51
|
Hu Y, Sun S, Guo J, Cheng F, Li Z. In situ anchoring strategy to enhance dual nonradical degradation of sulfamethoxazole with high loading manganese doped carbon nitride. CHEMOSPHERE 2022; 303:135035. [PMID: 35609659 DOI: 10.1016/j.chemosphere.2022.135035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
A low-cost catalyst with high metal loading and unique catalytic activities is highly desired for peroxymonosulfate (PMS) activation in environmental remediation. Herein, in situ anchoring strategy using 1,10-phenanthroline is reported to construct manganese doped carbon nitride (PMCN) with 8.2 wt% manganese loading and dramatically enhanced PMS adsorption and sulfamethoxazole (SMX) removal efficiency. Our study revealed that the PMCN/PMS system readily reacted with contaminants with electron-rich groups, where complete degradation of sulfamethoxazole (SMX) was achieved within 60 min. Combining quenching experiments, EPR tests, and electrochemical analysis, we proposed a dual nonradical pathway dominated by high-valent manganese oxygen species (Mn(V) = O) and electron transfer. Systematic investigation elucidated that the introduction of 1,10-phenanthroline constructed denser catalyst active sites, and identified the manganese center and pyridine nitrogen as the active sites for PMS activation. Furthermore, PMCN exhibited excellent pH anti-interference ability and good reusability, achieving more than 90% SMX degradation efficiency after four cycles. This study provides new insights into the regulation of Mn-N active sites and promotes the mechanistic understanding of the synergistic effect of manganese and pyridine nitrogen in PMS activation.
Collapse
Affiliation(s)
- Youyou Hu
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Siyu Sun
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Jialin Guo
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Fan Cheng
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Zhengkui Li
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
52
|
Fu A, Liu Z, Sun Z. Cu/Fe oxide integrated on graphite felt for degradation of sulfamethoxazole in the heterogeneous electro-Fenton process under near-neutral conditions. CHEMOSPHERE 2022; 297:134257. [PMID: 35271897 DOI: 10.1016/j.chemosphere.2022.134257] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
In the heterogeneous electro-Fenton (EF) system, high-efficiency and durable materials have attracted widespread attention as cathodes for degradation of refractory organic pollutants. In this study, a stable Cu/Fe oxide modified graphite felt electrode (Cu0.33Fe0.67NBDC-300/GF) was fabricated via a one-step hydrothermal method and subsequent thermal treatment, which used a bimetallic metal-organic framework (MOF) with 2-aminoterephthalic acid (NH2BDC) ligand as the precursor. The Cu0.33Fe0.67NBDC-300/GF electrode was used as the cathode for sulfamethoxazole (SMX) degradation in the heterogeneous EF process. The coexistence of the FeII/FeIII and CuI/CuII redox couples significantly accelerates the regeneration of FeII and promotes the generation of active free radicals (•OH and •O2-). FeIV was detected during the process, which indicates that the high-valent iron-oxo species was produced in near-neutral pH conditions. The removal efficiency of SMX (10 mg L-1) can reach 100.0% within 75 min over a wide pH range (4.0-9.0). After five cycles, the electrode retained a high stability and an outstanding catalytic capacity. Furthermore, the mechanisms and pathways for SMX degradation were proposed, the products and intermediates of SMX were analyzed, and the toxicity was evaluated. It was found that the toxicity decreased after degradation. This study displays a novel strategy for building an efficient and stable self-supporting electrode for treating antibiotic wastewater.
