51
|
Qian J, He X, Wang P, Xu B, Li K, Lu B, Jin W, Tang S. Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: The role of surface functional groups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116904. [PMID: 33765504 DOI: 10.1016/j.envpol.2021.116904] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Here we investigated the acute effects (12 h exposure) of three polystyrene nanoplastics (PS NPs, including PS, PS-COOH and PS-NH2) on extracellular polymeric substance (EPS) composition of activated sludge. Three PS NPs exhibited the significant inhibition in total EPS and protein (PRO) production. The functional groups involved in the interactions between PS NPs and EPS were C-(C, H), and those between PS-NH2 NPs and EPS were CO and O-C-O. In addition, the dewaterability of activated sludge were optimized by three PS NPs, especially PS-NH2 NPs. Three PS NPs caused nonnegligible cellular oxidative stress and cell membrane damage in activated sludge (PS NPs exposure concentration: 100 mg/L). Among them, the cell membrane damage caused by PS-NH2 was the most significant. Overall, the degree of influence on EPS and cytotoxicity of activated sludge varies with the surface functional groups of PS NPs.
Collapse
Affiliation(s)
- Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
52
|
Li Y, Xu Q, Liu X, Wang Y, Wang D, Yang G, Yuan X, Yang F, Huang J, Wu Z. Peroxide/Zero-valent iron (Fe 0) pretreatment for promoting dewaterability of anaerobically digested sludge: A mechanistic study. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123112. [PMID: 32947734 DOI: 10.1016/j.jhazmat.2020.123112] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Peroxide/Zero-valent iron (Fe0) was reported to promote dewaterability of anaerobically digested sludge (ADS), but the mechanism of how Peroxide/Fe0 facilitates ADS dewatering is unknown. This study therefore aims to uncover the details of how Peroxide/Fe° elevates ADS dewaterability. Experimental results showed that with 0.6 g Fe0/g TSS and 0.08 g peroxide/g TSS, capillary suction time, specific resistance to filtration, and time to filtration of ADS was 50.7 %, 41.4 %, and 54.4 % of that in the control, respectively. In this condition, water content of sludge cake decreased from 91.2 % ± 0.5 % (the control) to 68.6 % ± 1.3 %. The mechanism explorations revealed that the elevated dewaterability was mainly caused by role of OH and Fe(II)/Fe(III) species during Peroxide/Fe° pretreatment. OH decreased the polysaccharides and proteins in extracellular polymeric substance (EPS), then injured the cytoderm & cytomembrane through the releases of lactate dehydrogenase and N-acetylglucosamine, and further facilitated the decrease of intracellular substances, which disengaged the water trapped in ADS. In addition, the cell lysis caused by OH facilitated forming macro-pores. Moreover, OH converted the conformational structure of extracellular proteins, which may strengthen the ADS hydrophobicity, promoting the discharge of unbound water and ADS flocculation. Meanwhile, Fe(II)/Fe(III) benefited aggregating the denatured ADS particulates.
Collapse
Affiliation(s)
- Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Yali Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China.
