51
|
Allison M, Davie RL, Mogg AJ, Hampton SL, Emsley J, Stocks MJ. Discovery of α-Amidobenzylboronates as Highly Potent Covalent Inhibitors of Plasma Kallikrein. ACS Med Chem Lett 2024; 15:501-509. [PMID: 38628785 PMCID: PMC11017388 DOI: 10.1021/acsmedchemlett.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Hereditary angioedema (HAE), a rare genetic disorder, is associated with uncontrolled plasma kallikrein (PKa) enzyme activity leading to the generation of bradykinin swelling in subcutaneous and submucosal membranes in various locations of the body. Herein, we describe a series of potent α-amidobenzylboronates as potential covalent inhibitors of PKa. These compounds exhibited time-dependent inhibition of PKa (compound 20 IC50 66 nM at 1 min, 70 pM at 24 h). Further compound dissociation studies demonstrated that 20 showed no apparent reversibility comparable to d-Phe-Pro-Arg-chloromethylketone (PPACK) (23), a known nonselective covalent PKa inhibitor.
Collapse
Affiliation(s)
- Matthew Allison
- Biodiscovery
Institute, School of Pharmacy, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Rebecca L. Davie
- KalVista
Pharmaceuticals Limited, Salisbury, SP4 0BF, United
Kingdom
| | - Adrian J. Mogg
- KalVista
Pharmaceuticals Limited, Salisbury, SP4 0BF, United
Kingdom
| | - Sally L. Hampton
- KalVista
Pharmaceuticals Limited, Salisbury, SP4 0BF, United
Kingdom
| | - Jonas Emsley
- Biodiscovery
Institute, School of Pharmacy, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Michael J. Stocks
- Biodiscovery
Institute, School of Pharmacy, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| |
Collapse
|
52
|
Ali MY, Bar-Peled L. Chemical proteomics to study metabolism, a reductionist approach applied at the systems level. Cell Chem Biol 2024; 31:446-451. [PMID: 38518745 DOI: 10.1016/j.chembiol.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Cellular metabolism encompasses a complex array of interconnected biochemical pathways that are required for cellular homeostasis. When dysregulated, metabolism underlies multiple human pathologies. At the heart of metabolic networks are enzymes that have been historically studied through a reductionist lens, and more recently, using high throughput approaches including genomics and proteomics. Merging these two divergent viewpoints are chemical proteomic technologies, including activity-based protein profiling, which combines chemical probes specific to distinct enzyme families or amino acid residues with proteomic analysis. This enables the study of metabolism at the network level with the precision of powerful biochemical approaches. Herein, we provide a primer on how chemical proteomic technologies custom-built for studying metabolism have unearthed fundamental principles in metabolic control. In parallel, these technologies have leap-frogged drug discovery through identification of novel targets and drug specificity. Collectively, chemical proteomics technologies appear to do the impossible: uniting systematic analysis with a reductionist approach.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
53
|
Schmidt M, Grethe C, Recknagel S, Kipka GM, Klink N, Gersch M. N-Cyanopiperazines as Specific Covalent Inhibitors of the Deubiquitinating Enzyme UCHL1. Angew Chem Int Ed Engl 2024; 63:e202318849. [PMID: 38239128 DOI: 10.1002/anie.202318849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 02/10/2024]
Abstract
Cyanamides have emerged as privileged scaffolds in covalent inhibitors of deubiquitinating enzymes (DUBs). However, many compounds with a cyanopyrrolidine warhead show cross-reactivity toward small subsets of DUBs or toward the protein deglycase PARK7/DJ-1, hampering their use for the selective perturbation of a single DUB in living cells. Here, we disclose N'-alkyl,N-cyanopiperazines as structures for covalent enzyme inhibition with exceptional specificity for the DUB UCHL1 among 55 human deubiquitinases and with effective target engagement in cells. Notably, transitioning from 5-membered pyrrolidines to 6-membered heterocycles eliminated PARK7 binding and introduced context-dependent reversibility of the isothiourea linkage to the catalytic cysteine of UCHL1. Compound potency and specificity were analysed by a range of biochemical assays and with a crystal structure of a cyanopiperazine in covalent complex with UCHL1. The structure revealed a compound-induced conformational restriction of the cross-over loop, which underlies the observed inhibitory potencies. Through the rationalization of specificities of different cyanamides, we introduce a framework for the investigation of protein reactivity of bioactive nitriles of this compound class. Our results represent an encouraging case study for the refining of electrophilic compounds into chemical probes, emphasizing the potential to engineer specificity through subtle chemical modifications around the warhead.
Collapse
Affiliation(s)
- Mirko Schmidt
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Christian Grethe
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Sarah Recknagel
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Gian-Marvin Kipka
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Nikolas Klink
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Malte Gersch
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| |
Collapse
|
54
|
Kim T, Kim HS, Bang Y, Kwon Y, Kim J, Choi HJ, Suh YG. Identification of novel Nrf2-activating neuroprotective agents: Elucidation of structural congeners of (-)-galiellalactone and congener-based novel Nrf2 activators. Bioorg Chem 2024; 144:107109. [PMID: 38219480 DOI: 10.1016/j.bioorg.2024.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Herein, (-)-galiellalactone 1 congeners responsible for the nuclear factor erythroid 2-related factor 2 (Nrf2)-activating neuroprotective effects were elucidated. Additionally, novel congener-based Nrf2 activators were identified using a drug repositioning strategy. (-)-Galiellalactone, which comprises a tricyclic lactone skeleton, significantly activates antioxidant response element (ARE)-mediated transcription in neuroblastoma SH-SY5Y cells. Interestingly, two cyclohexene-truncated [3.3] bicyclic lactone analogs, which possess an exocyclic α-methylene-γ-butyrolactone moiety, exhibited higher Nrf2/ARE transcriptional activities than the parent (-)-galiellalactone. We confirmed that the cyclohexene moiety embedding the [3.3] bicyclic lactone congener does not play the essential role of (-)-galiellalactone for Nrf2/ARE activation. Nrf2/ARE activation by novel analogs resulted in the upregulation of downstream antioxidative and phase II detoxifying enzymes, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, which are closely related to the cytoprotective effects on neurodegenerative diseases. (-)-Galiellalactone and its [3.3] bicyclic variants 3l and 3p increased the expression of antioxidant genes and exhibited neuroprotective effects against 6-hydroxydopamine-mediated neurotoxicity in the neuroblastoma SH-SY5Y cell line.
Collapse
Affiliation(s)
- Taewoo Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Hyun Su Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Yoonjung Kwon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Jinhee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea.
| | - Young-Ger Suh
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea.
| |
Collapse
|
55
|
Abualnaja MM, Alalawy AI, Alatawi OM, Alessa AH, Fawzi Qarah A, Alqahtani AM, Bamaga MA, El-Metwaly NM. Synthesis of tetrazole hybridized with thiazole, thiophene or thiadiazole derivatives, molecular modelling and antimicrobial activity. Saudi Pharm J 2024; 32:101962. [PMID: 38318318 PMCID: PMC10840348 DOI: 10.1016/j.jsps.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Background Tetrazole-based derivatives and their electronic structures have displayed interesting antimicrobial activity. Methods The tetrazole-based hybrids linked with thiazole, thiophene and thiadiazole ring systems have been synthesized through various chemical reactions. The computational method DFT/B3LYP has been utilized to calculate their electronic properties. The antimicrobial effectiveness was investigated against representative bacterial and fungal strains. Additionally, the synthesized derivatives binding interaction was stimulated by docking program against PDB ID: 4URO as a model of the ATP binding domain of S. aureus DNA Gyrase subunit B. Results The structures of the synthesized tetrazole-based derivatives were confirmed by IR, NMR, and Mass spectroscopic data. The DFT/B3LYP method showed that the thiadiazole derivatives 9a-c had lower ΔEH-L than the thiophenes 7a-c and thiazoles 5a-c. The hybrids 5b, 5c, and 7b exhibited proper antibacterial activity against Gram's +ve bacterial strains (S. aureus and S. pneumonia), while 9a displayed potent activity towards Gram's -ve bacterial strains (S. typhimurium and E. coli). Meanwhile, derivatives 5a-b, 7a, 7c, and 9c showed good effectiveness towards fungal strain (C. albicans). Conclusion The study provides valuable tetrazole core-linked heterocyclic rings and opens the door to further research on their electrical characteristics and applications. Tetrazoles and thiazoles have antibacterial properties in pharmacological frameworks, making these hybrids potential lead molecules for drug development. The conclusion summarizes the data and suggests that the synthesized chemicals' interaction with a particular protein domain suggests focused biological activity.
