summarizes recent developments in chemical protein synthesis to produce bioactive proteins, with emphasis on novel analogs with promising in vitro and in vivo activity.
Collapse
Affiliation(s)
- Omer Harel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
67
|
Sun Z, Wei T, Cao Y, Li X. Protocol for semisynthesis of serotonylated histone H3 by rapid protein desulfurization in tandem with native chemical ligation. STAR Protoc 2023; 4:102042. [PMID: 36825812 PMCID: PMC9867976 DOI: 10.1016/j.xpro.2022.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Here, we present a protocol of rapid protein desulfurization in tandem with native chemical ligation for facile syntheses of proteins with site-specific modifications. We describe using sodium tetraethylborate (NaBEt4) to carry out this desulfurization in an add-and-done manner under ambient conditions without requirement of inert atmosphere protection, UV irradiation, heating, or exogenous thiol additives. Specifically, we detail the semisynthesis of serotonylated histone H3(H3Q5ser) via one-pot ligation desulfurization. This protocol can be applied to synthesize proteins of interest with homogenous post-translational modifications. For complete information on the generation and use of this protocol, please refer to Sun et al. (2022).1.
Collapse
Affiliation(s)
- Zhenquan Sun
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Tongyao Wei
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Yihui Cao
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| |
Collapse
|
68
|
Antonenko A, Singh AK, Mosna K, Krężel A. OaAEP1 Ligase-Assisted Chemoenzymatic Synthesis of Full Cysteine-Rich Metal-Binding Cyanobacterial Metallothionein SmtA. Bioconjug Chem 2023. [PMID: 36921066 PMCID: PMC10119931 DOI: 10.1021/acs.bioconjchem.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Among all approaches used for the semisynthesis of natural or chemically modified products, enzyme-assisted ligation is among the most promising and dynamically developing approaches. Applying an efficient C247A mutant of Oldenlandia affinis plant ligase OaAEP1 and solid-phase peptide synthesis chemistry, we present the chemoenzymatic synthesis of a complete sequence of the cysteine-rich and metal-binding cyanobacterial metallothionein Synechococcus metallothionein A (SmtA). Zn(II) and Cd(II) binding to the newly synthesized SmtA showed identical properties to the protein expressed in Escherichia coli. The presented approach is the first example of the use of OaAEP1 mutant for total protein synthesis of metallothionein, which occurs in mild conditions preventing cysteine thiol oxidation. The recognition motif of the applied enzyme could naturally occur in the protein structure or be synthetically or genetically incorporated in some loops or secondary structure elements. Therefore, we envision that this strategy can be used for efficiently obtaining SmtA and for a wide range of proteins and their derivatives.
Collapse
Affiliation(s)
- Anastasiia Antonenko
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Avinash Kumar Singh
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Karolina Mosna
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| |
Collapse
|
69
|
Kuschert S, Stroet M, Chin YKY, Conibear AC, Jia X, Lee T, Bartling CRO, Strømgaard K, Güntert P, Rosengren KJ, Mark AE, Mobli M. Facilitating the structural characterisation of non-canonical amino acids in biomolecular NMR. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:57-72. [PMID: 37904802 PMCID: PMC10583272 DOI: 10.5194/mr-4-57-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2023] [Indexed: 11/01/2023]
Abstract
Peptides and proteins containing non-canonical amino acids (ncAAs) are a large and important class of biopolymers. They include non-ribosomally synthesised peptides, post-translationally modified proteins, expressed or synthesised proteins containing unnatural amino acids, and peptides and proteins that are chemically modified. Here, we describe a general procedure for generating atomic descriptions required to incorporate ncAAs within popular NMR structure determination software such as CYANA, CNS, Xplor-NIH and ARIA. This procedure is made publicly available via the existing Automated Topology Builder (ATB) server (https://atb.uq.edu.au, last access: 17 February 2023) with all submitted ncAAs stored in a dedicated database. The described procedure also includes a general method for linking of side chains of amino acids from CYANA templates. To ensure compatibility with other systems, atom names comply with IUPAC guidelines. In addition to describing the workflow, 3D models of complex natural products generated by CYANA are presented, including vancomycin. In order to demonstrate the manner in which the templates for ncAAs generated by the ATB can be used in practice, we use a combination of CYANA and CNS to solve the structure of a synthetic peptide designed to disrupt Alzheimer-related protein-protein interactions. Automating the generation of structural templates for ncAAs will extend the utility of NMR spectroscopy to studies of more complex biomolecules, with applications in the rapidly growing fields of synthetic biology and chemical biology. The procedures we outline can also be used to standardise the creation of structural templates for any amino acid and thus have the potential to impact structural biology more generally.
