51
|
Kvasnicka J, Cohen Hubal EA, Rodgers TFM, Diamond ML. Textile Washing Conveys SVOCs from Indoors to Outdoors: Application and Evaluation of a Residential Multimedia Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12517-12527. [PMID: 34472344 PMCID: PMC9590288 DOI: 10.1021/acs.est.1c02674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Indoor environments have elevated concentrations of numerous semivolatile organic compounds (SVOCs). Textiles provide a large surface area for accumulating SVOCs, which can be transported to outdoors through washing. A multimedia model was developed to estimate advective transport rates (fluxes) of 14 SVOCs from indoors to outdoors by textile washing, ventilation, and dust removal/disposal. Most predicted concentrations were within 1 order of magnitude of measurements from a study of 26 Canadian homes. Median fluxes to outdoors [μg·(year·home)-1] spanned approximately 4 orders of magnitude across compounds, according to the variability in estimated aggregate emissions to indoor air. These fluxes ranged from 2 (2,4,4'-tribromodiphenyl ether, BDE-28) to 30 200 (diethyl phthalate, DEP) for textile washing, 12 (BDE-28) to 123 200 (DEP) for ventilation, and 0.1 (BDE-28) to 4200 (bis(2-ethylhexyl) phthalate, DEHP) for dust removal. Relative contributions of these pathways to the total flux to outdoors strongly depended on physical-chemical properties. Textile washing contributed 20% tris-(2-chloroisopropyl)phosphate (TCPP) to 62% tris(2-butoxyethyl)phosphate (TBOEP) on average. These results suggest that residential textile washing can be an important transport pathway to outdoors for SVOCs emitted to indoor air, with implications for human and ecological exposure. Interventions should try to balance the complex tradeoff of textile washing by minimizing exposures for both human occupants and aquatic ecosystems.
Collapse
Affiliation(s)
- Jacob Kvasnicka
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
| | - Elaine A. Cohen Hubal
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Durham, North Carolina, 27711, U.S.A
| | - Timothy F. M. Rodgers
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Miriam L. Diamond
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, Ontario, M5S 3E8, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
- Corresponding Author: Miriam L. Diamond, Department of Earth Sciences and School of the Environment, 22 Ursula Franklin Street, University of Toronto, Toronto, Ontario, Canada M5S 3B1, 1 (416) 978-1586,
| |
Collapse
|
52
|
Lou J, Wang W, Lu H, Wang L, Zhu L. Increased disinfection byproducts in the air resulting from intensified disinfection during the COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126249. [PMID: 34119971 PMCID: PMC8158349 DOI: 10.1016/j.jhazmat.2021.126249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 05/04/2023]
Abstract
Intensified use of disinfectants to control COVID-19 could unintentionally increase the disinfection byproducts (DBPs) in the environment. In indoor spaces, it is critical to determine the optimal disinfection practice to prevent the spread of the virus while keeping DBPs at relatively low levels in the air. The formation of DBPs exceed 0.1 μg/mg while hypochlorite dosed at >10 mg/m3. The total DBP concentrations in highly disinfected places (100-200 mg/m3 hypochlorite) were as high as 66.8 μg/m3, and the Hazard Index (HI) was up to 0.84, and both values were much higher than those in less disinfected places (<10 mg/m3 hypochlorite). Taking into account the HI, formation yields and the origin of the DBPs, we recommended 10 mg/m3 as the suggested hypochlorite dose to minimize DBPs generation during routine disinfection for controlling the coronavirus. DBPs in indoor air could be eliminated by ventilation, reducing the usage of personal care products, and wiping the solid surface with water before or after disinfection. These results highlighted the necessity to control air-borne DBPs and their associated health risks arising from intensified disinfection, and will guide the further development of evidence-based regulation on DBP exposure during disinfection and improve public health protection.
