51
|
Lee S, Kang T, Lee JY, Park J, Choi SH, Yu JY, Ok S, Park SH. Thin-Film Composite Nanofiltration Membranes for Non-Polar Solvents. MEMBRANES 2021; 11:184. [PMID: 33803122 PMCID: PMC8001804 DOI: 10.3390/membranes11030184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Organic solvent nanofiltration (OSN) has been recognized as an eco-friendly separation system owing to its excellent cost and energy saving efficiency, easy scale-up in the narrow area and mild operation conditions. Membrane properties are the key part in terms of determining the separation efficiency in the OSN system. In this review paper, the recently reported OSN thin-film composite (TFC) membranes were investigated to understand insight of membrane materials and performance. Especially, we highlighted the representative study concepts and materials of the selective layer of OSN TFC membranes for non-polar solvents. The proper choice of monomers and additives for the selective layer forms much more interconnected voids and the enhanced microporosity, which can improve membrane performance of the OSN TFC membrane with reducing the transport resistance. Therefore, this review paper could be an important bridge to connect with the next-generation OSN TFC membranes for non-polar solvents.
Collapse
Affiliation(s)
- Seungmin Lee
- Energy Materials and Components R&D Group, Korea Institute of Industrial Technology, Busan 46938, Korea;
| | - Taewon Kang
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jong Young Lee
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jiyu Park
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Seoung Ho Choi
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jin-Yeong Yu
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Serin Ok
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Sang-Hee Park
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| |
Collapse
|
52
|
Gao Y, Gao M, Chen G, Tian M, Zhai R, Huang X, Xu X, Liu G, Xu D. Facile synthesis of covalent organic frameworks functionalized with graphene hydrogel for effectively extracting organophosphorus pesticides from vegetables. Food Chem 2021; 352:129187. [PMID: 33652196 DOI: 10.1016/j.foodchem.2021.129187] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/29/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
A novel covalent organic framework material (3DGA@COFs), for use as a solid-phase dispersion sorbent, has been synthesized for extracting organophosphorus pesticides (OPs) from vegetables. The prepared 3DGA@COFs material exhibited many advantageous features, including a large specific surface area (127.95 m2/g) and high pore volume (0.0344 cm3/g), which made it an ideal sorbent for sample pretreatment. The experimental conditions affecting extraction performance (adsorbent type, adsorbent amount, reaction time, pH, ionic concentration, and eluent) were optimized systematically. The extracted analytes were detected by HPLC-MS/MS. Under optimized conditions, the proposed method exhibited a wide linear range (0.5-100 μg/L) and low limits of detection (0.01-0.14 μg/L). The recoveries (75.40%-102.13%) satisfied the requirements for a precise detection method. The proposed method was successfully used for determining malathion, triazophos, quinalphos in lettuce, tomato and cucumber samples, thus indicating the potential of using 3DGA@COFs materials for pretreating vegetable samples.
Collapse
Affiliation(s)
- Yuhang Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Mingshuo Tian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Rongqi Zhai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China.
| |
Collapse
|
53
|
Synthesis of multi-organo-functionalized fibrous silica KCC-1 for highly efficient adsorption of acid fuchsine and acid orange II from aqueous solution. Sci Rep 2021; 11:2716. [PMID: 33526831 PMCID: PMC7851152 DOI: 10.1038/s41598-021-81080-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Multi-functionalized fibrous silica KCC-1 (MF-KCC-1) bearing amine, tetrasulfide, and thiol groups was synthesized via a post-functionalization method and fully characterized by several methods such as FTIR, FESEM, EDX-Mapping, TEM, and N2 adsorption-desorption techniques. Due to abundant surface functional groups, accessible active adsorption sites, high surface area (572 m2 g-1), large pore volume (0.98 cm3 g-1), and unique fibrous structure, mesoporous MF-KCC-1 was used as a potential adsorbent for the uptake of acid fuchsine (AF) and acid orange II (AO) from water. Different adsorption factors such as pH of the dye solution, the amount of adsorbent, initial dye concentration, and contact time, affecting the uptake process were optimized and isotherm and kinetic studies were conducted to find the possible mechanism involved in the process. For both AF and AO dyes, the Langmuir isotherm model and the PFO kinetic model show the most agreement with the experimental data. According to the Langmuir isotherm, the calculated maximum adsorption capacity for AF and AO were found to be 574.5 mg g-1 and 605.9 mg g-1, respectively, surpassing most adsorption capacities reported until now which is indicative of the high potential of mesoporous MF-KCC-1 as an adsorbent for removal applications.