Collapse
Affiliation(s)
- Sarah Kuschert
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Stroet
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yanni Ka-Yan Chin
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anne Claire Conibear
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, Wien 1060, Vienna, Austria
| | - Xinying Jia
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Department of Chemistry, Tokyo Metropolitan University, Hachiōji, Tokyo 192-0397, Japan
| | - Karl Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan Edward Mark
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
70
|
Insertion of unnatural metal ligand in the heme pocket of nitrophorin through protein semi-synthesis: toward biomimicking binuclear active sites. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
71
|
Hua X, Guo Y, Wang Y, Chu GC, Li P, Shi J. Acyl azide modification of the ubiquitin C-terminus enables DUB capture. Chem Commun (Camb) 2023; 59:1333-1336. [PMID: 36645155 DOI: 10.1039/d2cc06496k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deubiquitinating enzyme (DUB) abnormalities are associated with many diseases. Previous attempts have been made to introduce various chemical groups such as alkynes, unsaturated olefins and alkyl halides to the C-terminus of ubiquitin (Ub) to capture the active-site cysteine residue in DUBs for structural and biochemical studies. Here, we find that a Ub C-terminal acyl azide can capture DUBs, thereby forming thioester bonds in buffers and cell lysates. This finding not only makes ubiquitin acyl azide a chemical probe for capturing DUBs, but also extends the utility of azide groups in biological applications.
Collapse
Affiliation(s)
- Xiao Hua
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yanyan Guo
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yu Wang
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Chao Chu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Pincheng Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Jing Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
72
|
Ge Y, Lu H, Yang B, Woo CM. Small Molecule-Activated O-GlcNAcase for Spatiotemporal Removal of O-GlcNAc in Live Cells. ACS Chem Biol 2023; 18:193-201. [PMID: 36598936 DOI: 10.1021/acschembio.2c00894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The nutrient sensor O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification found on thousands of nucleocytoplasmic proteins. O-GlcNAc levels in cells dynamically respond to environmental cues in a temporal and spatial manner, leading to altered signal transduction and functional effects. The spatiotemporal regulation of O-GlcNAc levels would accelerate functional interrogation of O-GlcNAc and manipulation of cell behaviors for desired outcomes. Here, we report a strategy for spatiotemporal reduction of O-GlcNAc in live cells by designing an O-GlcNAcase (OGA) fused to an intein triggered by 4-hydroxytamoxifen (4-HT). After rational protein engineering and optimization, we identified an OGA-intein variant whose deglycosidase activity can be triggered in the desired subcellular compartments by 4-HT in a time- and dose-dependent manner. Finally, we demonstrated that 4-HT activation of the OGA-intein fusion can likewise potentiate inhibitory effects in breast cancer cells by virtue of the reduction of O-GlcNAc. The spatiotemporal control of O-GlcNAc through the chemically activatable OGA-intein fusion will facilitate the manipulation and functional understanding of O-GlcNAc in live cells.
Collapse
Affiliation(s)
- Yun Ge
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Hailin Lu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Bo Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
73
|
Adelakun N, Parrish J, Chu N. Analyzing protein posttranslational modifications using enzyme-catalyzed expressed protein ligation. Methods Enzymol 2023; 682:319-350. [PMID: 36948706 DOI: 10.1016/bs.mie.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Expressed protein ligation (EPL) allows for the attachment of a synthetic peptide into the N- or C-terminus of a recombinant protein fragment to generate a site-specifically modified protein with substantial yields for biochemical and biophysical studies. In this method, multiple posttranslational modifications (PTMs) can be incorporated into a synthetic peptide containing an N-terminal Cysteine, which selectively reacts with a protein C-terminal thioester to afford an amide bond formation. However, the requirement of a Cysteine at the ligation site can limit EPL's potential applications. Here, we describe a method called enzyme-catalyzed EPL, which uses subtiligase to ligate protein thioesters with Cysteine-free peptides. The procedure includes generating protein C-terminal thioester and peptide, performing the enzymatic EPL reaction, and purifying the protein ligation product. We exemplify this method by generating phospholipid phosphatase PTEN with site-specific phosphorylations installed onto its C-terminal tail for biochemical assays.
Collapse
Affiliation(s)
- Niyi Adelakun
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jordan Parrish
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Nam Chu
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
74
|
Berkeley RF, Debelouchina GT. Chemical tools for study and modulation of biomolecular phase transitions. Chem Sci 2022; 13:14226-14245. [PMID: 36545140 PMCID: PMC9749140 DOI: 10.1039/d2sc04907d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Biomolecular phase transitions play an important role in organizing cellular processes in space and time. Methods and tools for studying these transitions, and the intrinsically disordered proteins (IDPs) that often drive them, are typically less developed than tools for studying their folded protein counterparts. In this perspective, we assess the current landscape of chemical tools for studying IDPs, with a specific focus on protein liquid-liquid phase separation (LLPS). We highlight methodologies that enable imaging and spectroscopic studies of these systems, including site-specific labeling with small molecules and the diverse range of capabilities offered by inteins and protein semisynthesis. We discuss strategies for introducing post-translational modifications that are central to IDP and LLPS function and regulation. We also investigate the nascent field of noncovalent small-molecule modulators of LLPS. We hope that this review of the state-of-the-art in chemical tools for interrogating IDPs and LLPS, along with an associated perspective on areas of unmet need, can serve as a valuable and timely resource for these rapidly expanding fields of study.