Collapse
Affiliation(s)
- Matokah M. Abualnaja
- Department of Chemistry, Collage of Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Adel I. Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Saudi Arabia
| | - Omar M. Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Ali H. Alessa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Ahmad Fawzi Qarah
- Department of Chemistry, College of Science, Taibah University, Madinah, P.O. Box 344, Saudi Arabia
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Majid A. Bamaga
- Department of Environment and Health Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department of Chemistry, Collage of Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516, Egypt
| |
Collapse
|
56
|
Leng J, Xu J, Li Y, Wang SM, Qin HL. A mild protocol for efficient preparation of functional molecules containing triazole. RSC Adv 2024; 14:7601-7608. [PMID: 38440271 PMCID: PMC10911410 DOI: 10.1039/d4ra01271b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
The construction of a class of novel triazole molecules containing sulfonyl fluoride functionalities was achieved through Cu-catalyzed click chemistry in good to excellent yields. The sulfonyl fluoride moieties were cleaved completely under base conditions to produce N-unsubstituted triazoles quantitatively, which provides a strategy to combine SuFEx click chemistry with Cu-catalyzed click chemistry ingeniously.
Collapse
Affiliation(s)
- Jing Leng
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Jie Xu
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Yanan Li
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Shi-Meng Wang
- Xiangyang Public Inspection and Testing Center No. 69, Taiziwan Road Xiangyang Hubei Province 441000 P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| |
Collapse
|
57
|
Tillmanns J, Kicuntod J, Lösing J, Marschall M. 'Getting Better'-Is It a Feasible Strategy of Broad Pan-Antiherpesviral Drug Targeting by Using the Nuclear Egress-Directed Mechanism? Int J Mol Sci 2024; 25:2823. [PMID: 38474070 DOI: 10.3390/ijms25052823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
58
|
Allende J, Olaizola I, Ochoa de Retana AM, Palacios F, de Los Santos JM. Diastereoselective ZnCl 2-Mediated Joullié-Ugi Three-Component Reaction for the Preparation of Phosphorylated N-Acylaziridines from 2 H-Azirines. Molecules 2024; 29:1023. [PMID: 38474535 DOI: 10.3390/molecules29051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
We disclose a direct approach to the diastereoselective synthesis of phosphorus substituted N-acylaziridines based on a one-pot ZnCl2-catalyzed Joullié-Ugi three-component reaction of phosphorylated 2H-azirines, carboxylic acids and isocyanides. Hence, this robust protocol offers rapid access to an array of N-acylaziridines in moderate-to-good yields and up to 98:2 dr for substrates over a wide scope. The relevance of this synthetic methodology was achieved via a gram-scale reaction and the further derivatization of the nitrogen-containing three-membered heterocycle. The diastereo- and regioselective ring expansion of the obtained N-acylaziridines to oxazole derivatives was accomplished in the presence of BF3·OEt2 as an efficient Lewid acid catalyst.
Collapse
Affiliation(s)
- Julene Allende
- Department of Organic Chemistry I, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Iurre Olaizola
- Department of Organic Chemistry I, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Ana M Ochoa de Retana
- Department of Organic Chemistry I, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Jesús M de Los Santos
- Department of Organic Chemistry I, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain
| |
Collapse
|
59
|
Borges PHO, Ferreira SB, Silva FP. Recent Advances on Targeting Proteases for Antiviral Development. Viruses 2024; 16:366. [PMID: 38543732 PMCID: PMC10976044 DOI: 10.3390/v16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Borges
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Sabrina Baptista Ferreira
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Floriano Paes Silva
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
60
|
Compain G, Monsarrat C, Blagojevic J, Brillet K, Dumas P, Hammann P, Kuhn L, Martiel I, Engilberge S, Oliéric V, Wolff P, Burnouf DY, Wagner J, Guichard G. Peptide-Based Covalent Inhibitors Bearing Mild Electrophiles to Target a Conserved His Residue of the Bacterial Sliding Clamp. JACS AU 2024; 4:432-440. [PMID: 38425897 PMCID: PMC10900491 DOI: 10.1021/jacsau.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
Peptide-based covalent inhibitors targeted to nucleophilic protein residues have recently emerged as new modalities to target protein-protein interactions (PPIs) as they may provide some benefits over more classic competitive inhibitors. Covalent inhibitors are generally targeted to cysteine, the most intrinsically reactive amino acid residue, and to lysine, which is more abundant at the surface of proteins but much less frequently to histidine. Herein, we report the structure-guided design of targeted covalent inhibitors (TCIs) able to bind covalently and selectively to the bacterial sliding clamp (SC), by reacting with a well-conserved histidine residue located on the edge of the peptide-binding pocket. SC is an essential component of the bacterial DNA replication machinery, identified as a promising target for the development of new antibacterial compounds. Thermodynamic and kinetic analyses of ligands bearing different mild electrophilic warheads confirmed the higher efficiency of the chloroacetamide compared to Michael acceptors. Two high-resolution X-ray structures of covalent inhibitor-SC adducts were obtained, revealing the canonical orientation of the ligand and details of covalent bond formation with histidine. Proteomic studies were consistent with a selective SC engagement by the chloroacetamide-based TCI. Finally, the TCI of SC was substantially more active than the parent noncovalent inhibitor in an in vitro SC-dependent DNA synthesis assay, validating the potential of the approach to design covalent inhibitors of protein-protein interactions targeted to histidine.
Collapse
Affiliation(s)
- Guillaume Compain
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 2 Rue Robert Escarpit, F-33607 Pessac, France
| | - Clément Monsarrat
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 2 Rue Robert Escarpit, F-33607 Pessac, France
| | - Julie Blagojevic
- Université
de Strasbourg, CNRS, FR1589, Plateforme Protéomique Strasbourg
Esplanade, 2 Allée K. Roentgen, 67084 Strasbourg, France
| | - Karl Brillet
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Philippe Dumas
- Department
of Integrative Structural Biology, IGBMC, Strasbourg University, ESBS, 1 Rue Laurent Fries, 67404 Illkirch, Cedex, France
| | - Philippe Hammann
- Université
de Strasbourg, CNRS, FR1589, Plateforme Protéomique Strasbourg
Esplanade, 2 Allée K. Roentgen, 67084 Strasbourg, France
| | - Lauriane Kuhn
- Université
de Strasbourg, CNRS, FR1589, Plateforme Protéomique Strasbourg
Esplanade, 2 Allée K. Roentgen, 67084 Strasbourg, France
| | - Isabelle Martiel
- Swiss
Light Source (SLS), Paul Scherrer Institute
(PSI), 5232 Villigen-PSI, Switzerland
| | - Sylvain Engilberge
- Swiss
Light Source (SLS), Paul Scherrer Institute
(PSI), 5232 Villigen-PSI, Switzerland
| | - Vincent Oliéric
- Swiss
Light Source (SLS), Paul Scherrer Institute
(PSI), 5232 Villigen-PSI, Switzerland
| | - Philippe Wolff
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Dominique Y. Burnouf
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Jérôme Wagner
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Gilles Guichard
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 2 Rue Robert Escarpit, F-33607 Pessac, France
| |
Collapse
|
61
|
Saquib Q, Bakheit AH, Ahmed S, Ansari SM, Al-Salem AM, Al-Khedhairy AA. Identification of Phytochemicals from Arabian Peninsula Medicinal Plants as Strong Binders to SARS-CoV-2 Proteases (3CL Pro and PL Pro) by Molecular Docking and Dynamic Simulation Studies. Molecules 2024; 29:998. [PMID: 38474509 DOI: 10.3390/molecules29050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
We provide promising computational (in silico) data on phytochemicals (compounds 1-10) from Arabian Peninsula medicinal plants as strong binders, targeting 3-chymotrypsin-like protease (3CLPro) and papain-like proteases (PLPro) of SARS-CoV-2. Compounds 1-10 followed the Lipinski rules of five (RO5) and ADMET analysis, exhibiting drug-like characters. Non-covalent (reversible) docking of compounds 1-10 demonstrated their binding with the catalytic dyad (CYS145 and HIS41) of 3CLPro and catalytic triad (CYS111, HIS272, and ASP286) of PLPro. Moreover, the implementation of the covalent (irreversible) docking protocol revealed that only compounds 7, 8, and 9 possess covalent warheads, which allowed the formation of the covalent bond with the catalytic dyad (CYS145) in 3CLPro and the catalytic triad (CYS111) in PLPro. Root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and radius of gyration (Rg) analysis from molecular dynamic (MD) simulations revealed that complexation between ligands (compounds 7, 8, and 9) and 3CLPro and PLPro was stable, and there was less deviation of ligands. Overall, the in silico data on the inherent properties of the above phytochemicals unravel the fact that they can act as reversible inhibitors for 3CLPro and PLPro. Moreover, compounds 7, 8, and 9 also showed their novel properties to inhibit dual targets by irreversible inhibition, indicating their effectiveness for possibly developing future drugs against SARS-CoV-2. Nonetheless, to confirm the theoretical findings here, the effectiveness of the above compounds as inhibitors of 3CLPro and PLPro warrants future investigations using suitable in vitro and in vivo tests.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sabiha M Ansari
- Botany & Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
62
|
Zhang Y, Feng Q, Zheng Y, Lu Y, Liao S, Huang S. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:1410-1415. [PMID: 38358353 DOI: 10.1021/acs.orglett.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A radical hydro-fluorosulfonylation of propargyl alcohols with FSO2Cl is presented based on the photoactivation of the electron donor-acceptor (EDA) complex. The reaction avoids the requirement for photocatalysts, bases, hydrogen donor reagents, any other additives, and harsh conditions, enabling the facile synthesis of various functionalized γ-hydroxy (E)-alkenylsulfonyl fluorides. These multifunctional sulfonyl fluorides can be further diversified, providing access to various privileged molecules of biological relevance.