Collapse
|
54
|
Zhang X, Beyer A. Mechanics of free-standing inorganic and molecular 2D materials. NANOSCALE 2021; 13:1443-1484. [PMID: 33434243 DOI: 10.1039/d0nr07606f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discovery of graphene has triggered a great interest in inorganic as well as molecular two-dimensional (2D) materials. In this review, we summarize recent progress in the mechanical characterization of free-standing 2D materials, such as graphene, hexagonal boron nitride (hBN), transition metal-dichalcogenides, MXenes, black phosphor, carbon nanomembranes (CNMs), 2D polymers, 2D metal organic frameworks (MOFs) and covalent organic frameworks (COFs). Elastic, fracture, bending and interfacial properties of these materials have been determined using a variety of experimental techniques including atomic force microscopy based nanoindentation, in situ tensile/fracture testing, bulge testing, Raman spectroscopy, Brillouin light scattering and buckling-based metrology. Additionally, we address recent advances of 2D materials in a variety of mechanical applications, including resonators, microphones and nanoelectromechanical sensors. With the emphasis on progress and challenges in the mechanical characterization of inorganic and molecular 2D materials, we expect a continuous growth of interest and more systematic experimental work on the mechanics of such ultrathin nanomaterials.
Collapse
Affiliation(s)
- Xianghui Zhang
- Physics of Supramolecular Systems and Surfaces, Bielefeld University, 33615 Bielefeld, Germany.
| | | |
Collapse
|
55
|
Fenton JL, Burke DW, Qian D, Olvera de la Cruz M, Dichtel WR. Polycrystalline Covalent Organic Framework Films Act as Adsorbents, Not Membranes. J Am Chem Soc 2021; 143:1466-1473. [DOI: 10.1021/jacs.0c11159] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julie L. Fenton
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David W. Burke
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Dingwen Qian
- Applied Physics Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - William R. Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
56
|
Kasbe PS, Luo X, Xu W. Interface engineering and integration of two-dimensional polymeric and inorganic materials for advanced hybrid structures. NEW J CHEM 2021. [DOI: 10.1039/d1nj04022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress and future directions in the creation of hybrid structures based on 2D polymers and inorganic 2D materials are discussed.
Collapse
Affiliation(s)
- Pratik S. Kasbe
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Xiongyu Luo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
57
|
Ahmad MZ, Castro-Muñoz R, Budd PM. Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. NANOSCALE 2020; 12:23333-23370. [PMID: 33210671 DOI: 10.1039/d0nr07042d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent decades, polymers of intrinsic microporosity (PIMs), especially the firstly introduced PIM-1, have been actively explored for various membrane-based separation purposes and widely recognized as the next generation membrane materials of choice for gas separation due to their ultra-permeable characteristics. Unfortunately, the polymers suffer substantially the negative impacts of physical aging, a phenomenon that is primarily noticeable in high free volume polymers. The phenomenon occurs at the molecular level, which leads to changes in the physical properties, and consequently the separation performance and membrane durability. This review discusses the strategies that have been employed to manage the physical aging issue, with a focus on the approach of blending with nanomaterials to give mixed matrix membranes. A detailed discussion is provided on the types of materials used, their inherent properties, the effects on gas separation performance, and their benefits in the suppression of the aging problem.
Collapse
Affiliation(s)
- Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), Department of Chemistry, University of Manchester, Oxford Road, M13 9PL, UK.