Collapse
Affiliation(s)
- Ao Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhibin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
53
|
Facile synthesis of defect-rich Fe-N-C hybrid from fullerene/ferrotetraphenylporphyrin as efficient oxygen reduction electrocatalyst for Zn-air battery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
54
|
Yang L, Yu P, Li W, Cao F, Jin X, Xue S, Zhang X, Zhang T, Wu M, Wu W. Co‐N
Graphene Encapsulated Cobalt Catalyst for
H
2
O
2
Decomposition under Acidic Conditions. AIChE J 2022. [DOI: 10.1002/aic.17760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liu Yang
- State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering, Institute of New Energy, China University of Petroleum (East China) Qingdao China
| | - Pengfei Yu
- State Nuclear Power Demonstration Plant Co. Ltd Rongcheng City Shandong Province China
| | - Wenyuan Li
- State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering, Institute of New Energy, China University of Petroleum (East China) Qingdao China
| | - Fengliang Cao
- State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering, Institute of New Energy, China University of Petroleum (East China) Qingdao China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering, Institute of New Energy, China University of Petroleum (East China) Qingdao China
| | - Sheng Xue
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University Qingdao China
| | - Xianglong Zhang
- State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering, Institute of New Energy, China University of Petroleum (East China) Qingdao China
| | - Tingwei Zhang
- State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering, Institute of New Energy, China University of Petroleum (East China) Qingdao China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering, Institute of New Energy, China University of Petroleum (East China) Qingdao China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering, Institute of New Energy, China University of Petroleum (East China) Qingdao China
| |
Collapse
|
55
|
An X, Hou Z, Yu Y, Wang J, Lan H, Liu H, Qu J. Red mud supported on reduced graphene oxide as photo-Fenton catalysts for organic contaminant degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
56
|
Yu M, Dong H, Zheng Y, Liu W. Trimetallic carbon-based catalysts derived from metal-organic frameworks for electro-Fenton removal of aqueous pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151747. [PMID: 34826458 DOI: 10.1016/j.scitotenv.2021.151747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Pesticide overuse has posed a threat to agricultural community as well as aquatic animals. Heterogeneous electro-Fenton (HEF) processes have received considerable attention for aqueous contaminants removal, and metal-organic frameworks (MOFs) serve as promising templates for fabrication of carbon-based HEF catalysts with low Fe leaching and enhanced stability. Herein, multimetallic MOF-derived HEF catalysts CMOFs@PCM have been demonstrated as efficient and stable HEF catalysts for aqueous pesticide degradation and mineralization. The porous carbon monolith (PCM) substrate effectively catalyzed 2-electron oxygen reduction reaction (ORR) over the pH range of 4-10 to in situ generate H2O2, which was then activated by the anchored Fe3O4, Fe3C and NiO into OH for pesticide degradation. Fe8Al7Ni5-CMOF@PCM achieved over 90% napropamide degradation within 60 min in the pH range of 4-10, and 96% degradation at neutral condition, 39% higher than monometallic CMIL-88(Fe)@PCM. Meanwhile, the embedded NiO and γ-Al2O3 showed synergistic effect in promoting the catalytic activity of Fe sites, resulting in substantially enhanced performance of trimetallic FexAlyNiz-CMOF@PCM compared to the monometallic counterparts. On the other hand, the unique core-shell structure and Fe3C interlayer formed by co-pyrolyzing Fe-containing MOFs-NH2 with PCM greatly minimized the metal leaching and enhanced the stability of the electrocatalysts.
Collapse
Affiliation(s)
- Menglin Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310018, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Heng Dong
- Linde+Robinson Laboratories California Institute of Technology, Pasadena, CA 91125, United States
| | - Yingdie Zheng
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
57
|
Gong Y, Wang Y, Lin N, Wang R, Wang M, Zhang X. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118871. [PMID: 35066106 DOI: 10.1016/j.envpol.2022.118871] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 05/16/2023]
Abstract
The existence of heavy metals and emerging organic contaminants in wastewater produces serious toxic residues to the environment. Developing cheap and efficient materials to remove these persistent pollutants is crucial. Iron-based materials are cost-effective and environmentally friendly catalysts, and their applications in the environmental field deserve attention. This paper critically reviewed the removal mechanisms of heavy metals and emerging organic pollutants by different influencing factors. The removal of pollutants (heavy metals and emerging organic pollutants) in a multi-component system was analyzed in detail. The mechanisms of synergism, antagonism and non-interference were discussed. This paper had a certain reference value for the research of wastewater remediation technology which could simultaneously remove various pollutants by iron-based materials.