Collapse
Affiliation(s)
- Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
63
|
Zhao Y, Duan K, Fan Y, Li S, Huang L, Tu Z, Sun H, Cook GM, Yang J, Sun P, Tan Y, Ding K, Li Z. Catalyst-free late-stage functionalization to assemble α-acyloxyenamide electrophiles for selectively profiling conserved lysine residues. Commun Chem 2024; 7:31. [PMID: 38355988 PMCID: PMC10866925 DOI: 10.1038/s42004-024-01107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Covalent probes coupled with chemical proteomics represent a powerful method for investigating small molecule and protein interactions. However, the creation of a reactive warhead within various ligands to form covalent probes has been a major obstacle. Herein, we report a convenient and robust process to assemble a unique electrophile, an α-acyloxyenamide, through a one-step late-stage coupling reaction. This procedure demonstrates remarkable tolerance towards other functional groups and facilitates ligand-directed labeling in proteins of interest. The reactive group has been successfully incorporated into a clinical drug targeting the EGFR L858R mutant, erlotinib, and a pan-kinase inhibitor. The resulting probes have been shown to be able to covalently engage a lysine residue proximal to the ATP-binding pocket of the EGFR L858R mutant. A series of active sites, and Mg2+, ATP-binding sites of kinases, such as K33 of CDK1, CDK2, CDK5 were detected. This is the first report of engaging these conserved catalytic lysine residues in kinases with covalent inhibition. Further application of this methodology to natural products has demonstrated its success in profiling ligandable conserved lysine residues in whole proteome. These findings offer insights for the development of new targeted covalent inhibitors (TCIs).
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Kang Duan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Youlong Fan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shengrong Li
- Guangdong Second Provincial General Hospital, Postdoctoral Station of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Liyan Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhengchao Tu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 TatChee Avenue, Kowloon, Hong Kong, 999077, China
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Jing Yang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Pinghua Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Yi Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | - Ke Ding
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
64
|
Serafim RAM, Gehringer M, Borsari C. Targeted Covalent Inhibitors in Drug Discovery, Chemical Biology and Beyond. Pharmaceuticals (Basel) 2024; 17:206. [PMID: 38399421 PMCID: PMC10891537 DOI: 10.3390/ph17020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Covalent inhibitors have experienced a revival in medicinal chemistry and chemical biology in recent decades [...].
Collapse
Affiliation(s)
- Ricardo A. M. Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided & Functionally Instructed Tumor Therapies’, University of Tübingen, 72076 Tübingen, Germany
| | - Chiara Borsari
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
65
|
Xiao YC, Chen FE. The vinyl sulfone motif as a structural unit for novel drug design and discovery. Expert Opin Drug Discov 2024; 19:239-251. [PMID: 37978948 DOI: 10.1080/17460441.2023.2284201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Vinyl sulfones are a special sulfur-containing structural unit that have attracted considerable attention, owing to their important role in serving as key structural motifs of various biologically active compounds as well as serving as versatile building blocks for organic transformations. The synthetic strategy of vinyl sulfone derivatives has been substantially upgraded over the past 30 years, and the wide application of this functional group in drug design and discovery has been promoted. AREA COVERED In this review, the authors review the application of vinyl sulfones in drug discovery and select optimized compounds which might have significant impact or potential inspiration for drug design. EXPERT OPINION Vinyl sulfones have been reported to target various macromolecular targets via non-covalent or covalent interactions, including multiple kinases, tubulin, cysteine protease, transcription factor, and so on. Thus, it has been significantly applied as a privileged scaffold in the design of anticancer, anti-infective, anti-inflammatory, and neuroprotective agents. However, much work remains to be done to improve the drug-like properties, such as chemical and metabolic stability, ADME, and toxicity. Besides, the chemical space of vinyl sulfones needs to be expanded, including but not limited to the design of constrained endocyclic and exocyclic vinyl sulfones.
Collapse
Affiliation(s)
- You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fen-Er Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
66
|
Cheke RS, Kharkar PS. Covalent inhibitors: An ambitious approach for the discovery of newer oncotherapeutics. Drug Dev Res 2024; 85:e22132. [PMID: 38054744 DOI: 10.1002/ddr.22132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023]
Abstract
Covalent inhibitors have been used to treat several diseases for over a century. However, strategic approaches for the rational design of covalent drugs have taken a definitive shape in recent times. Since the first appearance of covalent inhibitors in the late 18th century, the field has grown tremendously and around 30% of marketed drugs are covalent inhibitors especially, for oncology indications. However, the off-target toxicity and safety concerns can be significant issues related to the covalent drugs. Covalent kinase inhibitor (CKI) targeted oncotherapeutics has advanced dramatically over the last two decades since the discovery of afatinib (Gilotrif®), an EGFR inhibitor. Since then, US FDA has approved 10 CKIs for diverse cancer targets. The present review broadly summarizes the ongoing development in the discovery of newer CKIs from 2016 till the end of 2022. We believe that these efforts will assist the modern medicinal chemist actively working in the field of CKI discovery for varied indications.
Collapse
Affiliation(s)
- Rameshwar S Cheke
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
67
|
Zhang S, Zhang H, Liu X, Qi P, Tan T, Wang S, Gao H, Xu H, Zhou Z, Yi W. Mask and Release Strategy-Enabled Diversity-Oriented Synthesis for DNA-Encoded Library. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307049. [PMID: 38044314 PMCID: PMC10853742 DOI: 10.1002/advs.202307049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Indexed: 12/05/2023]
Abstract
An ideal DNA-encoded library (DEL) selection requires the library to consist of diverse core skeletons and cover chemical space as much as possible. However, the lack of efficient on-DNA synthetic approaches toward core skeletons has greatly restricted the diversity of DEL. To mitigate this issue, this work disclosed a "Mask & Release" strategy to streamline the challenging on-DNA core skeleton synthesis. N-phenoxyacetamide is used as a masked phenol and versatile directing group to mediate diversified DNA-compatible C-H functionalization, introducing the 1st-dimensional diversity at a defined site, and simultaneously releasing the phenol functionality, which can facilitate the introduction of the 2nd diversity. This work not only provides a set of efficient syntheses toward DNA-conjugated drug-like core skeletons such as ortho-alkenyl/sulfiliminyl/cyclopropyl phenol, benzofuran, dihydrobenzofuran but also provides a paradigm for on-DNA core skeleton synthetic method development.