Collapse
Affiliation(s)
- Raymond F Berkeley
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA USA
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA USA
| |
Collapse
|
75
|
Haji Abbasi Somehsaraie M, Fathi Vavsari V, Kamangar M, Balalaie S. Chemical Wastes in the Peptide Synthesis Process and Ways to Reduce Them. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123879. [PMID: 36942077 PMCID: PMC10024322 DOI: 10.5812/ijpr-123879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
In recent decades, a growing interest has been observed among pharmaceutical companies in producing and selling 80 FDA-approved therapeutic peptides. However, there are many drawbacks to peptide synthesis at the academic and industrial scales, involving the use of large amounts of highly hazardous coupling reagents and solvents. This review focuses on hideous and observant wastes produced before, during, and after peptide synthesis and proposes some solutions to reduce them.
Collapse
Affiliation(s)
| | - Vaezeh Fathi Vavsari
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Kamangar
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
- Corresponding Author: Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
76
|
Dowman LJ, Kulkarni SS, Alegre-Requena JV, Giltrap AM, Norman AR, Sharma A, Gallegos LC, Mackay AS, Welegedara AP, Watson EE, van Raad D, Niederacher G, Huhmann S, Proschogo N, Patel K, Larance M, Becker CFW, Mackay JP, Lakhwani G, Huber T, Paton RS, Payne RJ. Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine. Nat Commun 2022; 13:6885. [PMID: 36371402 PMCID: PMC9653470 DOI: 10.1038/s41467-022-34530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
The importance of modified peptides and proteins for applications in drug discovery, and for illuminating biological processes at the molecular level, is fueling a demand for efficient methods that facilitate the precise modification of these biomolecules. Herein, we describe the development of a photocatalytic method for the rapid and efficient dimerization and site-specific functionalization of peptide and protein diselenides. This methodology, dubbed the photocatalytic diselenide contraction, involves irradiation at 450 nm in the presence of an iridium photocatalyst and a phosphine and results in rapid and clean conversion of diselenides to reductively stable selenoethers. A mechanism for this photocatalytic transformation is proposed, which is supported by photoluminescence spectroscopy and density functional theory calculations. The utility of the photocatalytic diselenide contraction transformation is highlighted through the dimerization of selenopeptides, and by the generation of two families of protein conjugates via the site-selective modification of calmodulin containing the 21st amino acid selenocysteine, and the C-terminal modification of a ubiquitin diselenide.
Collapse
Affiliation(s)
- Luke J Dowman
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Juan V Alegre-Requena
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Andrew M Giltrap
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexander R Norman
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ashish Sharma
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence in Exciton Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Liliana C Gallegos
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Adarshi P Welegedara
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Emma E Watson
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Damian van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Gerhard Niederacher
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Susanne Huhmann
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Nicholas Proschogo
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Karishma Patel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Girish Lakhwani
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence in Exciton Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
77
|
Otaka A. Development of Naturally Inspired Peptide and Protein Chemistry. Chem Pharm Bull (Tokyo) 2022; 70:748-764. [DOI: 10.1248/cpb.c22-00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
78
|
Wang T, Li C, Wang M, Zhang J, Zheng Q, Liang L, Chu G, Tian X, Deng H, He W, Liu L, Li J. Expedient Synthesis of Ubiquitin‐like Protein ISG15 Tools through Chemo‐Enzymatic Ligation Catalyzed by a Viral Protease Lb
pro. Angew Chem Int Ed Engl 2022; 61:e202206205. [DOI: 10.1002/anie.202206205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tian Wang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 P. R. China
| | - Chuntong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 P. R. China
| | - Meijing Wang
- School of Pharmaceutical Sciences Tsinghua University Beijing 100084 P. R. China
| | - Jiachen Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 P. R. China
| | - Qingyun Zheng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 P. R. China
| | - Lujun Liang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 P. R. China
| | - Guochao Chu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 P. R. China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Wei He
- School of Pharmaceutical Sciences Tsinghua University Beijing 100084 P. R. China
| | - Lei Liu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 P. R. China
- Center for BioAnalytical Chemistry Hefei National Laboratory of Physical Science at Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 P. R. China
- Center for BioAnalytical Chemistry Hefei National Laboratory of Physical Science at Microscale University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
79
|
Kerul L, Schrems M, Schmid A, Meli R, Becker CFW, Bello C. Semisynthesis of Homogeneous, Active Granulocyte Colony-Stimulating Factor Glycoforms. Angew Chem Int Ed Engl 2022; 61:e202206116. [PMID: 35853828 PMCID: PMC9804750 DOI: 10.1002/anie.202206116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/09/2023]
Abstract
Granulocyte colony stimulating factor (G-CSF) is a cytokine used to treat neutropenia. Different glycosylated and non-glycosylated variants of G-CSF for therapeutic application are currently generated by recombinant expression. Here, we describe our approaches to establish a first semisynthesis strategy to access the aglycone and O-glycoforms of G-CSF, thereby enabling the preparation of selectively and homogeneously post-translationally modified variants of this important cytokine. Eventually, we succeeded by combining selenocysteine ligation of a recombinantly produced N-terminal segment with a synthetic C-terminal part, transiently equipped with a side-chain-linked, photocleavable PEG moiety, at low concentration. The transient PEGylation enabled quantitative enzymatic elongation of the carbohydrate at Thr133. Overall, we were able to significantly reduce the problems related to the low solubility and the tendency to aggregate of the two protein segments, which allowed the preparation of four G-CSF variants that were successfully folded and demonstrated biological activity in cell proliferation assays.