Collapse
Affiliation(s)
- Yishu Gong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Naipeng Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ruotong Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Meidan Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
58
|
Influences of CeO2 morphology on enhanced performance of electro-Fenton for wastewater treatment. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
59
|
Xiao T, Wang Y, Wan J, Ma Y, Yan Z, Huang S, Zeng C. Fe-N-C catalyst with Fe-N X sites anchored nano carboncubes derived from Fe-Zn-MOFs activate peroxymonosulfate for high-effective degradation of ciprofloxacin: Thermal activation and catalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127380. [PMID: 34879571 DOI: 10.1016/j.jhazmat.2021.127380] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Developing high-efficient catalysts is crucial for activating peroxymonosulfate (PMS). Fe-N-C catalysts exhibit excellent performance for PMS activation because of the contribution of doped N, Fe-Nx and Fe3C sites. In our work, a series of Fe-N-C catalysts with high-performance was obtained by pyrolyzing Fe-Zn-MOFs precursors. During pyrolysis process, the change of chemical bonds and formation of active sites in the precursor were elucidated by characterization analysis and related catalytic experiments. Graphitic N, Fe-Nx and Fe3C were confirmed to activate PMS synergistically for ciprofloxacin (CIP) degradation. Besides, the catalytic performance was proportional to the amount of doped iron and calcination temperature. Moreover, the Fe-N-C-3-800/PMS system not only displayed good recycling performance, but also had high anti-interference ability. Integrated with quenching and electron paramagnetic resonance (EPR) experiments, a non-radical pathway dominated by 1O2 was proposed. Furthermore, PMS could bond to Fe-N-C-3-800 to form intermediate for charge transfer, thus accelerate electron transfer between CIP and PMS to realize degradation of CIP. Six main pathways of CIP degradation were proposed, which include bond fission of N-C on piperazine ring and direct oxidation of CIP. This study provided a new idea for the design of heterogeneous carbon catalysts in advanced oxidation field.
Collapse
Affiliation(s)
- Tong Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510640, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510640, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuhong Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cheng Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
60
|
Sun S, Hu Y, Xu M, Cheng F, Zhang H, Li Z. Photo-Fenton degradation of carbamazepine and ibuprofen by iron-based metal-organic framework under alkaline condition. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127698. [PMID: 34775313 DOI: 10.1016/j.jhazmat.2021.127698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks have been widely used as photocatalytic materials. In this paper, a novel photocatalyst HSO3-MIL-53(Fe) with acidity regulating groups was successfully synthesized by the solvothermal method and applied to remove carbamazepine (CBZ) and ibuprofen (IBP). The photodegradation efficiency of vis/H2O2/HSO3-MIL-53(Fe) can reach 100% when the pH value is 8 or 9. The free radical capture experiment and electron paramagnetic resonance analysis proved that hole (h+), hydroxide radical (·OH), singlet oxygen (1O2), and superoxide Radical (·O2-) are the main active species for pollutants degradation. In the vis/H2O2/HSO3-MIL-53(Fe) system, the high pollutant degradation efficiency under alkaline conditions was attributed to two factors: (1) the acidity adjusting group -HSO3 adjusts the pH value of the whole system, which is beneficial to the photo-Fenton process. (2) The photogenerated electrons of HSO3-MIL-53(Fe) can be captured by Fe (III), H2O2 and O2 to accelerate the reduction of Fe (III) and generate ·OH, 1O2, and ·O2-. Besides, H2O2 can also be activated by Fe (II) and Fe (III). The above processes synergistically improved the photocatalytic efficiency. Based on liquid chromatography-mass spectrometry (LC-MS) analysis, the possible degradation pathways of the two pollutants were proposed.