Collapse
Affiliation(s)
- Silin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Haiman Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Ping Qi
- Guangzhou Institute for Food InspectionGuangzhou511400China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Shengdong Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| |
Collapse
|
68
|
Haghir Ebrahim Abadi MH, Ghasemlou A, Bayani F, Sefidbakht Y, Vosough M, Mozaffari-Jovin S, Uversky VN. AI-driven covalent drug design strategies targeting main protease (m pro) against SARS-CoV-2: structural insights and molecular mechanisms. J Biomol Struct Dyn 2024:1-29. [PMID: 38287509 DOI: 10.1080/07391102.2024.2308769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
The emergence of new SARS-CoV-2 variants has raised concerns about the effectiveness of COVID-19 vaccines. To address this challenge, small-molecule antivirals have been proposed as a crucial therapeutic option. Among potential targets for anti-COVID-19 therapy, the main protease (Mpro) of SARS-CoV-2 is important due to its essential role in the virus's life cycle and high conservation. The substrate-binding region of the core proteases of various coronaviruses, including SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), could be used for the generation of new protease inhibitors. Various drug discovery methods have employed a diverse range of strategies, targeting both monomeric and dimeric forms, including drug repurposing, integrating virtual screening with high-throughput screening (HTS), and structure-based drug design, each demonstrating varying levels of efficiency. Covalent inhibitors, such as Nirmatrelvir and MG-101, showcase robust and high-affinity binding to Mpro, exhibiting stable interactions confirmed by molecular docking studies. Development of effective antiviral drugs is imperative to address potential pandemic situations. This review explores recent advances in the search for Mpro inhibitors and the application of artificial intelligence (AI) in drug design. AI leverages vast datasets and advanced algorithms to streamline the design and identification of promising Mpro inhibitors. AI-driven drug discovery methods, including molecular docking, predictive modeling, and structure-based drug repurposing, are at the forefront of identifying potential candidates for effective antiviral therapy. In a time when COVID-19 potentially threat global health, the quest for potent antiviral solutions targeting Mpro could be critical for inhibiting the virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Fatemeh Bayani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
69
|
Fang W, Zheng J, Deng L, An Y, Rong D, Wei J, Xiong XF, Wang J, Wang Y. Discovery of the First-in-Class RORγ Covalent Inhibitors for Treatment of Castration-Resistant Prostate Cancer. J Med Chem 2024; 67:1481-1499. [PMID: 38227771 DOI: 10.1021/acs.jmedchem.3c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nuclear receptor receptor-related orphan receptor γ (RORγ) is a ligand-dependent transcription factor and has been established as a key player in castration-resistant prostate cancers (CRPC) by driving androgen receptor (AR) overexpression, representing a potential therapeutical target for advanced prostate cancers. Here, we report the identification of the first-in-class RORγ covalent inhibitor 29 via the structure-based drug design approach following structure-activity relationship (SAR) exploration. Mass spectrometry assay validated its covalent inhibition mechanism. Compound 29 significantly inhibited RORγ transcriptional activity and remarkably suppressed the expression levels of AR and AR-targeted genes. Compound 29 also exhibited much superior activity in inhibiting the proliferation and colony formation and inducing apoptosis of the CRPC cell lines relative to the positive control 2 and noncovalent control 33. Importantly, it markedly suppressed the tumor growth in a 22Rv1 mouse tumor xenograft model with good safety. These results clearly demonstrate that 29 is a highly potent and selective RORγ covalent inhibitor.
Collapse
Affiliation(s)
- Wei Fang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianwei Zheng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lin Deng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yana An
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianwei Wei
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junjian Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
70
|
Tian L, Qiang T, Yang X, Gao Y, Zhai X, Kang K, Du C, Lu Q, Gao H, Zhang D, Xie X, Liang C. Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL pro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. Eur J Med Chem 2024; 264:115979. [PMID: 38048696 DOI: 10.1016/j.ejmech.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuding Yang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou, 511436, PR China
| | - Xiaopei Zhai
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, PR China
| | - Kairui Kang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Cong Du
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qi Lu
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Chengyuan Liang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
71
|
Keeley A, Kopranovic A, Di Lorenzo V, Ábrányi-Balogh P, Jänsch N, Lai LN, Petri L, Orgován Z, Pölöske D, Orlova A, Németh A, Desczyk C, Imre T, Bajusz D, Moriggl R, Meyer-Almes FJ, Keserü GM. Electrophilic MiniFrags Revealed Unprecedented Binding Sites for Covalent HDAC8 Inhibitors. J Med Chem 2024; 67:572-585. [PMID: 38113354 PMCID: PMC10788917 DOI: 10.1021/acs.jmedchem.3c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.
Collapse
Affiliation(s)
- Aaron
B. Keeley
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Aleksandra Kopranovic
- Department
of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Vincenzo Di Lorenzo
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Niklas Jänsch
- Department
of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Linh N. Lai
- Department
of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - László Petri
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Zoltán Orgován
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Daniel Pölöske
- Institute
of Animal Breeding and Genetics, University
of Veterinary Medicine, 1210 Vienna, Austria
| | - Anna Orlova
- Institute
of Animal Breeding and Genetics, University
of Veterinary Medicine, 1210 Vienna, Austria
| | - András
György Németh
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Charlotte Desczyk
- Department
of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Tímea Imre
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- MS
Metabolomics
Research Group, Research Centre for Natural
Sciences, Magyar tudósok
krt 2, H-1117 Budapest, Hungary
| | - Dávid Bajusz
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Richard Moriggl
- Institute
of Animal Breeding and Genetics, University
of Veterinary Medicine, 1210 Vienna, Austria
| | - Franz-Josef Meyer-Almes
- Department
of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - György M. Keserü
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
72
|
Hoyt KW, Urul DA, Ogboo BC, Wittlinger F, Laufer SA, Schaefer EM, May EW, Heppner DE. Pitfalls and Considerations in Determining the Potency and Mutant Selectivity of Covalent Epidermal Growth Factor Receptor Inhibitors. J Med Chem 2024; 67:2-16. [PMID: 38134304 DOI: 10.1021/acs.jmedchem.3c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Enzyme inhibitors that form covalent bonds with their targets are being increasingly pursued in drug development. Assessing their biochemical activity relies on time-dependent assays, which are distinct and more complex compared with methods commonly employed for reversible-binding inhibitors. To provide general guidance to the covalent inhibitor development community, we explored methods and reported kinetic values and experimental factors in determining the biochemical activity of various covalent epidermal growth factor receptor (EGFR) inhibitors. We showcase how liquid handling and assay reagents impact kinetic parameters and potency interpretations, which are critical for structure-kinetic relationships and covalent drug design. Additionally, we include benchmark kinetic values with reference inhibitors, which are imperative, as covalent EGFR inhibitor kinetic values are infrequently consistent in the literature. This overview seeks to inform best practices for developing new covalent inhibitors and highlight appropriate steps to address gaps in knowledge presently limiting assay reliability and reproducibility.
Collapse
Affiliation(s)
- Kristopher W Hoyt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Daniel A Urul
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Erik M Schaefer
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Earl W May
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
- Department of Structural Biology, The State University of New York, Buffalo, New York 14203, United States
| |
Collapse
|
73
|
Liu R, Clayton J, Shen M, Bhatnagar S, Shen J. Machine Learning Models to Interrogate Proteomewide Covalent Ligandabilities Directed at Cysteines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.17.553742. [PMID: 37662346 PMCID: PMC10473668 DOI: 10.1101/2023.08.17.553742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Machine learning (ML) identification of covalently ligandable sites may accelerate targeted covalent inhibitor design and help expand the druggable proteome space. Here we report the rigorous development and validation of the tree-based models and convolutional neural networks (CNNs) trained on a newly curated database (LigCys3D) of over 1,000 liganded cysteines in nearly 800 proteins represented by over 10,000 three-dimensional structures in the protein data bank. The unseen tests yielded 94% and 93% AUCs (area under the receiver operating characteristic curve) for the tree models and CNNs, respectively. Based on the AlphaFold2 predicted structures, the ML models recapitulated the newly liganded cysteines in the PDB with over 90% recall values. To assist the community of covalent drug discoveries, we report the predicted ligandable cysteines in 392 human kinases and their locations in the sequence-aligned kinase structure including the PH and SH2 domains. Furthermore, we disseminate a searchable online database LigCys3D (https://ligcys.computchem.org/) and a web prediction server DeepCys (https://deepcys.computchem.org/), both of which will be continuously updated and improved by including newly published experimental data. The present work represents a first step towards the ML-led integration of big genome data and structure models to annotate the human proteome space for the next-generation covalent drug discoveries.
Collapse
Affiliation(s)
- Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Joseph Clayton
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mingzhe Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Shubham Bhatnagar
- Department of Computer Science, University of Maryland at College Park, College Park, MD 20742, USA
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
74
|
Fuchs N, Zhang L, Calvo-Barreiro L, Kuncewicz K, Gabr M. Inhibitors of Immune Checkpoints: Small Molecule- and Peptide-Based Approaches. J Pers Med 2024; 14:68. [PMID: 38248769 PMCID: PMC10817355 DOI: 10.3390/jpm14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The revolutionary progress in cancer immunotherapy, particularly the advent of immune checkpoint inhibitors, marks a significant milestone in the fight against malignancies. However, the majority of clinically employed immune checkpoint inhibitors are monoclonal antibodies (mAbs) with several limitations, such as poor oral bioavailability and immune-related adverse effects (irAEs). Another major limitation is the restriction of the efficacy of mAbs to a subset of cancer patients, which triggered extensive research efforts to identify alternative approaches in targeting immune checkpoints aiming to overcome the restricted efficacy of mAbs. This comprehensive review aims to explore the cutting-edge developments in targeting immune checkpoints, focusing on both small molecule- and peptide-based approaches. By delving into drug discovery platforms, we provide insights into the diverse strategies employed to identify and optimize small molecules and peptides as inhibitors of immune checkpoints. In addition, we discuss recent advances in nanomaterials as drug carriers, providing a basis for the development of small molecule- and peptide-based platforms for cancer immunotherapy. Ongoing research focused on the discovery of small molecules and peptide-inspired agents targeting immune checkpoints paves the way for developing orally bioavailable agents as the next-generation cancer immunotherapies.