Collapse
Affiliation(s)
- Lukas Kerul
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Maximilian Schrems
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Alanca Schmid
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Rajeshwari Meli
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Christian F. W. Becker
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Claudia Bello
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of Florencevia della Lastruccia 1350019Sesto Fiorentino (Florence)Italy
| |
Collapse
|
80
|
Jeon J, Blake Wilson C, Yau WM, Thurber KR, Tycko R. Time-resolved solid state NMR of biomolecular processes with millisecond time resolution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107285. [PMID: 35998398 PMCID: PMC9463123 DOI: 10.1016/j.jmr.2022.107285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/21/2023]
Abstract
We review recent efforts to develop and apply an experimental approach to the structural characterization of transient intermediate states in biomolecular processes that involve large changes in molecular conformation or assembly state. This approach depends on solid state nuclear magnetic resonance (ssNMR) measurements that are performed at very low temperatures, typically 25-30 K, with signal enhancements from dynamic nuclear polarization (DNP). This approach also involves novel technology for initiating the process of interest, either by rapid mixing of two solutions or by a rapid inverse temperature jump, and for rapid freezing to trap intermediate states. Initiation by rapid mixing or an inverse temperature jump can be accomplished in approximately-one millisecond. Freezing can be accomplished in approximately 100 microseconds. Thus, millisecond time resolution can be achieved. Recent applications to the process by which the biologically essential calcium sensor protein calmodulin forms a complex with one of its target proteins and the process by which the bee venom peptide melittin converts from an unstructured monomeric state to a helical, tetrameric state after a rapid change in pH or temperature are described briefly. Future applications of millisecond time-resolved ssNMR are also discussed briefly.
Collapse
Affiliation(s)
- Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Kent R Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
81
|
Su X, Zhang L, Zhao L, Pan B, Chen B, Chen J, Zhai C, Li B. Efficient Protein–Protein Couplings Mediated by Small Molecules under Mild Conditions. Angew Chem Int Ed Engl 2022; 61:e202205597. [DOI: 10.1002/anie.202205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xun‐Cheng Su
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ling‐Yang Zhang
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Li‐Na Zhao
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bin‐Bin Pan
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ben‐Guang Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jia‐Liang Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Cheng‐Liang Zhai
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
82
|
Wang T, Li C, Wang M, Zhang J, Zheng Q, Liang L, Chu G, Tian X, Deng H, He W, Liu L, Li J. Expedient Synthesis of Ubiquitin‐like Protein ISG15 Tools Through Chemo‐Enzymatic Ligation Catalyzed by a Viral Protease Lbpro. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tian Wang
- Tsinghua University Department of Chemistry CHINA
| | - Chuntong Li
- Tsinghua University Department of Chemistry CHINA
| | - Meijing Wang
- Tsinghua University School of Pharmaceutical Sciences CHINA
| | | | | | - Lujun Liang
- Tsinghua University Department of Chemistry CHINA
| | - Guochao Chu
- Tsinghua University Department of Chemistry CHINA
| | - Xiaolin Tian
- Tsinghua University School of Life Sciences CHINA
| | - Haiteng Deng
- Tsinghua University School of Life Sciences CHINA
| | - Wei He
- Tsinghua University School of Pharmaceutical Sciences CHINA
| | - Lei Liu
- Tsinghua University Chemistry Tsinghua University 100084 Beijing CHINA
| | - Jinghong Li
- Tsinghua University Department of Chemistry CHINA
| |
Collapse
|
83
|
Wu H, Wei T, Ngai WL, Zhou H, Li X. Ligation Embedding Aggregation Disruptor Strategy Enables the Chemical Synthesis of PD-1 Immunoglobulin and Extracellular Domains. J Am Chem Soc 2022; 144:14748-14757. [PMID: 35918891 DOI: 10.1021/jacs.2c05350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Chemical synthesis of proteins with aggregable or colloidal peptide segments presents a formidable task, as such peptides prove to be difficult for both solid-phase peptide synthesis and peptide ligation. To address this issue, we have developed ligation embedding aggregation disruptor (LEAD) as an effective strategy for the chemical synthesis of difficult-to-obtain proteins. The N,O/S-benzylidene acetals generated from Ser/Thr ligation and Cys/Pen ligation are found to effectively disrupt peptide aggregation, and they can be carried for sequential ligations toward protein synthesis. The effectiveness and generality of this strategy have been demonstrated with total syntheses of programmed cell death protein 1 immunoglobulin like V-type domain and extracellular domain.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai Lok Ngai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
84
|
Sun Z, Ma W, Cao Y, Wei T, Mo X, Chow HY, Tan Y, Cheung CH, Liu J, Lee HK, Tse EC, Liu H, Li X. Superfast desulfurization for protein chemical synthesis and modification. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