Collapse
Affiliation(s)
- Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Youyou Hu
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengshan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fan Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
61
|
Zhang X, Xu B, Wang S, Li X, Liu B, Xu Y, Yu P, Sun Y. High-density dispersion of CuN x sites for H 2O 2 activation toward enhanced Photo-Fenton performance in antibiotic contaminant degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127039. [PMID: 34481385 DOI: 10.1016/j.jhazmat.2021.127039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, a copper-based catalyst (CuCN) with CuNx active sites highly dispersed in a porous carbon nitride matrix was synthesized and applied to a heterogeneous photo-assisted Photo-Fenton (PF) system to degrade tetracycline (TET). The results showed that the CuCN/PF system degraded up to 93.6% of TET within 60 min for ultrapure water matrix under the best experimental conditions, and more than 70% of TET for both river and lake water matrix. Toxicological tests suggested that the environmental risk caused by TET can be effectively inhibited by the CuCN/PF system. The good visible-light response and charge transport abilities of CuCN catalyst were identified in photoelectrochemical experiments. Free radical scavenging experiments and electron paramagnetic resonance (EPR) spectroscopy indicated that the active species in the degradation process were·OH, h+,·O2- and 1O2. Density functional theory (DFT) calculations revealed the positive effect of CuNx sites in CuCN on the formation of hydroxyl radicals by activating H2O2. This work will provide a new insight for the development of high-efficiency heterogeneous catalysts in wastewater environmental remediation.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Baokang Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shiwen Wang
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xi Li
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Biming Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanhua Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Yu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
62
|
Chen J, Wu J, Sherrell PC, Chen J, Wang H, Zhang W, Yang J. How to Build a Microplastics-Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103764. [PMID: 34989178 PMCID: PMC8867153 DOI: 10.1002/advs.202103764] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/25/2021] [Indexed: 05/19/2023]
Abstract
Microplastics are an emergent yet critical issue for the environment because of high degradation resistance and bioaccumulation. Unfortunately, the current technologies to remove, recycle, or degrade microplastics are insufficient for complete elimination. In addition, the fragmentation and degradation of mismanaged plastic wastes in environment have recently been identified as a significant source of microplastics. Thus, the developments of effective microplastics removal methods, as well as, plastics recycling strategies are crucial to build a microplastics-free environment. Herein, this review comprehensively summarizes the current technologies for eliminating microplastics from the environment and highlights two key aspects to achieve this goal: 1) Catalytic degradation of microplastics into environmentally friendly organics (carbon dioxide and water); 2) catalytic recycling and upcycling plastic wastes into monomers, fuels, and valorized chemicals. The mechanisms, catalysts, feasibility, and challenges of these methods are also discussed. Novel catalytic methods such as, photocatalysis, advanced oxidation process, and biotechnology are promising and eco-friendly candidates to transform microplastics and plastic wastes into environmentally benign and valuable products. In the future, more effort is encouraged to develop eco-friendly methods for the catalytic conversion of plastics into valuable products with high efficiency, high product selectivity, and low cost under mild conditions.