Collapse
Affiliation(s)
- Natalie Fuchs
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Longfei Zhang
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Laura Calvo-Barreiro
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Katarzyna Kuncewicz
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Moustafa Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| |
Collapse
|
75
|
Martínez M, Mariani ML, García C, Ceñal JP, Penissi AB. A one-pot and eco-friendly synthesis of novel β-substituted-α-halomethyl acrylates and the bioactivity of these compounds in an in vitro model of mast cell degranulation induced by pro-inflammatory stimuli. Biomed Pharmacother 2024; 170:116009. [PMID: 38134632 DOI: 10.1016/j.biopha.2023.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The goal of the present work was to develop novel β-substituted-α-halomethyl acrylates from a methodology in an aqueous phase and to evaluate their bioactivity as potential inhibitors of mast cell activation. Eleven β-substituted-α-halomethyl acrylates were synthesized through a modified Horner-Wadsworth-Emmons reaction. Compound 48/80 and the calcium ionophore A23187 stimulated the release of β-hexosaminidase from mast cells. The effect induced by compound 48/80 was inhibited by compound 5 (320 µM) and compound 9 (160 and 320 µM) without causing cytotoxic effects. The effect induced by A23187 was inhibited by compound 5 (40, 80, 160, and 320 µM) without affecting cell viability. The inhibitory effects exhibited by compounds 5 and 9 were more potent than those of the reference compound sodium cromoglycate at the same concentrations. The biochemical results were consistent with the morphological findings obtained by light and transmission electron microscopy. This study reports, for the first time, that the new synthetic compounds methyl (Z)- 2-bromo-3-(furan-3-yl)acrylate (compound 5) and methyl (E)- 2-bromo-3-(3-bromophenyl)acrylate (compound 9) strongly inhibit mast cell degranulation, without affecting cell viability. The implications of these results are relevant as a basis for developing new anti-inflammatory and mast cell stabilizing drugs.
Collapse
Affiliation(s)
- Maricel Martínez
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, San Luis, Argentina
| | - María Laura Mariani
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Celina García
- Instituto Universitario de Bio-Organica "Antonio Gonzalez", Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Juan Pedro Ceñal
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, San Luis, Argentina; Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
76
|
Punzalan C, Wang L, Bajrami B, Yao X. Measurement and utilization of the proteomic reactivity by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:166-192. [PMID: 36924435 DOI: 10.1002/mas.21837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Chemical proteomics, which involves studying the covalent modifications of proteins by small molecules, has significantly contributed to our understanding of protein function and has become an essential tool in drug discovery. Mass spectrometry (MS) is the primary method for identifying and quantifying protein-small molecule adducts. In this review, we discuss various methods for measuring proteomic reactivity using MS and covalent proteomics probes that engage through reactivity-driven and proximity-driven mechanisms. We highlight the applications of these methods and probes in live-cell measurements, drug target identification and validation, and characterizing protein-small molecule interactions. We conclude the review with current developments and future opportunities in the field, providing our perspectives on analytical considerations for MS-based analysis of the proteomic reactivity landscape.
Collapse
Affiliation(s)
- Clodette Punzalan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- AD Bio US, Takeda, Lexington, Massachusetts, 02421, USA
| | - Bekim Bajrami
- Chemical Biology & Proteomics, Biogen, Cambridge, Massachusetts, USA
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
77
|
Goullieux M, Zoete V, Röhrig UF. Two-Step Covalent Docking with Attracting Cavities. J Chem Inf Model 2023; 63:7847-7859. [PMID: 38049143 PMCID: PMC10751798 DOI: 10.1021/acs.jcim.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Due to their various advantages, interest in the development of covalent drugs has been renewed in the past few years. It is therefore important to accurately describe and predict their interactions with biological targets by computer-aided drug design tools such as docking algorithms. Here, we report a covalent docking procedure for our in-house docking code Attracting Cavities (AC), which mimics the two-step mechanism of covalent ligand binding. Ligand binding to the protein cavity is driven by nonbonded interactions, followed by the formation of a covalent bond between the ligand and the protein through a chemical reaction. To test the performance of this method, we developed a diverse, high-quality, openly accessible re-docking benchmark set of 95 covalent complexes bound by 8 chemical reactions to 5 different reactive amino acids. Combination with structures from previous studies resulted in a set of 304 complexes, on which AC obtained a success rate (rmsd ≤ 2 Å) of 78%, outperforming two state-of-the-art covalent docking codes, genetic optimization for ligand docking (GOLD (66%)) and AutoDock (AD (35%)). Using a more stringent success criterion (rmsd ≤ 1.5 Å), AC reached a success rate of 71 vs 55% for GOLD and 26% for AD. We additionally assessed the cross-docking performance of AC on a set of 76 covalent complexes of the SARS-CoV-2 main protease. On this challenging test set of mainly small and highly solvent-exposed ligands, AC yielded success rates of 58 and 28% for re-docking and cross-docking, respectively, compared to 45 and 17% for GOLD.
Collapse
Affiliation(s)
- Mathilde Goullieux
- SIB
Swiss Institute of Bioinformatics, Molecular Modeling Group, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- SIB
Swiss Institute of Bioinformatics, Molecular Modeling Group, CH-1015 Lausanne, Switzerland
- Department
of Oncology UNIL-CHUV, Lausanne University, Ludwig Institute for Cancer Research
Lausanne Branch, CH-1066 Epalinges, Switzerland
| | - Ute F. Röhrig
- SIB
Swiss Institute of Bioinformatics, Molecular Modeling Group, CH-1015 Lausanne, Switzerland
| |
Collapse
|
78
|
Kuki N, Walmsley DL, Kanai K, Takechi S, Yoshida M, Murakami R, Takano K, Tominaga Y, Takahashi M, Ito S, Nakao N, Angove H, Baker LM, Carter E, Dokurno P, Le Strat L, Macias AT, Molyneaux CA, Murray JB, Surgenor AE, Hamada T, Hubbard RE. A covalent fragment-based strategy targeting a novel cysteine to inhibit activity of mutant EGFR kinase. RSC Med Chem 2023; 14:2731-2737. [PMID: 38107172 PMCID: PMC10718517 DOI: 10.1039/d3md00439b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/17/2023] [Indexed: 12/19/2023] Open
Abstract
Several generations of ATP-competitive anti-cancer drugs that inhibit the activity of the intracellular kinase domain of the epidermal growth factor receptor (EGFR) have been developed over the past twenty years. The first-generation of drugs such as gefitinib bind reversibly and were followed by a second-generation such as dacomitinib that harbor an acrylamide moiety that forms a covalent bond with C797 in the ATP binding pocket. Resistance emerges through mutation of the T790 gatekeeper residue to methionine, which introduces steric hindrance to drug binding and increases the Km for ATP. A third generation of drugs, such as osimertinib were developed which were effective against T790M EGFR in which an acrylamide moiety forms a covalent bond with C797, although resistance has emerged by mutation to S797. A fragment-based screen to identify new starting points for an EGFR inhibitor serendipitously identified a fragment that reacted with C775, a previously unexploited residue in the ATP binding pocket for a covalent inhibitor to target. A number of acrylamide containing fragments were identified that selectively reacted with C775. One of these acrylamides was optimized to a highly selective inhibitor with sub-1 μM activity, that is active against T790M, C797S mutant EGFR independent of ATP concentration, providing a potential new strategy for pan-EGFR mutant inhibition.