85
|
Kerul L, Schrems M, Schmid A, Meli R, Becker CF, Bello C. Semisynthesis of Homogeneous, Active Granulocyte Colony‐Stimulating Factor Glycoforms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lukas Kerul
- University of Vienna: Universitat Wien Chemistry AUSTRIA
| | | | - Alanca Schmid
- University of Vienna: Universitat Wien Chemistry AUSTRIA
| | | | - Christian F.W. Becker
- Universitat Wien Institute of Biological Chemistry Währinger Str. 38 1090 Vienna AUSTRIA
| | - Claudia Bello
- University of Florence: Universita degli Studi di Firenze Chemistry ITALY
| |
Collapse
|
86
|
Zuo C, Ding R, Wu X, Wang Y, Chu GC, Liang LJ, Ai H, Tong ZB, Mao J, Zheng Q, Wang T, Li Z, Liu L, Sun D. Thioester-Assisted Sortase-A-Mediated Ligation. Angew Chem Int Ed Engl 2022; 61:e202201887. [PMID: 35514243 DOI: 10.1002/anie.202201887] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Sortase A (SrtA)-mediated ligation, a popular method for protein labeling and semi-synthesis, is limited by its reversibility and dependence on the LPxTG motif, where "x" is any amino acid. Here, we report that SrtA can mediate the efficient and irreversible ligation of a protein/peptide containing a C-terminal thioester with another protein/peptide bearing an N-terminal Gly, with broad tolerance for a wide variety of LPxT-derived sequences. This strategy, the thioester-assisted SrtA-mediated ligation, enabled the expedient preparation of proteins bearing various N- or C-terminal labels, including post-translationally modified proteins such as the Ser139-phosphorylated histone H2AX and Lys9-methylated histone H3, with less dependence on the LPxTG motif. Our study validates the chemical modification of substrates as an effective means of augmenting the synthetic capability of existing enzymatic methods.
Collapse
Affiliation(s)
- Chong Zuo
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ruichao Ding
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiangwei Wu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuanxia Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guo-Chao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huasong Ai
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ze-Bin Tong
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junxiong Mao
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tian Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zichen Li
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Demeng Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
87
|
Wu WH, Guo J, Zhang L, Zhang WB, Gao W. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chem Biol 2022; 3:815-829. [PMID: 35866174 PMCID: PMC9257627 DOI: 10.1039/d1cb00246e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Living organisms have evolved cyclic or multicyclic peptides and proteins with enhanced stability and high bioactivity superior to their linear counterparts for diverse purposes. Herein, we review recent progress in applying this concept to artificial peptides and proteins to exploit the functional benefits of these macrocycles. Not only have simple cyclic forms been prepared, numerous macrocycle variants, such as knots and links, have also been developed. The chemical tools and synthetic strategies are summarized for the biological synthesis of these macrocycles, demonstrating it as a powerful alternative to chemical synthesis. Its further application to therapeutic peptides/proteins has led to biomedicines with profoundly improved pharmaceutical performances. Finally, we present our perspectives on the field and its future developments.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianwen Guo
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| |
Collapse
|
88
|
Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev 2022; 51:5691-5730. [PMID: 35726784 DOI: 10.1039/d1cs00991e] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a crucial regulator of protein and cellular function, yet, despite identifying an enormous number of phosphorylation sites, the role of most is still unclear. Each phosphoform, the particular combination of phosphorylations, of a protein has distinct and diverse biological consequences. Aberrant phosphorylation is implicated in the development of many diseases. To investigate their function, access to defined protein phosphoforms is essential. Materials obtained from cells often are complex mixtures. Recombinant methods can provide access to defined phosphoforms if site-specifically acting kinases are known, but the methods fail to provide homogenous material when several amino acid side chains compete for phosphorylation. Chemical and chemoenzymatic synthesis has provided an invaluable toolbox to enable access to previously unreachable phosphoforms of proteins. In this review, we selected important tools that enable access to homogeneously phosphorylated protein and discuss examples that demonstrate how they can be applied. Firstly, we discuss the synthesis of phosphopeptides and proteins through chemical and enzymatic means and their advantages and limitations. Secondly, we showcase illustrative examples that applied these tools to answer biological questions pertaining to proteins involved in signal transduction, control of transcription, neurodegenerative diseases and aggregation, apoptosis and autophagy, and transmembrane proteins. We discuss the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Tim Bilbrough