Collapse
Affiliation(s)
- Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jing Wu
- Co‐Innovation Center for Textile IndustryInnovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Peter C. Sherrell
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research Institute (IPRI)Australian Institute of Innovative Materials (AIIM)University of WollongongWollongongNew South Wales2522Australia
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Co‐Innovation Center for Textile IndustryInnovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Wei‐xian Zhang
- College of Environmental Science and EngineeringState Key Laboratory of Pollution Control and Resources ReuseTongji UniversityShanghai200092P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
63
|
Wang X, Zhao J, Song C, Shi X, Du H. An Eco-friendly Iron Cathode Electro-Fenton System Coupled With a pH-Regulation Electrolysis Cell for p-nitrophenol Degradation. Front Chem 2022; 9:837761. [PMID: 35155386 PMCID: PMC8833155 DOI: 10.3389/fchem.2021.837761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
The high consumption of salt reagents and strict pH control are still bottlenecks for the full-scale application of the Fenton reaction. In this work, a novel eco-friendly iron cathode electrochemical Fenton (ICEF) system coupled with a pH-regulation divided electrolysis cell was developed. In a pH-regulation divided electrolysis system, the desired pH for an effective Fenton reaction and for a neutral treated media could be obtained by H2O splitting into H+ and OH− at the anode and cathode, respectively. In an ICEF system, an iron plate was used as the cathode to inhibit the release of iron ions and promote the reduction of Fe3+ to Fe2+. It was found that when a potential of 1.2 V/SCE was applied on the iron cathode, 98% of p-nitrophenol was removed in the combined system after 30 min with continuously adding 200 mg/L of H2O2. Meanwhile, a COD and TOC removal efficiency of 79 and 60% was obtained, respectively. In this case, the conductivity just slightly increased from 4.35 to 4.37 mS/cm, minimizing the increase of water salinity, as compared with the conventional Fenton process. Generally, this combined system was eco-friendly, energy-efficient, and has the potential of being a promising technology for the removal of bio-refractory organic pollutants from wastewaters.
Collapse
Affiliation(s)
- Xiaohui Wang
- Technical Test Center of Sinopec Shengli OilField, Dongying, China
- Shengli Oilfield Testing and Evaluation Research Co., Ltd., SINOPEC, Dongying, China
- *Correspondence: Xiaohui Wang,
| | - Jingang Zhao
- Technical Test Center of Sinopec Shengli OilField, Dongying, China
- Shengli Oilfield Testing and Evaluation Research Co., Ltd., SINOPEC, Dongying, China
| | - Chunyan Song
- Technical Test Center of Sinopec Shengli OilField, Dongying, China
- Shengli Oilfield Testing and Evaluation Research Co., Ltd., SINOPEC, Dongying, China
| | - Xian Shi
- Technical Test Center of Sinopec Shengli OilField, Dongying, China
- Shengli Oilfield Testing and Evaluation Research Co., Ltd., SINOPEC, Dongying, China
| | - Haipeng Du
- Technical Test Center of Sinopec Shengli OilField, Dongying, China
- Shengli Oilfield Testing and Evaluation Research Co., Ltd., SINOPEC, Dongying, China
| |
Collapse
|
64
|
Zhang J, Zhou Z, Feng Z, Zhao H, Zhao G. Fast Generation of Hydroxyl Radicals by Rerouting the Electron Transfer Pathway via Constructed Chemical Channels during the Photo-Electro-Reduction of Oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1331-1340. [PMID: 34792352 DOI: 10.1021/acs.est.1c06368] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A strategy for the fast generation of hydroxyl radicals (HO·) via photo-electro-reduction of oxygen by rerouting the electron transfer pathway was proposed. The rate-determining step of HO· production is the formation of H2O2 and the simultaneous reduction of H2O2. Engineering of F-TiO2 with single atom Pd bonded with four F and two O atoms favored the electrocatalytic 2-electron oxygen reduction to H2O2 with as high as 99% selectivity, while the additional channel bond HO-O···Pd-F-TiO2 facilitates the photogenerated electron transfer from the conduction band to single atom Pd to reduce Pd···O-OH to HO·. The optimized HO· production rate is 9.18 μ mol L-1 min-1, which is 2.6-52.5 times higher than that in traditional advanced oxidation processes. In the application of wastewater treatment, this proposed photoelectrocatalytic oxygen reduction method, respectively, shows fast kinetics of 0.324 and 0.175 min-1 for removing bisphenol A and acetaminophen. Around 93.2% total organic carbon and 99.3% acute toxicity removal were achieved. Additionally, the degradation efficiency was less affected by the water source and pH value because of the evitable usage of metallic active sites. This work represents a fundamental investigation on the generation rate of HO·, which would pave the way for the future development of photoelectrocatalytic technologies for water purification.