Collapse
Affiliation(s)
- Naoki Kuki
- R&D Division Daiichi Sankyo Co., Ltd. Shinagawa-ku Tokyo 140-8710 Japan
| | | | - Kazuo Kanai
- R&D Division Daiichi Sankyo Co., Ltd. Shinagawa-ku Tokyo 140-8710 Japan
| | - Sho Takechi
- R&D Division Daiichi Sankyo Co., Ltd. Shinagawa-ku Tokyo 140-8710 Japan
| | - Masao Yoshida
- R&D Division Daiichi Sankyo Co., Ltd. Shinagawa-ku Tokyo 140-8710 Japan
| | - Ryo Murakami
- R&D Division Daiichi Sankyo Co., Ltd. Shinagawa-ku Tokyo 140-8710 Japan
| | - Kohei Takano
- R&D Division Daiichi Sankyo Co., Ltd. Shinagawa-ku Tokyo 140-8710 Japan
| | - Yuichi Tominaga
- R&D Division Daiichi Sankyo Co., Ltd. Shinagawa-ku Tokyo 140-8710 Japan
| | - Mizuki Takahashi
- Daiichi Sankyo RD Novare Co., Ltd. Edogawa-ku Tokyo 134-8630 Japan
| | - Shuichiro Ito
- Daiichi Sankyo RD Novare Co., Ltd. Edogawa-ku Tokyo 134-8630 Japan
| | - Naoki Nakao
- Daiichi Sankyo RD Novare Co., Ltd. Edogawa-ku Tokyo 134-8630 Japan
| | - Hayley Angove
- Vernalis (R&D) Ltd., Granta Park Cambridge CB21 6GB UK
| | - Lisa M Baker
- Vernalis (R&D) Ltd., Granta Park Cambridge CB21 6GB UK
| | - Edward Carter
- Vernalis (R&D) Ltd., Granta Park Cambridge CB21 6GB UK
| | - Pawel Dokurno
- Vernalis (R&D) Ltd., Granta Park Cambridge CB21 6GB UK
| | - Loic Le Strat
- Vernalis (R&D) Ltd., Granta Park Cambridge CB21 6GB UK
| | - Alba T Macias
- Vernalis (R&D) Ltd., Granta Park Cambridge CB21 6GB UK
| | | | | | | | - Tomoaki Hamada
- R&D Division Daiichi Sankyo Co., Ltd. Shinagawa-ku Tokyo 140-8710 Japan
| | | |
Collapse
|
79
|
Rajan S, Yoon HS. Covalent ligands of nuclear receptors. Eur J Med Chem 2023; 261:115869. [PMID: 37857142 DOI: 10.1016/j.ejmech.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nuclear receptors (NRs) are ligand-induced transcriptional factors implicated in several physiological pathways. Naïve ligands bind to their cognate receptors and modulate gene expression as agonists or antagonists. It has been observed that some ligands bind via covalent bonding with the NR Ligand Binding Domain (LBD) residues. While many such instances have been known since the 1980s, a consolidated account of these ligands and their interactions with NR-LBD is yet to be documented. To negate this, we have culled out the human NR-LBDs that form a covalent attachment with ligands. According to the study, 16 of the 48 human NRs have been targeted by covalent ligands. It was found that conserved cysteines prone to covalent attachment are predominantly located in NR-LBD helices 3 and 11. These conserved cysteines are also observed in many of the remaining NRs, which can be probed for their reactivity. Thus, the structural insights into NR-LBD interactions with covalent ligands presented here would aid drug discovery efforts targeting NRs.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea; CHA Advanced Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
80
|
Mehta NV, Degani MS. The expanding repertoire of covalent warheads for drug discovery. Drug Discov Today 2023; 28:103799. [PMID: 37839776 DOI: 10.1016/j.drudis.2023.103799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The reactive functionalities of drugs that engage in covalent interactions with the enzyme/receptor residue in either a reversible or an irreversible manner are called 'warheads'. Covalent warheads that were previously neglected because of safety concerns have recently gained center stage as a result of their various advantages over noncovalent drugs, including increased selectivity, increased residence time, and higher potency. With the approval of several covalent inhibitors over the past decade, research in this area has accelerated. Various strategies are being continuously developed to tune the characteristics of warheads to improve their potency and mitigate toxicity. Here, we review research progress in warhead discovery over the past 5 years to provide valuable insights for future drug discovery.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
81
|
Liu C, Hu L, Dong G, Zhang Y, Ferreira da Silva-Júnior E, Liu X, Menéndez-Arias L, Zhan P. Emerging drug design strategies in anti-influenza drug discovery. Acta Pharm Sin B 2023; 13:4715-4732. [PMID: 38045039 PMCID: PMC10692392 DOI: 10.1016/j.apsb.2023.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 12/05/2023] Open
Abstract
Influenza is an acute respiratory infection caused by influenza viruses (IFV), According to the World Health Organization (WHO), seasonal IFV epidemics result in approximately 3-5 million cases of severe illness, leading to about half a million deaths worldwide, along with severe economic losses and social burdens. Unfortunately, frequent mutations in IFV lead to a certain lag in vaccine development as well as resistance to existing antiviral drugs. Therefore, it is of great importance to develop anti-IFV drugs with high efficiency against wild-type and resistant strains, needed in the fight against current and future outbreaks caused by different IFV strains. In this review, we summarize general strategies used for the discovery and development of antiviral agents targeting multiple IFV strains (including those resistant to available drugs). Structure-based drug design, mechanism-based drug design, multivalent interaction-based drug design and drug repurposing are amongst the most relevant strategies that provide a framework for the development of antiviral drugs targeting IFV.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Guanyu Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
82
|
Feral A, Martin AR, Desfoux A, Amblard M, Vezenkov LL. Covalent-reversible peptide-based protease inhibitors. Design, synthesis, and clinical success stories. Amino Acids 2023; 55:1775-1800. [PMID: 37330416 DOI: 10.1007/s00726-023-03286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated human peptidases are implicated in a large variety of diseases such as cancer, hypertension, and neurodegeneration. Viral proteases for their part are crucial for the pathogens' maturation and assembly. Several decades of research were devoted to exploring these precious therapeutic targets, often addressing them with synthetic substrate-based inhibitors to elucidate their biological roles and develop medications. The rational design of peptide-based inhibitors offered a rapid pathway to obtain a variety of research tools and drug candidates. Non-covalent modifiers were historically the first choice for protease inhibition due to their reversible enzyme binding mode and thus presumably safer profile. However, in recent years, covalent-irreversible inhibitors are having a resurgence with dramatic increase of their related publications, preclinical and clinical trials, and FDA-approved drugs. Depending on the context, covalent modifiers could provide more effective and selective drug candidates, hence requiring lower doses, thereby limiting off-target effects. Additionally, such molecules seem more suitable to tackle the crucial issue of cancer and viral drug resistances. At the frontier of reversible and irreversible based inhibitors, a new drug class, the covalent-reversible peptide-based inhibitors, has emerged with the FDA approval of Bortezomib in 2003, shortly followed by 4 other listings to date. The highlight in the field is the breathtakingly fast development of the first oral COVID-19 medication, Nirmatrelvir. Covalent-reversible inhibitors can hipothetically provide the safety of the reversible modifiers combined with the high potency and specificity of their irreversible counterparts. Herein, we will present the main groups of covalent-reversible peptide-based inhibitors, focusing on their design, synthesis, and successful drug development programs.
Collapse
Affiliation(s)
- Anthony Feral
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Muriel Amblard
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
83
|
Sousa JLC, Albuquerque HMT, Silva AMS. Drug Discovery Based on Oxygen and Nitrogen (Non-)Heterocyclic Compounds Developed @LAQV-REQUI MTE/Aveiro. Pharmaceuticals (Basel) 2023; 16:1668. [PMID: 38139794 PMCID: PMC10747949 DOI: 10.3390/ph16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Artur Silva's research group has a long history in the field of medicinal chemistry. The development of new synthetic methods for oxygen (mostly polyphenols, e.g., 2- and 3-styrylchromones, xanthones, flavones) and nitrogen (e.g., pyrazoles, triazoles, acridones, 4-quinolones) heterocyclic compounds in order to be assessed as antioxidant, anti-inflammatory, antidiabetic, and anticancer agents has been the main core work of our research interests. Additionally, the synthesis of steroid-type compounds as anti-Alzheimer drugs as well as of several chromophores as important dyes for cellular imaging broadened our research scope. In this review article, we intend to provide an enlightened appraisal of all the bioactive compounds and their biological properties that were synthesized and studied by our research group in the last two decades.
Collapse
Affiliation(s)
| | | | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.L.C.S.); (H.M.T.A.)
| |
Collapse
|
84
|
Thomas AM, Serafini M, Grant EK, Coombs EAJ, Bluck JP, Schiedel M, McDonough MA, Reynolds JK, Lee B, Platt M, Sharlandjieva V, Biggin PC, Duarte F, Milne TA, Bush JT, Conway SJ. Mutate and Conjugate: A Method to Enable Rapid In-Cell Target Validation. ACS Chem Biol 2023; 18:2405-2417. [PMID: 37874862 PMCID: PMC10660337 DOI: 10.1021/acschembio.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Target validation remains a challenge in drug discovery, which leads to a high attrition rate in the drug discovery process, particularly in Phase II clinical trials. Consequently, new approaches to enhance target validation are valuable tools to improve the drug discovery process. Here, we report the combination of site-directed mutagenesis and electrophilic fragments to enable the rapid identification of small molecules that selectively inhibit the mutant protein. Using the bromodomain-containing protein BRD4 as an example, we employed a structure-based approach to identify the L94C mutation in the first bromodomain of BRD4 [BRD4(1)] as having a minimal effect on BRD4(1) function. We then screened a focused, KAc mimic-containing fragment set and a diverse fragment library against the mutant and wild-type proteins and identified a series of fragments that showed high selectivity for the mutant protein. These compounds were elaborated to include an alkyne click tag to enable the attachment of a fluorescent dye. These clickable compounds were then assessed in HEK293T cells, transiently expressing BRD4(1)WT or BRD4(1)L94C, to determine their selectivity for BRD4(1)L94C over other possible cellular targets. One compound was identified that shows very high selectivity for BRD4(1)L94C over all other proteins. This work provides a proof-of-concept that the combination of site-directed mutagenesis and electrophilic fragments, in a mutate and conjugate approach, can enable rapid identification of small molecule inhibitors for an appropriately mutated protein of interest. This technology can be used to assess the cellular phenotype of inhibiting the protein of interest, and the electrophilic ligand provides a starting point for noncovalent ligand development.