Collapse
Affiliation(s)
- Jinxiu Lou
- Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Wang
- Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
53
|
Choi G, Keil AP, Richardson DB, Daniels JL, Hoffman K, Villanger GD, Sakhi AK, Thomsen C, Reichborn-Kjennerud T, Aase H, Engel SM. Pregnancy exposure to organophosphate esters and the risk of attention-deficit hyperactivity disorder in the Norwegian mother, father and child cohort study. ENVIRONMENT INTERNATIONAL 2021; 154:106549. [PMID: 33910116 PMCID: PMC8217330 DOI: 10.1016/j.envint.2021.106549] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are a class of flame retardants in common use. OPEs can easily leach from materials, resulting in human exposure. Increasing concentrations have been reported in human populations over the past decade. Recent studies have linked prenatal OPE exposure to hyperactivity and attention problems in children. Such behaviors are often found among children with attention-deficit hyperactivity disorder (ADHD), however, no study has investigated OPEs in relation to clinically assessed ADHD. OBJECTIVE To evaluate prenatal exposure to OPEs as risk factors for clinically assessed ADHD using a case-cohort study nested within the Norwegian Mother, Father, and Child Cohort Study (MoBa). METHODS We included in the case group 295 ADHD cases obtained via linkage with the Norwegian Patient Registry, and the sub-cohort group 555 children sampled at baseline, irrespective of their ADHD case status. Prenatal concentrations of OPE metabolites were measured in maternal urine collected at 17 weeks of gestation, and included diphenyl phosphate (DPHP), di-n-butyl phosphate (DNBP), bis(2-butoxyethyl) hydrogen phosphate (BBOEP), and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP). We estimated risk ratios and the corresponding 95% confidence intervals [95% CI] using logistic regression, adjusting for season of urine collection, child sex, birth year, and maternal depression, education, and sum of urinary di(2-ethylhexyl) phthalate metabolites (∑DEHP) concentration during pregnancy. To assess the overall impact of simultaneously decreasing exposure to all chemical constituents of an OPE-phthalate mixture, quantile based g-computation was implemented. The mixture constituents included OPE and phthalate metabolites commonly detected in our study. In all models, we considered effect measure modification by child sex and polymorphisms in genes encoding paraoxonase 1 (PON1) and cytochrome P450 (P450) enzymes. Mediation analysis was conducted using thyroid function biomarkers estimated from maternal blood collected at 17 weeks of gestation. RESULTS DPHP was detected in nearly all samples (97.2%), with a higher geometric mean among the case group (0.70 µg/L) as compared to the sub-cohort (0.52 µg/L). DNBP was commonly detected as well (93.8%), while BBOEP (52.9%) and BDCIPP (22.9%) were detected less frequently. A higher risk of ADHD was observed in children with greater than median exposure to DPHP during pregnancy (risk ratio: 1.38 [95% CI: 0.96, 1.99]), which was slightly higher among girls (2.04 [1.03, 4.02]) and children of mothers with PON1 Q192R genotype QR (1.69 [0.89, 3.19]) or PON1 Q192R genotype RR (4.59 [1.38, 15.29]). The relationship between DPHP and ADHD (total risk ratio: 1.34 [0.90, 2.02]) was partially mediated through total triiodothyronine to total thyroxine ratio (natural direct effect: 1.29 [0.87, 1.94]; natural indirect effect: 1.04 [1.00, 1.10]; 12.48% mediated). We also observed an elevated risk of ADHD in relation to BDCIPP detection during pregnancy (1.50 [0.98, 2.28]). We did not observe notable differences in ADHD by DNBP (0.88 [0.62, 1.26]) or BBOEP (1.03 [0.73, 1.46]) during pregnancy. Simultaneously decreasing all constituents of common-detect OPE-phthalate mixture, specifically DPHP, DNBP, and 6 phthalate metabolites, by a quartile resulted in an ADHD risk ratio of 0.68 [0.64, 0.72]. CONCLUSION Prenatal exposure to DPHP and BDCIPP may increase the risk of ADHD. For DPHP, we observed potential modification by child sex and maternal PON1 Q192R genotype and partial mediation through maternal thyroid hormone imbalance at 17 weeks gestation.