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Emanuele Piemontese
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
89
|
Zhu T, Cui Y, Geng W, Liu G, Jiang H, Li R, Wu B. Creating an Unusual Glycine-Rich Motif in a Peptide Amidase Leads to Versatile Protein C-Terminal Traceless Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchao Geng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guoxia Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
90
|
Su XC, Zhang LY, Zhao LN, Pan BB, Chen BG, Chen JL, Zhai CL, Li B. Efficient Protein‐Protein Couplings Mediated by Small Molecules under Mild Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xun-Cheng Su
- Nankai University College of Chemistry Stat Key Laboratory of Elemento-organic Chemistry Weijing Road 94 300071 Tianjin CHINA
| | | | - Li-Na Zhao
- Nankai University college of chemistry CHINA
| | - Bin-Bin Pan
- Nankai University college of chemistry CHINA
| | | | | | | | - Bin Li
- Nankai University college of chemistry CHINA
| |
Collapse
|
91
|
Istrate A, Geeson MB, Navo CD, Sousa BB, Marques MC, Taylor RJ, Journeaux T, Oehler SR, Mortensen MR, Deery MJ, Bond AD, Corzana F, Jiménez-Osés G, Bernardes GJL. Platform for Orthogonal N-Cysteine-Specific Protein Modification Enabled by Cyclopropenone Reagents. J Am Chem Soc 2022; 144:10396-10406. [PMID: 35658467 PMCID: PMC9490850 DOI: 10.1021/jacs.2c02185] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein conjugates are valuable tools for studying biological processes or producing therapeutics, such as antibody-drug conjugates. Despite the development of several protein conjugation strategies in recent years, the ability to modify one specific amino acid residue on a protein in the presence of other reactive side chains remains a challenge. We show that monosubstituted cyclopropenone (CPO) reagents react selectively with the 1,2-aminothiol groups of N-terminal cysteine residues to give a stable 1,4-thiazepan-5-one linkage under mild, biocompatible conditions. The CPO-based reagents, all accessible from a common activated ester CPO-pentafluorophenol (CPO-PFP), allow selective modification of N-terminal cysteine-containing peptides and proteins even in the presence of internal, solvent-exposed cysteine residues. This approach enabled the preparation of a dual protein conjugate of 2×cys-GFP, containing both internal and N-terminal cysteine residues, by first modifying the N-terminal residue with a CPO-based reagent followed by modification of the internal cysteine with a traditional cysteine-modifying reagent. CPO-based reagents enabled a copper-free click reaction between two proteins, producing a dimer of a de novo protein mimic of IL2 that binds to the β-IL2 receptor with low nanomolar affinity. Importantly, the reagents are compatible with the common reducing agent dithiothreitol (DTT), a useful property for working with proteins prone to dimerization. Finally, quantum mechanical calculations uncover the origin of selectivity for CPO-based reagents for N-terminal cysteine residues. The ability to distinguish and specifically target N-terminal cysteine residues on proteins facilitates the construction of elaborate multilabeled bioconjugates with minimal protein engineering.
Collapse
Affiliation(s)
- Alena Istrate
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Michael B Geeson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Barbara B Sousa
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marta C Marques
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ross J Taylor
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Toby Journeaux
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Sebastian R Oehler
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Michael R Mortensen
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Michael J Deery
- Cambridge Centre for Proteomics, Gleeson Building, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, United Kingdom
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom.,Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
92
|
Colorimetric and electrochemical detection of ligase through ligation reaction-induced streptavidin assembly. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
93
|
Wang S, Osgood AO, Chatterjee A. Uncovering post-translational modification-associated protein-protein interactions. Curr Opin Struct Biol 2022; 74:102352. [PMID: 35334254 PMCID: PMC9464464 DOI: 10.1016/j.sbi.2022.102352] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023]
Abstract
In living systems, the chemical space and functional repertoire of proteins are dramatically expanded through the post-translational modification (PTM) of various amino acid residues. These modifications frequently trigger unique protein-protein interactions (PPIs) - for example with reader proteins that directly bind the modified amino acid residue - which leads to downstream functional outcomes. The modification of a protein can also perturb its PPI network indirectly, for example, through altering its conformation or subcellular localization. Uncovering the network of unique PTM-triggered PPIs is essential to fully understand the roles of an ever-expanding list of PTMs in our biology. In this review, we discuss established strategies and current challenges associated with this endeavor.