Collapse
Affiliation(s)
- Adam M. Thomas
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Marta Serafini
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Emma K. Grant
- Department
of Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Edward A. J. Coombs
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph P. Bluck
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Biochemistry, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Matthias Schiedel
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A. McDonough
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jessica K. Reynolds
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Bernadette Lee
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael Platt
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Vassilena Sharlandjieva
- MRC
Molecular Haematology Unit, MRC Weatherall Institute of Molecular
Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United
Kingdom
| | - Philip C. Biggin
- Department
of Biochemistry, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Fernanda Duarte
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Thomas A. Milne
- MRC
Molecular Haematology Unit, MRC Weatherall Institute of Molecular
Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United
Kingdom
| | - Jacob T. Bush
- Department
of Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| |
Collapse
|
85
|
Hasan MN, Ray M, Saha A. Landscape of In Silico Tools for Modeling Covalent Modification of Proteins: A Review on Computational Covalent Drug Discovery. J Phys Chem B 2023; 127:9663-9684. [PMID: 37921534 DOI: 10.1021/acs.jpcb.3c04710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Covalent drug discovery has been a challenging research area given the struggle of finding a sweet balance between selectivity and reactivity for these drugs, the lack of which often leads to off-target activities and hence undesirable side effects. However, there has been a resurgence in covalent drug design following the success of several covalent drugs such as boceprevir (2011), ibrutinib (2013), neratinib (2017), dacomitinib (2018), zanubrutinib (2019), and many others. Design of covalent drugs includes many crucial factors, where "evaluation of the binding affinity" and "a detailed mechanistic understanding on covalent inhibition" are at the top of the list. Well-defined experimental techniques are available to elucidate these factors; however, often they are expensive and/or time-consuming and hence not suitable for high throughput screens. Recent developments in in silico methods provide promise in this direction. In this report, we review a set of recent publications that focused on developing and/or implementing novel in silico techniques in "Computational Covalent Drug Discovery (CCDD)". We also discuss the advantages and disadvantages of these approaches along with what improvements are required to make it a great tool in medicinal chemistry in the near future.
Collapse
Affiliation(s)
- Md Nazmul Hasan
- Department of Chemistry and Biochemistry, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Manisha Ray
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Arjun Saha
- Department of Chemistry and Biochemistry, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
86
|
Jelisejevs D, Bula AL, Kinena L. Pyrazolidinone-based peptidomimetic SARS-CoV-2 M pro inhibitors. Bioorg Med Chem Lett 2023; 96:129530. [PMID: 37866713 DOI: 10.1016/j.bmcl.2023.129530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive drug target for COVID-19 treatment as it plays an integral role in the proliferation of coronavirus. Herein, we describe the investigation of β- and γ-lactams as electrophilic "warheads" for covalent binding to Cys145 of the Mpro active site. The highest inhibitory activity (IC50 = 45 ± 3 μM) was achieved using a pyrazolidinone warhead attached to the targeting dipeptide. Importantly, the synergy of the warhead and the targeting dipeptide is crucial for the successful inhibition of Mpro.
Collapse
Affiliation(s)
- Daniels Jelisejevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Anna Lina Bula
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Linda Kinena
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
87
|
Hocking B, Armstrong A, Mann DJ. Covalent fragment libraries in drug discovery-Design, synthesis, and screening methods. PROGRESS IN MEDICINAL CHEMISTRY 2023; 62:105-146. [PMID: 37981350 DOI: 10.1016/bs.pmch.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
As the development of drugs with a covalent mode of action is becoming increasingly popular, well-validated covalent fragment-based drug discovery (FBDD) methods have been comparatively slow to keep up with the demand. In this chapter the principles of covalent fragment reactivity, library design, synthesis, and screening methods are explored in depth, focussing on literature examples with direct applications to practical covalent fragment library design and screening. Further, questions about the future of the field are explored and potential useful advances are proposed.
Collapse
Affiliation(s)
- Brad Hocking
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alan Armstrong
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - David J Mann
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
88
|
Cruite J, Nowak R, Donovan KA, Ficarro SB, Huang H, Liu H, Liu Y, Marto JA, Metivier RJ, Fischer ES, Jones LH. Covalent Stapling of the Cereblon Sensor Loop Histidine Using Sulfur-Heterocycle Exchange. ACS Med Chem Lett 2023; 14:1576-1581. [PMID: 37974938 PMCID: PMC10641907 DOI: 10.1021/acsmedchemlett.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023] Open
Abstract
Site-specific modification of amino acid residues in protein binding pockets using sulfonyl exchange chemistry expands the druggable proteome by enabling the development of covalent modulators that target residues beyond cysteine. Sulfonyl fluoride and triazole electrophiles were incorporated previously into the cereblon (CRBN) molecular glue degrader EM12, to covalently engage His353 within the CRBN sensor loop, but these probes had poor human plasma stability. Attenuation of intrinsic reactivity through the development of sulfonyl pyrazoles, imidazoles, and nucleobases enhanced plasma stability, and several compounds retained efficient labeling of His353. For example, sulfonyl imidazole EM12-SO2Im covalently blocked the CRBN binding site and possessed excellent metabolic stability in human plasma, liver microsomes, and hepatocytes. These results highlight the potential suitability of sulfonyl imidazole and related sulfur(VI)-diazole exchange (SuDEx) warheads for covalent drug development and further exemplify the therapeutic promise of site-specific histidine targeting.
Collapse
Affiliation(s)
- Justin
T. Cruite
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Radosław
P. Nowak
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Katherine A. Donovan
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Scott B. Ficarro
- Department
of Cancer Biology, Department of Oncologic Pathology, Blais Proteomics
Center, and Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Huang Huang
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hu Liu
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yingpeng Liu
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jarrod A. Marto
- Department
of Cancer Biology, Department of Oncologic Pathology, Blais Proteomics
Center, and Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Rebecca J. Metivier
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
| | - Eric S. Fischer
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lyn H. Jones
- Center
for Protein Degradation, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
89
|
Tan B, Sacco M, Tan H, Li K, Joyce R, Zhang X, Chen Y, Wang J. Exploring diverse reactive warheads for the design of SARS-CoV-2 main protease inhibitors. Eur J Med Chem 2023; 259:115667. [PMID: 37482021 PMCID: PMC10529912 DOI: 10.1016/j.ejmech.2023.115667] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
SARS-CoV-2 main protease (Mpro) is a validated antiviral drug target of nirmatrelvir, the active ingredient in Pfizer's oral drug Paxlovid. Drug-drug interactions limit the use of Paxlovid. In addition, drug-resistant Mpro mutants against nirmatrelvir have been identified from cell culture viral passage and naturally occurring variants. As such, there is a need for a second generation of Mpro inhibitors. In this study, we explored several reactive warheads in the design of Mpro inhibitors. We identified Jun11119R (vinyl sulfonamide warhead), Jun10221R (propiolamide warhead), Jun1112R (4-chlorobut-2-ynamide warhead), Jun10541R (nitrile warhead), and Jun10963R (dually activated nitrile warhead) as potent Mpro inhibitors. Jun10541R and Jun10963R also had potent antiviral activity against SARS-CoV-2 in Calu-3 cells with EC50 values of 2.92 and 6.47 μM, respectively. X-ray crystal structures of Mpro with Jun10541R and Jun10221 revealed covalent modification of Cys145. These Mpro inhibitors with diverse reactive warheads collectively represent promising candidates for further development.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Michael Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States.
| |
Collapse
|
90
|
Lewis-Atwell T, Beechey D, Şimşek Ö, Grayson MN. Reformulating Reactivity Design for Data-Efficient Machine Learning. ACS Catal 2023; 13:13506-13515. [PMID: 37881791 PMCID: PMC10594582 DOI: 10.1021/acscatal.3c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/24/2023] [Indexed: 10/27/2023]
Abstract
Machine learning (ML) can deliver rapid and accurate reaction barrier predictions for use in rational reactivity design. However, model training requires large data sets of typically thousands or tens of thousands of barriers that are very expensive to obtain computationally or experimentally. Furthermore, bespoke data sets are required for each region of interest in reaction space as models typically struggle to generalize. We have therefore reformulated the ML barrier prediction problem toward a much more data-efficient process: finding a reaction from a prespecified set with a desired target value. Our reformulation enables the rapid selection of reactions with purpose-specific activation barriers, for example, in the design of reactivity and selectivity in synthesis, catalyst design, toxicology, and covalent drug discovery, requiring just tens of accurately measured barriers. Importantly, our reformulation does not require generalization beyond the domain of the data set at hand, and we show excellent results for the highly toxicologically and synthetically relevant data sets of aza-Michael addition and transition-metal-catalyzed dihydrogen activation, typically requiring less than 20 accurately measured density functional theory (DFT) barriers. Even for incomplete data sets of E2 and SN2 reactions, with high numbers of missing barriers (74% and 56% respectively), our chosen ML search method still requires significantly fewer data points than the hundreds or thousands needed for more conventional uses of ML to predict activation barriers. Finally, we include a case study in which we use our process to guide the optimization of the dihydrogen activation catalyst. Our approach was able to identify a reaction within 1 kcal mol-1 of the target barrier by only having to run 12 DFT reaction barrier calculations, which illustrates the usage and real-world applicability of this reformulation for systems of high synthetic importance.