Collapse
Affiliation(s)
- Giehae Choi
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Alexander P Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie L Daniels
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | | | | | - Ted Reichborn-Kjennerud
- Norwegian Institute of Public Health, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Heidi Aase
- Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
54
|
Choi G, Keil AP, Villanger GD, Richardson DB, Daniels JL, Hoffman K, Sakhi AK, Thomsen C, Herring AH, Drover SSM, Nethery R, Aase H, Engel SM. Pregnancy exposure to common-detect organophosphate esters and phthalates and maternal thyroid function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146709. [PMID: 33839654 PMCID: PMC8222630 DOI: 10.1016/j.scitotenv.2021.146709] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 03/19/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Contemporary human populations are exposed to elevated concentrations of organophosphate esters (OPEs) and phthalates. Some metabolites have been linked with altered thyroid function, however, inconsistencies exist across thyroid function biomarkers. Research on OPEs is sparse, particularly during pregnancy, when maintaining normal thyroid function is critical to maternal and fetal health. In this paper, we aimed to characterize relationships between OPEs and phthalates exposure and maternal thyroid function during pregnancy, using a cross-sectional investigation of pregnant women nested within the Norwegian Mother, Father, and Child Cohort (MoBa). METHODS We included 473 pregnant women, who were euthyroid and provided bio-samples at 17 weeks' gestation (2004-2008). Four OPE and six phthalate metabolites were measured from urine; six thyroid function biomarkers were estimated from blood. Relationships between thyroid function biomarkers and log-transformed concentrations of OPE and phthalate metabolites were characterized using two approaches that both accounted for confounding by co-exposures: co-pollutant adjusted general linear model (GLM) and Bayesian Kernal Machine Regression (BKMR). RESULTS We restricted our analysis to common-detect OPE and phthalate metabolites (>94%): diphenyl phosphate (DPHP), di-n-butyl phosphate (DNBP), and all phthalate metabolites. In GLM, pregnant women with summed di-isononyl phthalate metabolites (∑DiNP) concentrations in the 75th percentile had a 0.37 ng/μg lower total triiodothyronine (TT3): total thyroxine (TT4) ratio (95% credible interval: [-0.59, -0.15]) as compared to those in the 25th percentile, possibly due to small but diverging influences on TT3 (-1.99 ng/dL [-4.52, 0.53]) and TT4 (0.13 μg/dL [-0.01, 0.26]). Similar trends were observed for DNBP and inverse associations were observed for DPHP, monoethyl phthalate, mono-isobutyl phthalate, and mono-n-butyl phthalate. Most associations observed in co-pollutants adjusted GLMs were attenuated towards the null in BKMR, except for the case of ∑DiNP and TT3:TT4 ratio (-0.48 [-0.96, 0.003]). CONCLUSIONS Maternal thyroid function varied modestly with ∑DiNP, whereas results for DPHP varied by the type of statistical models.
Collapse
Affiliation(s)
- Giehae Choi
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Alexander P Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie L Daniels
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | | | - Amy H Herring
- Department of Statistical Science and Global Health Institute, Duke University, Durham, NC, USA
| | - Samantha S M Drover
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel Nethery
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Heidi Aase
- Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
55
|
Demirtepe H, Melymuk L, Codling G, Murínová ĽP, Richterová D, Rašplová V, Trnovec T, Klánová J. Targeted and suspect screening of plasticizers in house dust to assess cumulative human exposure risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146667. [PMID: 33812101 DOI: 10.1016/j.scitotenv.2021.146667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Indoor dust is an important exposure route to anthropogenic chemicals used in consumer products. Plasticizers are common product additives and can easily leach out of the product and partition to dust. Investigations of plasticizers typically focus on a subset of phthalate esters (PEs), but there are many more PEs in use, and alternative plasticizers (APs) are seeing greater use after recognition of adverse health effects of PEs. In this study we use full scan high resolution mass spectrometry for targeted and suspect screening of PEs and APs in house dust and to assess the potential risk of human exposure. House dust samples from Eastern Slovakia were investigated and concentrations of ∑12PEs and ∑5APs ranged 12-2765 μg/g and 45-13,260 μg/g, respectively. APs were at similar levels to PEs, indicating common usage of these compounds in products in homes. Evaluation of individual compound toxicity combined with human intake via dust ingestion suggested PEs are of lower priority compared to semivolatile organic compounds such as polychlorinated biphenyls due to their lower toxicity. However, cumulative risk assessment (CRA) is a more appropriate evaluation of risk, considering the presences of many PEs in dust and their similar toxic mode of action. CRA based on median toxicity reference values (TRVs) suggested acceptable risks for dust ingestion, however, the wide range of literature-derived TRVs is a large uncertainty, especially for the APs. Use of newer TRVs suggest risk from dust ingestion alone, i.e. not even considering diet, inhalation, and dermal contact. Additionally, screening of full-scan instrumental spectra identified a further 40 suspect PE compounds, suggesting the CRA based on the 12 target PEs underestimates the risk.
Collapse
Affiliation(s)
- Hale Demirtepe
- RECETOX, Masaryk University, Kamenice 753/5, pavilion D29, 625 00 Brno, Czech Republic; İzmir Institute of Technology, Faculty of Engineering, Department of Environmental Engineering, 35430, Urla, İzmir, Turkey
| | - Lisa Melymuk
- RECETOX, Masaryk University, Kamenice 753/5, pavilion D29, 625 00 Brno, Czech Republic.