| | | | | |
Collapse
|
58
|
Salminen AT, Allahyari Z, Gholizadeh S, McCloskey MC, Ajalik R, Cottle RN, Gaborski TR, McGrath JL. In vitro Studies of Transendothelial Migration for Biological and Drug Discovery. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:600616. [PMID: 35047883 PMCID: PMC8757899 DOI: 10.3389/fmedt.2020.600616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory diseases and cancer metastases lack concrete pharmaceuticals for their effective treatment despite great strides in advancing our understanding of disease progression. One feature of these disease pathogeneses that remains to be fully explored, both biologically and pharmaceutically, is the passage of cancer and immune cells from the blood to the underlying tissue in the process of extravasation. Regardless of migratory cell type, all steps in extravasation involve molecular interactions that serve as a rich landscape of targets for pharmaceutical inhibition or promotion. Transendothelial migration (TEM), or the migration of the cell through the vascular endothelium, is a particularly promising area of interest as it constitutes the final and most involved step in the extravasation cascade. While in vivo models of cancer metastasis and inflammatory diseases have contributed to our current understanding of TEM, the knowledge surrounding this phenomenon would be significantly lacking without the use of in vitro platforms. In addition to the ease of use, low cost, and high controllability, in vitro platforms permit the use of human cell lines to represent certain features of disease pathology better, as seen in the clinic. These benefits over traditional pre-clinical models for efficacy and toxicity testing are especially important in the modern pursuit of novel drug candidates. Here, we review the cellular and molecular events involved in leukocyte and cancer cell extravasation, with a keen focus on TEM, as discovered by seminal and progressive in vitro platforms. In vitro studies of TEM, specifically, showcase the great experimental progress at the lab bench and highlight the historical success of in vitro platforms for biological discovery. This success shows the potential for applying these platforms for pharmaceutical compound screening. In addition to immune and cancer cell TEM, we discuss the promise of hepatocyte transplantation, a process in which systemically delivered hepatocytes must transmigrate across the liver sinusoidal endothelium to successfully engraft and restore liver function. Lastly, we concisely summarize the evolving field of porous membranes for the study of TEM.
Collapse
Affiliation(s)
- Alec T. Salminen
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Zahra Allahyari
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Shayan Gholizadeh
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Molly C. McCloskey
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Raquel Ajalik
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Renee N. Cottle
- Bioengineering, Clemson University, Clemson, SC, United States
| | - Thomas R. Gaborski
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - James L. McGrath
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
59
|
Bi X, Zhang Y, Zhang F, Zhang S, Wang Z, Jin J. MOF Nanosheet-Based Mixed Matrix Membranes with Metal-Organic Coordination Interfacial Interaction for Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49101-49110. [PMID: 33063985 DOI: 10.1021/acsami.0c14639] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the mixed matrix membrane (MMM), the interface between the filler and the polymer matrix will directly affect the gas separation performance of the membranes. Reasonable interfacial design in MMMs is thus important and necessary. In this work, metal-organic coordination interaction is used to construct the interface in metal-organic framework (MOF) nanosheet-based polyimide MMMs where ultrathin Co-benzenedicarboxylate MOF nanosheets (CBMNs) with a thickness less than 5 nm and a lateral size more than 5 μm are synthesized as fillers and a carboxyl-functionalized polyimide (6FDA-durene-DABA) is used as a polymer matrix. Because of the high aspect ratio (>1000) of CBMNs, abundant metal-organic coordination bonds are formed between Co2+ in CBMNs and the -COOH group in 6FDA-durene-DABA. As a result, the 6FDA-durene-DABA/CBMN MMMs exhibit improved separation performance for the CO2/CH4 and H2/CH4 gas pairs with H2/CH4 and CO2/CH4 selectivities up to 42.0 ± 4.0 and 33.6 ± 3.0, respectively. The enhanced interfacial interaction leads to the comprehensive separation performance of CO2/CH4 and H2/CH4 gas pairs approaching or surpassing the 2008 Robeson upper bound. In addition, the CO2 plasticization pressure of the MMMs is significantly enhanced up to ∼20 bar, which is 2 times that of the pure 6FDA-durene-DABA membrane. When separating a mixed gas of CO2/CH4, the selectivity of CO2/CH4 remains stable at around 23 and the CO2 permeability keeps around 400 barrer during the long-term test.