Collapse
Affiliation(s)
- Jinxing Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zhaoyu Zhou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zhiyuan Feng
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Hongying Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Guohua Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
65
|
He J, Yu D, Zou X, Wang Z, Zheng Y, Liu X, Zeng Y. Degradation intermediates of Amitriptyline and fundamental importance of transition metal elements in LDH-based catalysts in Heterogeneous Electro-Fenton system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
66
|
Han Z, Li Z, Li Y, Shang D, Xie L, Lv Y, Zhan S, Hu W. Enhanced electron transfer and hydrogen peroxide activation capacity with N, P-codoped carbon encapsulated CeO 2 in heterogeneous electro-Fenton process. CHEMOSPHERE 2022; 287:132154. [PMID: 34826897 DOI: 10.1016/j.chemosphere.2021.132154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Designing catalysts that can effectively activate oxygen and hydrogen peroxide is a huge challenge in electro-Fenton (EF) process. Considering the superior ability of electrons transport and activation of H2O2, ceria encapsulated with N, P-codoped carbon material was a promising catalyst for EF reaction. Herein, CeO2-NPCTX (where T and X represented the calcination temperature and the initial mass of CeO2, respectively) materials were synthesized via pyrolysis process and used as catalysts to degrade ciprofloxacin (CIP) in EF process. The results indicated that CeO2-NPC1000100 catalyst had good degradation performance under the optimal conditions. Compared with CeO2 and CeO2-NC1000100 catalysts, CeO2-NPC1000100 catalyst had more content of graphite N and more oxygen vacancies, which were beneficial to activation of oxygen and hydrogen peroxide. Scavenging experiments and electron paramagnetic resonance analysis confirmed ·O2- and ·OH were the main reactive oxygen species in the CIP degradation process. And three logical degradation routes of CIP were given. In addition, CeO2-NPC1000100 catalyst still had good stability after three times of continuous operation, and presented good universality for the treatment of a variety of antibiotic wastewaters. Finally, a convincing mechanism in the EF system with CeO2-NPC1000100 for CIP degradation was proposed.
Collapse
Affiliation(s)
- Zhipeng Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhuang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China.
| | - Denghui Shang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yueqin Lv
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
67
|
Yao Y, Liu X, Hu H, Tang Y, Hu H, Ma Z, Wang S. Synthesis and characterization of iron-nitrogen-doped biochar catalysts for organic pollutant removal and hexavalent chromium reduction. J Colloid Interface Sci 2021; 610:334-346. [PMID: 34923271 DOI: 10.1016/j.jcis.2021.11.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022]
Abstract
Fe, N atoms deposited on porous biochar (Fe-N@BC) composites were synthesized and employed as an efficient catalyst for organic pollutant removal and CrVI reduction. Naturally abundant, renewable and N-rich pomelo peel as a carbon and nitrogen source and unsubstituted phthalocyanine/iron phthalocyanine complexes as a Fe and nitrogen resource were used to develop the Fe-N@BC via a carbonization process. It is found that Fe-N@BC hybrids have homogeneous dispersion of Fe and N atoms on 3D hierarchically porous biochar, which significantly improves the performance toward the detoxification of organic pollutants using peroxymonosulfate as an oxidant, as well as the reduction of hexavalent chromium by formic acid as a reductant. Furthermore, the effects of Fe loading and pyrolytic temperature on catalysis were comprehensively analyzed and optimized. The excellent activity of Fe-N@BC in acid media can be attributed to the high dispersion of Fe species, high content of doped nitrogen as well as hierarchical micro-mesopores, which induce to expose more active sites for catalysis. Owing to the structure-enabled acidic stability, Fe-N@BC efficiently retains its activity as well as its structural stability after several cycles of reactions. This work provides a new approach to construct Fe, N-doped biochar as an effective catalyst for the detoxification of organic and inorganic pollutants.