Collapse
Affiliation(s)
- Shu Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Arianna O Osgood
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
94
|
Podolsky KA, Masubuchi T, Debelouchina GT, Hui E, Devaraj NK. In Situ Assembly of Transmembrane Proteins from Expressed and Synthetic Components in Giant Unilamellar Vesicles. ACS Chem Biol 2022; 17:1015-1021. [PMID: 35482050 PMCID: PMC9255206 DOI: 10.1021/acschembio.2c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reconstituting functional transmembrane (TM) proteins into model membranes is challenging due to the difficulty of expressing hydrophobic TM domains, which often require stabilizing detergents that can perturb protein structure and function. Recent model systems solve this problem by linking the soluble domains of membrane proteins to lipids, using noncovalent conjugation. Herein, we test an alternative solution involving the in vitro assembly of TM proteins from synthetic TM domains and expressed soluble domains using chemoselective peptide ligation. We developed an intein mediated ligation strategy to semisynthesize single-pass TM proteins in synthetic giant unilamellar vesicle (GUV) membranes by covalently attaching soluble protein domains to a synthetic TM polypeptide, avoiding the requirement for detergent. We show that the extracellular domain of programmed cell death protein 1, a mammalian immune checkpoint receptor, retains its ligand-binding function at a membrane interface after ligation to a synthetic TM peptide in GUVs, facilitating the study of receptor-ligand interactions.
Collapse
Affiliation(s)
- K. A. Podolsky
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, U.S.A
| | - T. Masubuchi
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, CA, U.S.A
| | - G. T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, U.S.A
| | - E. Hui
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, CA, U.S.A
| | - N. K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, U.S.A.,Corresponding Author: Neal K. Devaraj,
| |
Collapse
|
95
|
Moreno-Yruela C, Bæk M, Monda F, Olsen CA. Chiral Posttranslational Modification to Lysine ε-Amino Groups. Acc Chem Res 2022; 55:1456-1466. [PMID: 35500056 DOI: 10.1021/acs.accounts.2c00115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ConspectusThe sophistication of proteomic analysis has revealed that protein lysine residues are posttranslationally modified by a variety of acyl groups. Protein lysine acetylation regulates metabolism, gene expression, and microtubule formation and has been extensively studied; however, the understanding of the biological significance of other acyl posttranslational modifications (PTMs) is still in its infancy. The acylation of lysine residues is mediated either by acyltransferase "writer" enzymes or by nonenzymatic mechanisms and hydrolase enzymes, termed "erasers", that cleave various acyl PTMs to reverse the modified state. We have studied the human lysine deacylase enzymes, comprising the 11 Zn2+-dependent histone deacetylases (HDACs) and the 7 NAD+-consuming sirtuins (SIRTs), over the past decade. We have thus developed selective inhibitors and molecular probes and have studied the acyl substrate scope of each enzyme using chemically synthesized peptide substrates and photo-cross-linking probes. Recently, we have turned our attention to PTMs containing a stereogenic center, such as ε-N-β-hydroxybutyryllysine (Kbhb) and ε-N-lactyllysine (Kla), that each comprise a pair of mirror image stereoisomers as modifications. Both modifications are found on histones, where they affect gene transcription in response to specific metabolic states, and they are found on cytosolic and mitochondrial enzymes involved in fatty acid oxidation (Kbhb) and glycolysis (Kla), respectively. Thus, chiral modifications to lysine side chains give rise to two distinct diastereomeric products, with separate metabolic origins and potentially different activities exhibited by writer and eraser enzymes. Lysine l-lactylation originates from l-lactate, a major energy carrier produced from pyruvate after glycolysis, and it is highly induced by metabolic states such as the Warburg effect. l-Lactate can possibly be activated by acyl-coenzyme A (CoA) synthetases and transferred to lysine residues by histone acetyltransferases such as p300. d-Lactylation, on the other hand, arises primarily from a nonenzymatic reaction with d-lactylglutathione, an intermediate in the glyoxalase pathway. In addition to their distinct origin, we found that both K(l-la) and K(d-la) modifications are erased by HDACs with different catalytic efficiencies. Also, K(l-bhb) and K(d-bhb) arise from different metabolites but depend on interconnected metabolic pathways, and the two stereoisomers of ε-N-3-hydroxy-3-methylglutaryllysine (Khmg) originate from a single precursor that may then be regulated differently by eraser enzymes. Distinguishing between the individual stereoisomers of PTMs is therefore of crucial importance. In the present Account, we will (1) revisit the long-standing evidence for the distinct production and dynamics of enantiomeric forms of chiral metabolites that serve as ε-N-acyllysine PTMs and (2) highlight the outstanding questions that arise from the recent literature on chiral lysine PTMs resulting from these metabolites.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design of Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Michael Bæk
- Center for Biopharmaceuticals & Department of Drug Design of Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Fabrizio Monda
- Center for Biopharmaceuticals & Department of Drug Design of Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals & Department of Drug Design of Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
96
|