Collapse
Affiliation(s)
- Xiangyu Bi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yong'an Zhang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shenxiang Zhang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhenggong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
60
|
|
61
|
Guan Q, Wang GB, Zhou LL, Li WY, Dong YB. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. NANOSCALE ADVANCES 2020; 2:3656-3733. [PMID: 36132748 PMCID: PMC9419729 DOI: 10.1039/d0na00537a] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/08/2023]
Abstract
Cancer nanomedicine is one of the most promising domains that has emerged in the continuing search for cancer diagnosis and treatment. The rapid development of nanomaterials and nanotechnology provide a vast array of materials for use in cancer nanomedicine. Among the various nanomaterials, covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility. In this comprehensive review, recent developments and key achievements of COFs are provided, including their structural design, synthesis methods, nanocrystallization, and functionalization strategies. Subsequently, a systematic overview of the potential oncotherapy applications achieved till date in the fast-growing field of COFs is provided with the aim to inspire further contributions and developments to this nascent but promising field. Finally, development opportunities, critical challenges, and some personal perspectives for COF-based cancer therapeutics are presented.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
62
|
Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework. Molecules 2020; 25:molecules25143132. [PMID: 32650603 PMCID: PMC7397005 DOI: 10.3390/molecules25143132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)2 covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary. In general, the complexity of the natural water matrix induced a reduction in the adsorption efficiency of ibuprofen as compared to ultrapure water. The best performance, with over 70% adsorption efficiency, was found in lake water, the sample which featured the lowest pH. According to the theoretical calculations, ibuprofen more favorably interacts with the COF pores in the protonated form, which could partially account for the enhanced adsorption efficiency found in lake water. In addition, we explored the effect of the presence of competing pharmaceuticals, namely, acetaminophen and phenobarbital, on the ibuprofen adsorption as binary mixtures. Acetaminophen and phenobarbital were adsorbed by TpBD-(CF3)2 with low efficiency and their presence led to an increase in ibuprofen adsorption in the binary mixtures. Overall, this study demonstrates that TpBD-(CF3)2 is an efficient adsorbent for the extraction of ibuprofen from natural waters as well.
Collapse
|
63
|
Shinde DB, Cao L, Wonanke ADD, Li X, Kumar S, Liu X, Hedhili MN, Emwas AH, Addicoat M, Huang KW, Lai Z. Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving. Chem Sci 2020; 11:5434-5440. [PMID: 34094070 PMCID: PMC8159406 DOI: 10.1039/d0sc01679a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The advantages of two dimensional covalent organic framework membranes to achieve high flux have been demonstrated, but the capability of easy structural modification to manipulate the pore size has not been fully explored yet. Here we report the use of the Langmuir-Blodgett method to synthesize two ultrathin covalent organic framework membranes (TFP-DPF and TFP-DNF) that have a similar framework structure to our previously reported covalent organic framework membrane (TFP-DHF) but different lengths of carbon chains aiming to rationally control the pore size. The membrane permeation results in the applications of organic solvent nanofiltration and molecular sieving of organic dyes showed a systematic shift of the membrane flux and molecular weight cut-off correlated to the pore size change. These results enhanced our fundamental understanding of transport through uniform channels at nanometer scales. Pore engineering of the covalent organic framework membranes was demonstrated for the first time.
Collapse
Affiliation(s)
- Digambar B Shinde
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Li Cao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - A D Dinga Wonanke
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK
| | - Xiang Li
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Sushil Kumar
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xiaowei Liu
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mohamed N Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK
| | - Kuo-Wei Huang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
64
|
Huang M, Wang Z, Jin J. Two‐Dimensional Microporous Material‐based Mixed Matrix Membranes for Gas Separation. Chem Asian J 2020; 15:2303-2315. [DOI: 10.1002/asia.202000053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Menghui Huang
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Zhenggong Wang
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Jian Jin
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
65
|
Ball B, Chakravarty C, Sarkar P. Silicon and Phosphorus Co-doped Bipyridine-Linked Covalent Triazine Framework as a Promising Metal-Free Catalyst for Hydrogen Evolution Reaction: A Theoretical Investigation. J Phys Chem Lett 2020; 11:1542-1549. [PMID: 32020806 DOI: 10.1021/acs.jpclett.9b03876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrocatalytic water spliting is the most attractive route for hydrogen production, but the development of nonprecious, stable, and high-performance catalysts for hydrogen evolution reaction (HER) to replace the scarce platinum group metal-based electrocatalysts is still a challenging task for the scientific community. In this work, within the framework of density functional theory computations, we have predicted that a silicon and phosphorus co-doped bipyridine-linked covalent triazine framework, followed by substitution of bipyridine hydrogens at the P-site with fluorine atoms, may be a potential catalyst for HER. Our predicted model system (SiPF-Bpy-CTF) exhibits a very low band gap (7 meV), which may exhibit facile charge transfer kinetics during HER. Using the Gibbs free energy for the adsorption of atomic hydrogen ([Formula: see text]) as the key descriptor, we have found that our proposed model system (SiPF-Bpy-CTF) exhibits superior HER catalytic activity, with its [Formula: see text] being close to the ideal value (0 eV).
Collapse
Affiliation(s)
- Biswajit Ball
- Department of Chemistry , Visva-Bharati University , Santiniketan 731 235 , India
| | | | - Pranab Sarkar
- Department of Chemistry , Visva-Bharati University , Santiniketan 731 235 , India
| |
Collapse
|