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Fan Yang
- Hunan Communication Research Institute Co, Changsha, 410000, PR China
| | - Jin Huang
- Hunan Provincial Center for Ecological and Environmental Affairs, Changsha, 410000, PR China
| | - Zhibin Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, PR China
| |
Collapse
|
53
|
Li K, Qian J, Wang P, Wang C, Lu B, Jin W, He X, Tang S, Zhang C, Gao P. Effects of aging and transformation of anatase and rutile TiO 2 nanoparticles on biological phosphorus removal in sequencing batch reactors and related toxic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123030. [PMID: 32492616 DOI: 10.1016/j.jhazmat.2020.123030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The effect of nanomaterials aging, namely the transformation of comprehensive characteristics after experiencing real or complex environmental behaviors, on their ecotoxicology is still lacking. Moreover, the mechanisms by which NPs influence biological phosphorus (P) removal during sewage treatment require further elucidation. Therefore, we used both pristine and aged anatase (TiO2-A) and rutile (TiO2-R) NPs to investigate the mechanisms by which NPs affect P removal in a SBR. At 0.1 mg/L, the four types of NPs (pristine and aged) had no significant effect on sludge purification after acute (72-h) exposure under simulated sunlight. However, at 50 mg/L-regardless of the crystalline phase of the NPs-SOP and COD removal efficiency dropped steeply to approximately 42.2-82.4 % (p < 0.05) and 69.8-83.3 % (p < 0.05), respectively, especially in the pristine TiO2-NPs groups because of decrease of richness and diversity of genus level of PAOs and enzyme activity of both PPK and PPX, and the sluggish transformation of PHA and glycogen. Aging reduced the ability of NPs toxicity. The toxicity mechanisms of TiO2-NPs included lipid peroxidation and contact damage, or leakage from bacterial cytoplasmic membrane, which are closely related to photooxidation capacity and aqueous solution stability-i.e., nanoscale effects-and the impacts of aging or inclusion.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Chao Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Pan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
54
|
Wang H, Li J, Wang B, Chen G. Deciphering pollutants removal mechanisms and genetic responses to ampicillin stress in simultaneous heterotrophic nitrification and aerobic denitrification (SHNAD) process treating seawater-based wastewater. BIORESOURCE TECHNOLOGY 2020; 315:123827. [PMID: 32683293 DOI: 10.1016/j.biortech.2020.123827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Pollutants removal and genetic responses of simultaneous heterotrophic nitrification and aerobic denitrification (SHNAD) treating seawater-based wastewater were studied under ampicillin stress. Marine SHAND bacteria exhibited good tolerance to 10 mg/L ampicillin with nitrogen removal efficiency and organics removal efficiency of 94.5% and 82.6%, respectively. Besides, the half-inhibitory concentration of ampicillin on marine SHAND bacteria was 50 mg/L. The relative abundances of antibiotic resistance genes (ARGs) first decreased and then increased with ampicillin addition. The blaVIM played an important role to resist 25 mg/L ampicillin, which contributed to the recovery of pollutants removal. BlaSHV and blaTEM dominated ARG subtypes, which accounted for 96.6% of ARGs abundance. At 50 mg/L ampicillin, reactive oxygen species (ROS) production and cell numbers of apoptosis increased by 47.9% and 367.5%, respectively. The overproduction of ROS was stimulated by ampicillin, which caused bacterial cell apoptosis. Marine SHNAD bacteria produced more extracellular polymeric substances to resist ampicillin.
Collapse
Affiliation(s)
- Haoming Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Bo Wang
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
55
|
Li K, Qian J, Wang P, Wang C, Lu B, Jin W, He X, Tang S, Zhang C, Gao P. Responses of freshwater biofilm formation processes (from colonization to maturity) to anatase and rutile TiO 2 nanoparticles: Effects of nanoparticles aging and transformation. WATER RESEARCH 2020; 182:115953. [PMID: 32559664 DOI: 10.1016/j.watres.2020.115953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Most of the current studies on the toxicology of pristine nanoparticles (NPs) are environmentally irrelevant, because their ''aging'' process accompanied by the physicochemical transformation is inevitable in the environment. Considering aging phenomenon will gain a better understanding of the toxicity and fate of NPs in the environment. Here, we focused on the physicochemical transformation of anatase-NPs (TiO2-A) and rutile-NPs (TiO2-R) after 90 days of aging and investigated the responses of freshwater biofilm formation to the stress changes of naturally aged TiO2-NPs (aTiO2-NPs). We found that after aging, the TiO2-NPs underwent sophisticated physicochemical transformations in the original morphology and microstructure owing to organic and crystal salts inclusions, such as energy band changes and the formation of Ti3+ on the NPs surfaces. These comprehensive transformations increased the stability of NPs in the exposed suspension. However, the physicochemical transformations were crystal-forms-dependent, and aging did not change the crystal structure and crystallinity. Interestingly, compared to pristine NPs, aTiO2-NPs showed much lower cytotoxicity and had the weaker ability to promote or inhibit the biofilm formation (p < 0.05) owing to the passivation of photoactivity caused by the comprehensive effect of the inclusions, especially for aTiO2-A. Regardless of aging or not of crystal forms, responses of biofilm formation were exposure-concentration-dependent, namely low concentration promotion (0.1 mg/L) and high concentration inhibition (10 mg/L), e.g., role transition of the pioneers (algae or bacteria) in initial colonization, extracellular polymeric substances (EPS) secretion and compositions of development