Collapse
Affiliation(s)
- Yunjin Yao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China.
| | - Xiaoyan Liu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Huanhuan Hu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Yinghao Tang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Hongwei Hu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Zhenshan Ma
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
68
|
Zhao K, Quan X, Su Y, Qin X, Chen S, Yu H. Enhanced Chlorinated Pollutant Degradation by the Synergistic Effect between Dechlorination and Hydroxyl Radical Oxidation on a Bimetallic Single-Atom Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14194-14203. [PMID: 34618424 DOI: 10.1021/acs.est.1c04943] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chlorinated organic pollutants are highly toxic and widespread in the environment, which cause ecological risk and threaten the human health. Chlorinated pollutants are difficult to degrade and mineralize by the conventional advanced oxidation process as the C-Cl bond is resistant to reactive oxygen species oxidation. Herein, we designed a bifunctional Fe/Cu bimetallic single-atom catalyst anchored on N-doped porous carbon (FeCuSA-NPC) for the electro-Fenton process, in which chlorinated pollutants are dechlorinated on single-atom Cu and subsequently oxidized by the ·OH radical produced from O2 conversion on single-atom Fe. Benefitting from the synergistic effect between dechlorination on single-atom Cu and ·OH oxidation on single-atom Fe, the chlorinated organic pollutants can be efficiently degraded and mineralized. The mass activity for chlorinated organic pollutant degradation by FeCuSA-NPC is 545.1-1374 min-1 gmetal-1, excessing the highest value of the reported electrocatalyst. Moreover, FeCuSA-NPC is demonstrated to be pH-universal, long-term stable, and environment friendly. This work provides a new insight into the rational design of a bifunctional electrocatalyst for efficient removal of chlorinated organic pollutants.
Collapse
Affiliation(s)
- Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
69
|
Liu M, Feng Z, Luan X, Chu W, Zhao H, Zhao G. Accelerated Fe 2+ Regeneration in an Effective Electro-Fenton Process by Boosting Internal Electron Transfer to a Nitrogen-Conjugated Fe(III) Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6042-6051. [PMID: 33616409 DOI: 10.1021/acs.est.0c08018] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The regeneration rate of Fe2+ from Fe3+ dictates the performance of the electro-Fenton (EF) process, represented by the amount of produced hydroxyl radicals (·OH). Current strategies for the acceleration of Fe2+ regeneration normally require additional chemical reagents, to vary the redox potential of Fe2+/Fe3+. Here, we report an attempt at using the intrinsic property of the electrode to our advantage, i.e., nitrogen-doped carbon aerogel (NDCA), as a reducing agent for the regeneration of Fe2+ without using foreign reagents. Moreover, the pyrrolic N in NDCA provides unpaired electrons through the carbon framework to reduce Fe3+, while the graphitic and pyridinic N coordinate with Fe3+ to form a C-O-Fe-N2 bond, facilitating electron transfer from both the external circuit and pyrrolic N to Fe3+. Our Fe2+/NDCA-EF system exhibits a 5.8 ± 0.3 times higher performance, in terms of the amount of generated ·OH, than a traditional Fenton system using the same Fe2+ concentration. In the subsequent reaction, the Fe2+/NDCA-EF system demonstrates 100.0% removal of dimethyl phthalate, 3-chlorophenol, bisphenol A, and sulfamethoxazole with a low specific energy consumption of 0.17-0.36 kW·h·g-1. Furthermore, 90.1 ± 0.6% removal of dissolved organic carbon and 83.3 ± 0.9% removal of NH3-N are achieved in the treatment of domestic sewage. The purpose of this work is to present a novel strategy for the regeneration of Fe2+ in the EF process and also to elucidate the role of different N species of the carbonaceous electrode in contributing to the redox cycle of Fe2+/Fe3+.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Zhiyuan Feng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Xinmiao Luan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|