| | - Garry Codling
- RECETOX, Masaryk University, Kamenice 753/5, pavilion D29, 625 00 Brno, Czech Republic
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Denisa Richterová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Vladimíra Rašplová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Jana Klánová
- RECETOX, Masaryk University, Kamenice 753/5, pavilion D29, 625 00 Brno, Czech Republic
| |
Collapse
|
56
|
Navaranjan G, Diamond ML, Harris SA, Jantunen LM, Bernstein S, Scott JA, Takaro TK, Dai R, Lefebvre DL, Azad MB, Becker AB, Mandhane PJ, Moraes TJ, Simons E, Turvey SE, Sears MR, Subbarao P, Brook JR. Early life exposure to phthalates and the development of childhood asthma among Canadian children. ENVIRONMENTAL RESEARCH 2021; 197:110981. [PMID: 33691158 DOI: 10.1016/j.envres.2021.110981] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Studies have demonstrated an association between phthalate exposure and childhood asthma, although results have been inconsistent. No epidemiological studies have examined exposure during the first year of life. OBJECTIVE To investigate the association between phthalate exposures in the home environment during the first year of life, and subsequent development of childhood asthma and related symptoms. METHODS This study used a case-cohort design including 436 randomly selected children and all additional cases of asthma at 5 years (ntotal = 129) and recurrent wheeze between 2 and 5 years (ntotal = 332) within the CHILD Cohort Study, a general population Canadian birth cohort of 3455 children. Phthalate exposure was assessed using house dust samples collected during a standardized home visit when children were 3-4 months of age. All children were assessed by specialist clinicians for asthma and allergy at 1, 3 and 5 years. Logistic regression was used to assess the association between exposure to five phthalates and asthma diagnosis at 5 years, and recurrent wheeze between 2 and 5 years, with further stratification by wheeze subtypes (late onset, persistent, transient) based on the timing of onset and persistence of wheeze symptoms. RESULTS Di(2-ethylhexyl) phthalate (DEHP) had the highest concentration in dust (mediansubcohort = 217 μg/g), followed by benzyl butyl phthalate (BzBP) (20 μg/g). A nearly four-fold increase in risk of developing asthma was associated with the highest concentration quartile of DEHP (OR = 3.92, 95% CI: 1.87-8.24) including a positive dose-response relationship. A two-fold increase in risk of recurrent wheeze was observed across all quartiles compared to the lowest quartile of DEHP concentrations. Compared to other wheeze subtypes, stronger associations for DEHP were observed with the late onset wheezing subtype, while stronger associations for di-iso-butyl phthalate (DiBP) and BzBP were observed with the transient subtype. DISCUSSION DEHP exposure at 3-4 months, at concentrations lower than other studies that reported an association, were associated with increased risks of asthma and recurrent wheeze among children at 5 years. These findings suggest the need to assess whether more stringent regulations are required to protect children's health, which can be informed by future work exploring the main sources of DEHP exposure.
Collapse
Affiliation(s)
| | | | | | - Liisa M Jantunen
- University of Toronto, Toronto, ON, Canada; Environment and Climate Change Canada, Toronto, ON, Canada
| | | | | | | | - Ruixue Dai
- Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | | - Theo J Moraes
- University of Toronto, Toronto, ON, Canada; Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | - Padmaja Subbarao
- University of Toronto, Toronto, ON, Canada; Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
57
|
Nazaroff WW. Residential air-change rates: A critical review. INDOOR AIR 2021; 31:282-313. [PMID: 33403728 DOI: 10.1111/ina.12785] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/13/2020] [Indexed: 05/26/2023]
Abstract
Air-change rate is an important parameter influencing residential air quality. This article critically assesses the state of knowledge regarding residential air-change rates, emphasizing periods of normal occupancy. Cumulatively, about 40 prior studies have measured air-change rates in approximately 10,000 homes using tracer gases, including metabolic CO2 . The central tendency of the air-change rates determined in these studies is reasonably described as lognormal with a geometric mean of 0.5 h-1 and a geometric standard deviation of 2.0. However, the geometric means of individual studies vary, mainly within the range 0.2-1 h-1 . Air-change rates also vary with time in residences. Factors influencing the air-change rate include weather (indoor-outdoor temperature difference and wind speed), the leakiness of the building envelope, and, when present, operation of mechanical ventilation systems. Occupancy-associated factors are also important, including window opening, induced exhaust from flued combustion, and use of heating and cooling systems. Empirical and methodological challenges remain to be effectively addressed. These include clarifying the time variation of air-change rates in residences during occupancy and understanding the influence of time-varying air-change rates on tracer-gas measurement techniques. Important opportunities are available to improve understanding of air-change rates and interzonal flows as factors affecting the source-to-exposure relationships for indoor air pollutants.