stages with polysaccharide (PS)-rich and protein (PRO)-rich stages, and biomass and cell activity at different depths of mature biofilms. The reactive oxygen species (ROS) induced by TiO2-NPs showed typical hormesis. The changing trends of the autoinducers (c-di-GMP and quorum sensing signals including AHL and AI-2) were highly consistent with the growth stages of biofilms and were stimulated or suppressed by TiO2-NPs. The NPs crystal-dependently changed the microorganism community structures, while the UPGMA clustering of bacteria was based on the growth stages of the biofilms. The toxic mechanisms revealed that photoactivity and nanoscale retention of particles are the main reasons for the differences in the ecological stress capacity of four kinds of TiO2-NPs. Aging reduced characteristic differences of two pristine NPs and even reversed their relative stresses levels (p > 0.05). However, the toxicity of high-concentration aTiO2-NPs (10 mg/L) remained serious in a water environment. This study provides a better understanding for the water environmental risks evaluation and policy control of nanoparticles, that is, the effect of time aging has to be considered.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Chao Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Pan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
56
|
Hund-Rinke K, Sinram T, Schlich K, Nickel C, Dickehut HP, Schmidt M, Kühnel D. Attachment Efficiency of Nanomaterials to Algae as an Important Criterion for Ecotoxicity and Grouping. NANOMATERIALS 2020; 10:nano10061021. [PMID: 32471052 PMCID: PMC7352665 DOI: 10.3390/nano10061021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/04/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022]
Abstract
Engineered nanomaterials (ENMs) based on CeO2 and TiO2 differ in their effects on the unicellular green alga Raphidocelis subcapitata but these effects do not reflect the physicochemical parameters that characterize such materials in water and other test media. To determine whether interactions with algae can predict the ecotoxicity of ENMs, we studied the attachment of model compounds (three subtypes of CeO2 and five subtypes of TiO2) to algal cells by light microscopy and electron microscopy. We correlated our observations with EC50 values determined in growth inhibition assays carried out according to the Organisation for Economic Co-operation and Development (OECD) test guideline 201. Light microscopy revealed distinct patterns of ENM attachment to algal cells according to the type of compound, with stronger interactions leading to greater toxicity. This was confirmed by electron microscopy, which allowed the quantitative assessment of particle attachment. Our results indicate that algal extracellular polymeric substances play an important role in the attachment of ENMs, influencing the formation of agglomerates. The attachment parameters in short-term tests predicted the toxicity of CeO2 and TiO2 ENMs and can be considered as a valuable tool for the identification of sets of similar nanoforms as requested by the European Chemicals Agency in the context of grouping and read-across.
Collapse
Affiliation(s)
- Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany; (T.S.); (K.S.)
- Correspondence:
| | - Tim Sinram
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany; (T.S.); (K.S.)
| | - Karsten Schlich
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany; (T.S.); (K.S.)
| | - Carmen Nickel
- Institute for Energy and Environmental Technology, e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany;
| | - Hanna Paula Dickehut
- Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (H.P.D.); (M.S.); (D.K.)
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (H.P.D.); (M.S.); (D.K.)
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (H.P.D.); (M.S.); (D.K.)
| |
Collapse
|
57
|
Li Y, Zhu Y, Wang D, Yang G, Pan L, Wang Q, Ni BJ, Li H, Yuan X, Jiang L, Tang W. Fe(II) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication. WATER RESEARCH 2020; 174:115626. [PMID: 32101786 DOI: 10.1016/j.watres.2020.115626] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
In this work, Fe(II) catalyzing sodium percarbonate (Fe(II)/SPC) was managed to facilitate waste activated sludge (WAS) dewatering for the first time. The results showed that after WAS was treated by 20 mg/g total suspended solids (TSS) Fe(II) and 50 mg/g TSS SPC, the water content of sludge cake (WCSC) by press filtration and capillary suction time (CST) dropped from 90.8% ± 1.6% and 96.1 ± 4.0 s (the control) to 55.6% ± 1.4% and 30.1 ± 2.5 s, respectively. The mechanism investigations indicated that four intermediates or products (i.e., •OH, H2O2, Fe(II), and Fe(III)) generated in the Fe(II)/SPC process were responsible for the improved WAS dewaterability, and •OH and Fe(III) were the two major contributors. It was found that •OH collapsed and fragmented extracellular polymeric substances, damaged cell wall and permeabilized cytoplasmic membrane, and transformed conformation of the extracellular proteins secondary structure via both affecting the hydrogen bond maintaining α-helix and cracking disulfide bond in cysteine residues while Fe(III), the oxidization product of Fe(II), decreased the surface electronegativity and water-affinity surface areas of WAS flocs. As a result, the bound water release, flocculability, surface hydrophobicity, drain capability, and flowability of WAS flocs were strengthened whereas the compact surface structure, colloidal forces, network strength, gel-like structure, and apparent viscosity of WAS flocs were weakened. In addition, Fe(II)/SPC process also reduced the recalcitrant organics and fecal coliforms in sludge, which facilitated land application of dewatered sludge. The findings acquired in this work not only deepens our understanding of Fe(II)/SPC-involved WAS treatment process but also may guide engineers to develop both effective and promising strategies to better condition WAS for dewatering in the future.