Kulkarni SS, Watson EE, Maxwell JWC, Niederacher G, Johansen‐Leete J, Huhmann S, Mukherjee S, Norman AR, Kriegesmann J, Becker CFW, Payne RJ. Expressed Protein Selenoester Ligation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202200163. [PMID: 38505698 PMCID: PMC10947028 DOI: 10.1002/ange.202200163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 03/21/2024]
Abstract
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Emma E. Watson
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Joshua W. C. Maxwell
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Gerhard Niederacher
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Jason Johansen‐Leete
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Susanne Huhmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Somnath Mukherjee
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Alexander R. Norman
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Julia Kriegesmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Richard J. Payne
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|
97
|
Kulkarni SS, Watson EE, Maxwell JWC, Niederacher G, Johansen‐Leete J, Huhmann S, Mukherjee S, Norman AR, Kriegesmann J, Becker CFW, Payne RJ. Expressed Protein Selenoester Ligation. Angew Chem Int Ed Engl 2022; 61:e202200163. [PMID: 35194928 PMCID: PMC9314092 DOI: 10.1002/anie.202200163] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Emma E. Watson
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Joshua W. C. Maxwell
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Gerhard Niederacher
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Jason Johansen‐Leete
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Susanne Huhmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Somnath Mukherjee
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Alexander R. Norman
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Julia Kriegesmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Richard J. Payne
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|
98
|
Zuo C, Ding R, Wu X, Wang Y, Chu GC, Liang LJ, Ai H, Tong ZB, Mao J, Zheng Q, Wang T, Li Z, Liu L, Sun D. Thioester‐Assisted Sortase‐A ‐ Mediated Ligation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chong Zuo
- Tsinghua University Tsinghua-Peking Center for Life Sciences CHINA
| | - Ruichao Ding
- Tsinghua University Tsinghua-Peking Center for Life Sciences CHINA
| | - Xiangwei Wu
- Tsinghua University Tsinghua-Peking Center for Life Sciences CHINA
| | - Yuanxia Wang
- University of Science and Technology of China School of Life Sciences CHINA
| | - Guo-Chao Chu
- Tsinghua University Department of Chemistry CHINA
| | - Lu-Jun Liang
- Tsinghua University Department of Chemistry CHINA
| | - Huasong Ai
- Tsinghua University Department of Chemistry CHINA
| | - Ze-Bin Tong
- Tsinghua University Department of Chemistry CHINA
| | - Junxiong Mao
- Tsinghua University Department of Chemistry CHINA
| | | | - Tian Wang
- Tsinghua University Tsinghua-Peking Center for Life Sciences CHINA
| | - Zichen Li
- Tsinghua University Department of Chemistry CHINA
| | - Lei Liu
- Tsinghua University Department of Chemistry CHINA
| | - Demeng Sun
- University of Science and Technology of China School of Life Sciences 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
99
|
Li R, Schmidt M, Zhu T, Yang X, Feng J, Tian Y, Cui Y, Nuijens T, Wu B. Traceless enzymatic protein synthesis without ligation sites constraint. Natl Sci Rev 2022; 9:nwab158. [PMID: 35663243 PMCID: PMC9155641 DOI: 10.1093/nsr/nwab158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis and semisynthesis offer immense promise for life sciences and have impacted pharmaceutical innovation. The absence of a generally applicable method for traceless peptide conjugation with a flexible choice of junction sites remains a bottleneck for accessing many important synthetic targets, however. Here we introduce the PALME (protein activation and ligation with multiple enzymes) platform designed for sequence-unconstrained synthesis and modification of biomacromolecules. The upstream activating modules accept and process easily accessible synthetic peptides and recombinant proteins, avoiding the challenges associated with preparation and manipulation of activated peptide substrates. Cooperatively, the downstream coupling module provides comprehensive solutions for sequential peptide condensation, cyclization and protein N/C-terminal or internal functionalization. The practical utility of this methodology is demonstrated by synthesizing a series of bioactive targets ranging from pharmaceutical ingredients to synthetically challenging proteins. The modular PALME platform exhibits unprecedentedly broad accessibility for traceless protein synthesis and functionalization, and holds enormous potential to extend the scope of protein chemistry and synthetic biology.
Collapse
Affiliation(s)
- Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Marcel Schmidt
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen 6167 RD, the Netherlands
| | - Tong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu'e Tian
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Timo Nuijens
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen 6167 RD, the Netherlands
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
100
|
Li T, Zhang Y, Li T, Zhuang H, Wang F, Wang N, Schmidt RR, Peng P. Divergent Synthesis of Core m1, Core m2 and Core m3
O
‐Mannosyl
Glycopeptides via a Chemoenzymatic Approach. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Youqin Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Tong Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Haoru Zhuang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | | | - Peng Peng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|