Collapse
Affiliation(s)
- William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| |
Collapse
|
58
|
Yu L, Ru S, Zheng X, Chen S, Guo H, Gao G, Zeng Y, Tang Y, Mai B. Brominated and phosphate flame retardants from interior and surface dust of personal computers: insights into sources for human dermal exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12566-12575. [PMID: 33083952 DOI: 10.1007/s11356-020-11132-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
It remains unclear whether internal or external sources play the more significant role in flame retardant (FR) contamination of surface dust from personal computers (PCs), which may lead to bias on dermal exposure assessment of FRs. In the present study, the occurrence and profiles of several brominated and phosphate FRs were measured in the interior dust, and the upper surface (keyboard) and bottom surface (bottom cover) wipes of PCs. BDE 209 (639 ng/g), decabromodiphenyl ethane (DBDPE, 885 ng/g), and triphenyl phosphate (TPHP, 1880 ng/g) were the most abundant chemicals in interior PC dust, while tris(2-chloroisopropyl) phosphate (TCIPP), TPHP, and DBDPE were dominant on both surfaces of PCs. No significant correlation between interior dust and both PC surfaces was observed for concentrations of most FRs except BDE 183. Different sources of FRs for interior and surface dust of PCs were further revealed by principal component analysis (PCA). FRs from external sources, rather than emission from inner PC components, are likely the main contributor for FR profiles on PC surfaces. Exposure assessment results demonstrated a minor contribution from PC dermal contact, compared with hand-to-mouth uptake, to total exposure. The applicability of surface wipes to assess dermal exposure to FR-treated products needs to be further investigated.
Collapse
Affiliation(s)
- Lehuan Yu
- School of Biology and Food Engineering, Guangdong Development Center of Applied Ecology and Ecological Engineering in Universities, Guangdong University of Education, Guangzhou, 510303, People's Republic of China.
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
| | - Shuling Ru
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaobo Zheng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Shejun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Huiying Guo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Guijuan Gao
- School of Biology and Food Engineering, Guangdong Development Center of Applied Ecology and Ecological Engineering in Universities, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yijie Tang
- School of Biology and Food Engineering, Guangdong Development Center of Applied Ecology and Ecological Engineering in Universities, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| |
Collapse
|
59
|
Nguyen LV, Gravel S, Labrèche F, Bakhiyi B, Verner MA, Zayed J, Jantunen LM, Arrandale VH, Diamond ML. Can Silicone Passive Samplers be Used for Measuring Exposure of e-Waste Workers to Flame Retardants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15277-15286. [PMID: 33196172 DOI: 10.1021/acs.est.0c05240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silicone passive samplers were assessed for measuring personal exposure to 37 flame retardants at three Québec e-waste recycling facilities. Silicone brooches (n = 45), wristbands (n = 28), and armbands (n = 9) worn during a ∼8 h work shift accumulated detectable amounts of 95-100% of the target compounds. Brooch concentrations were significantly correlated with those from active air samplers from which we conclude that the brooches could be used to approximate inhalation exposure and other exposures related to air concentrations such as dermal exposure. The generic sampling rate of the brooch (19 ± 11 m3 day-1 dm-2) was 13 and 22 times greater than estimated for home and office environments, respectively, likely because of the dusty work environment and greater movement of e-waste workers. BDE-209 concentrations in brooches and wristbands were moderately and significantly (p < 0.05) correlated with levels in blood plasma; organophosphorus esters in brooches and wristbands were weakly and insignificantly correlated with their metabolite biomarkers in post-shift spot urine samples. Silicone brooches and wristbands deployed over a single shift in a dusty occupational setting can be useful for indicating the internal exposure to compounds with relatively long biological half-lives, but their use for compounds with relatively short half-lives is not clear and may require either a longer deployment time or an integrated biomarker measure.
Collapse
Affiliation(s)
- Linh V Nguyen
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Sabrina Gravel
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, Québec H3A 3C2, Canada
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Québec H3T 1A8, Canada
| | - France Labrèche
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, Québec H3A 3C2, Canada
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Québec H3T 1A8, Canada
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec H3N 1X9, Canada
| | - Bouchra Bakhiyi
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Québec H3T 1A8, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Québec H3T 1A8, Canada
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec H3N 1X9, Canada
| | - Joseph Zayed
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Québec H3T 1A8, Canada
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec H3N 1X9, Canada
| | - Liisa M Jantunen
- Air Quality Processes Research Section, Environment and Climate Change, Egbert, Ontario L0L 1N0, Canada
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Victoria H Arrandale
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario M5G 1X3, Canada
| | - Miriam L Diamond
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
| |
Collapse
|