Collapse
Affiliation(s)
- Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Yeqing Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China.
| | - Liuyi Pan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
58
|
Danty PMP, Mazel A, Cormary B, De Marco ML, Allouche J, Flahaut D, Jimenez-Lamana J, Lacomme S, Delville MH, Drisko GL. Microwave-Assisted and Metal-Induced Crystallization: A Rapid and Low Temperature Combination. Inorg Chem 2020; 59:6232-6241. [DOI: 10.1021/acs.inorgchem.0c00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul M. P. Danty
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Antoine Mazel
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Benoit Cormary
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Maria L. De Marco
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Joachim Allouche
- CNRS, Université de Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux, UMR 5254, 64000 Pau, France
| | - Delphine Flahaut
- CNRS, Université de Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux, UMR 5254, 64000 Pau, France
| | - Javier Jimenez-Lamana
- CNRS, Université de Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux, UMR 5254, 64000 Pau, France
| | - Sabrina Lacomme
- Bordeaux Imaging Centre (UMS3420 CNRS—Université de Bordeaux/US4 INSERM), 146 rue Léo Saignat, 33000 Bordeaux, France
| | | | - Glenna L. Drisko
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| |
Collapse
|
59
|
Li K, Qian J, Wang P, Wang C, Lu B, Tian X, Jin W, He X, Chen H, Zhang Y, Liu Y. Differential responses of encoding-amoA nitrifiers and nir denitrifiers in activated sludge to anatase and rutile TiO 2 nanoparticles: What is active functional guild in rate limiting step of nitrogen cycle? JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121388. [PMID: 31668758 DOI: 10.1016/j.jhazmat.2019.121388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The long-terms effects of different crystal-composition TiO2 nanoparticles (NPs) on nitrogen-cycle-related functional guilds in activated sludge remain unclear, especially under natural light irradiation. Accordingly, activated sludge was exposed to anatase TiO2-NPs (TiO2-A) and rutile TiO2-NPs (TiO2-R) for up to 45 days. With markedly (p < 0.05) reducing nitrification-/denitrification-enzymatic-activities and abundances of ammonia-oxidizing-microorganisms (AOMs) and nitrite-reducing-bacteria (NRB), TiO2-NPs triggered bacteria and archaea UPGMA clustering and a deep modification of N-cycling functional diversity guided by crystal structure. in situ13C-DNA-SIP confirmed ammonia-oxidizing-bacteria (AOB) (Nitrosomonas and Nitrosospira) in original sludge as main active AOMs with 75.4 times more abundance than ammonia-oxidizing-archaea (AOA), while AOA within Nitrosopumilus and Nitrososphaera genera were the main active AOMs and tended to aggregate inside sludge after 10-mg/L TiO2-NPs exposure. Encoding-nirK NRB were more sensitive, while encoding-nirS Zoogloea with a total share of 4.97% to 14.93%, etc. were the main active NRB. AOB was more sensitive to TiO2-A, while TiO2-R showed the stronger toxicity to AOA and NRB resulting from differences in water environmental behaviors and crystal characteristics of two TiO2-NPs. This work expands understanding of the ecological risks of titanium-dioxide-crystal-NPs in aquatic environment and may help devise better methods to alleviate environmental stress caused by NPs at wastewater treatment plants.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xin Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Hao Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yuhang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
60
|
Xu ML, Zhu YG, Gu KH, Zhu JG, Yin Y, Ji R, Du WC, Guo HY. Transcriptome Reveals the Rice Response to Elevated Free Air CO 2 Concentration and TiO 2 Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11714-11724. [PMID: 31509697 DOI: 10.1021/acs.est.9b02182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing CO2 levels are speculated to change the effects of engineered nanomaterials in soil and on plant growth. How plants will respond to a combination of elevated CO2 and nanomaterials stress has rarely been investigated, and the underlying mechanism remains largely unknown. Here, we conducted a field experiment to investigate the rice (Oryza sativa L. cv. IIyou) response to TiO2 nanoparticles (nano-TiO2, 0 and 200 mg kg-1) using a free-air CO2 enrichment system with different CO2 levels (ambient ∼370 μmol mol-1 and elevated ∼570 μmol mol-1). The results showed that elevated CO2 or nano-TiO2 alone did not significantly affect rice chlorophyll content and antioxidant enzyme activities. However, in the presence of nano-TiO2, elevated CO2 significantly enhanced the rice height, shoot biomass, and panicle biomass (by 9.4%, 12.8%, and 15.8%, respectively). Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that genes involved in photosynthesis were up-regulated while most genes associated with secondary metabolite biosynthesis were down-regulated in combination-treated rice. This indicated that elevated CO2 and nano-TiO2 might stimulate rice growth by adjusting resource allocation between photosynthesis and metabolism. This study provides novel insights into rice responses to increasing contamination under climate change.
Collapse
Affiliation(s)
- Mei-Ling Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Science , Xiamen 361021 , China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Kai-Hua Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Jian-Guo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Science , Nanjing 210008 , China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Wen-Chao Du
- School of Environment , Nanjing Normal University , Nanjing 210023 , China
| | - Hong-Yan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
61
|
Wang Z, Song Y, Cai X, Zhang J, Tang T, Wen S. Rapid preparation of terbium-doped titanium dioxide nanoparticles and their enhanced photocatalytic performance. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191077. [PMID: 31824714 PMCID: PMC6837207 DOI: 10.1098/rsos.191077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Further applications of photocatalysis were limited by the high recombination probability of photo-induced electron-hole pairs in traditional titanium dioxide nanoparticles (TiO2 NPs). Herein, we modified them with rare earth metal via a facile sol-gel method, using tetrabutyl titanate as a precursor and terbium (III) nitrate hexahydrate as terbium (Tb) source. The resulting samples with different Tb doping amounts (from 0 to 2%) have been characterized by X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photo-electron spectroscopy and a scanning electron microscope. The photocatalytic performance of Tb-doped TiO2 was evaluated by the degradation of methylene blue. The effects of Tb doping amount and initial pH value of solution were investigated in detail. The composite with Tb doping amount of 1.0 wt% showed the highest photocatalytic performance. It exhibited approximately three times enhancement in photocatalytic activity with a reaction rate constant of 0.2314 h-1 when compared with that of commercial P25 (0.0827 h-1). In addition, it presented low toxicity on zebrafishes with 96 h-LC50 of 23.2 mg l-1, and has been proved to be reusable for at least four cycles without significant loss of photocatalytic activity. A probable photocatalytic mechanism of Tb-doped TiO2 was proposed according to the active species trapping experiments. The high photocatalytic performance, excellent reusability and low toxicity of Tb-doped TiO2 indicated that it is a promising candidate material in the future treatment of dye wastewater.
Collapse
Affiliation(s)
- Zhencui Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571199, People's Republic of China
- Laboratory of Environmental Monitoring, College of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571101, People's Republic of China
| | - Yuechao Song
- Laboratory of Environmental Monitoring, College of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571101, People's Republic of China
| | - Xingfei Cai
- Guangdong Tianyuan Environment Co., Ltd, Shenzhen 578061, People's Republic of China
| | - Jun Zhang
- Laboratory of Environmental Monitoring, College of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571101, People's Republic of China
| | - Tianle Tang
- Laboratory of Environmental Monitoring, College of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571101, People's Republic of China
| | - Shaobai Wen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571199, People's Republic of China
- Laboratory of Environmental Monitoring, College of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571101, People's Republic of China
| |
Collapse
|