Collapse
Affiliation(s)
- Toby Lewis-Atwell
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
- Department
of Computer Science, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Daniel Beechey
- Department
of Computer Science, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Özgür Şimşek
- Department
of Computer Science, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Matthew N. Grayson
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
91
|
Pizzio MG, Cenizo ZB, Méndez L, Sarotti AM, Mata EG. InCl 3-catalyzed intramolecular carbonyl-olefin metathesis. Org Biomol Chem 2023; 21:8141-8151. [PMID: 37779456 DOI: 10.1039/d3ob01170d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
An efficient and novel synthetic strategy for the generation of different carbocyclic moieties by ring closing carbonyl-olefin metathesis is reported. Herein, we describe a sustainably attractive protocol for one of the most powerful carbon-carbon bond-forming reactions, based on solvent-reduction, use of InCl3 catalyst, and microwave irradiation, affording target compounds with yields up to 96%.
Collapse
Affiliation(s)
- Marianela G Pizzio
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Zoe B Cenizo
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Luciana Méndez
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Ernesto G Mata
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
92
|
Gehringer M, Pape F, Méndez M, Barbie P, Unzue Lopez A, Lefranc J, Klingler FM, Hessler G, Langer T, Diamanti E, Schiedel M. Back in Person: Frontiers in Medicinal Chemistry 2023. ChemMedChem 2023; 18:e202300344. [PMID: 37485831 DOI: 10.1002/cmdc.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in the German speaking area and took place from April 3rd to 5th 2023 in Vienna (Austria). Fortunately, after being cancelled in 2020 and two years (2021-2022) of entirely virtual meetings, due to the COVID-19 pandemic, the FiMC could be held in a face-to-face format again. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh), the Division of Pharmaceutical and Medicinal Chemistry of the German Pharmaceutical Society (DPhG), together with the Division of Medicinal Chemistry of the Austrian Chemical Society (GÖCH), the Austrian Pharmaceutical Society (ÖPhG), and a local organization committee from the University of Vienna headed by Thierry Langer, the meeting brought together 260 participants from 21 countries. The program included 38 lectures by leading scientists from industry and academia as well as early career investigators. Moreover, 102 posters were presented in two highly interactive poster sessions.
Collapse
Affiliation(s)
- Matthias Gehringer
- Institute of Pharmaceutical Sciences, Pharmaceutical/Medicinal Chemistry Department, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Felix Pape
- NUVISAN Innovation Campus Berlin, NUVISAN ICB GmbH, Muellerstraße 178, 13353, Berlin, Germany
| | - María Méndez
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G838, 65926, Frankfurt am Main, Germany
| | - Philipp Barbie
- Bayer AG, R&D, Pharmaceuticals, Laboratory IV, Bldg. S106, 231, 13342, Berlin, Germany
| | - Andrea Unzue Lopez
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Julien Lefranc
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | | | - Gerhard Hessler
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G877, 65926, Frankfurt am Main, Germany
| | - Thierry Langer
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Matthias Schiedel
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| |
Collapse
|
93
|
Zhang J, Gao W, Wang Y, Chang J, Yu B. Targeted covalent inhibitors for novel therapeutics. Future Med Chem 2023; 15:1739-1741. [PMID: 37791528 DOI: 10.4155/fmc-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Affiliation(s)
- Jingya Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenshuo Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junbiao Chang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang, 453007, China
| | - Bin Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
94
|
Xerxa E, Bajorath J. Data sets of human and mouse protein kinase inhibitors with curated activity data including covalent inhibitors. Future Sci OA 2023; 9:FSO892. [PMID: 37752915 PMCID: PMC10518807 DOI: 10.2144/fsoa-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
Aim Generation of high-quality data sets of protein kinase inhibitors (PKIs). Methodology Publicly available PKIs with reliable activity data were curated. PKIs with very weak activity were classified as inactive. Analogue series and PKIs containing reactive groups (warheads) enabling covalent inhibition were systematically identified. Exemplary results & data A total of 155,579 human and 3057 mouse PKIs were obtained. Human PKIs were active 440 kinases and included 13,949 covalent PKIs. The collection of qualifying PKIs and corresponding inactive compounds is made available as an open access deposition. Limitations & next steps Potential limitations include activity data incompleteness and assay variance. The data set can be used to investigate PKIs with alternative modes of action and calibrate computational methods.
Collapse
Affiliation(s)
- Elena Xerxa
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53113 Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53113 Bonn, Germany
| |
Collapse
|
95
|
Konstantinidou M, Visser EJ, Vandenboorn E, Chen S, Jaishankar P, Overmans M, Dutta S, Neitz RJ, Renslo AR, Ottmann C, Brunsveld L, Arkin MR. Structure-Based Optimization of Covalent, Small-Molecule Stabilizers of the 14-3-3σ/ERα Protein-Protein Interaction from Nonselective Fragments. J Am Chem Soc 2023; 145:20328-20343. [PMID: 37676236 PMCID: PMC10515640 DOI: 10.1021/jacs.3c05161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 09/08/2023]
Abstract
The stabilization of protein-protein interactions (PPIs) has emerged as a promising strategy in chemical biology and drug discovery. The identification of suitable starting points for stabilizing native PPIs and their subsequent elaboration into selective and potent molecular glues lacks structure-guided optimization strategies. We have previously identified a disulfide fragment that stabilized the hub protein 14-3-3σ bound to several of its clients, including ERα and C-RAF. Here, we show the structure-based optimization of the nonselective fragment toward selective and highly potent small-molecule stabilizers of the 14-3-3σ/ERα complex. The more elaborated molecular glues, for example, show no stabilization of 14-3-3σ/C-RAF up to 150 μM compound. Orthogonal biophysical assays, including mass spectrometry and fluorescence anisotropy, were used to establish structure-activity relationships. The binding modes of 37 compounds were elucidated with X-ray crystallography, which further assisted the concomitant structure-guided optimization. By targeting specific amino acids in the 14-3-3σ/ERα interface and locking the conformation with a spirocycle, the optimized covalent stabilizer 181 achieved potency, cooperativity, and selectivity similar to the natural product Fusicoccin-A. This case study showcases the value of addressing the structure, kinetics, and cooperativity for molecular glue development.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Emira J. Visser
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Edmee Vandenboorn
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sheng Chen
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Priyadarshini Jaishankar
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Maurits Overmans
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Shubhankar Dutta
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - R. Jeffrey Neitz
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| |
Collapse
|
96
|
Li Q, Deng X, Xu YJ, Dong L. Development of Long-Acting Dipeptidyl Peptidase-4 Inhibitors: Structural Evolution and Long-Acting Determinants. J Med Chem 2023; 66:11593-11631. [PMID: 37647598 DOI: 10.1021/acs.jmedchem.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Considerable effort has been made to achieve less frequent dosing in the development of DPP-4 inhibitors. Enthusiasm for long-acting DPP-4 inhibitors is based on the promise that such agents with less frequent dosing regimens are associated with improved patient adherence, but the rational design of long-acting DPP-4 inhibitors remains a major challenge. In this Perspective, the development of long-acting DPP-4 inhibitors is comprehensively summarized to highlight the evolution of initial lead compounds on the path toward developing long-acting DPP-4 inhibitors over nearly three decades. The determinants for long duration of action are then examined, including the nature of the target, potency, binding kinetics, crystal structures, selectivity, and preclinical and clinical pharmacokinetic and pharmacodynamic profiles. More importantly, several possible approaches for the rational design of long-acting drugs are discussed. We hope that this information will facilitate the design and development of safer and more effective long-acting DPP-4 inhibitors and other oral drugs.
Collapse
Affiliation(s)
- Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoyan Deng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan-Jun Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lin Dong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
97
|
Bianco G, Holcomb M, Santos-Martins D, Tillack A, Hansel-Harris A, Forli S. Reactive Docking: A Computational Method for High-Throughput Virtual Screenings of Reactive Species. J Chem Inf Model 2023; 63:5631-5640. [PMID: 37639635 PMCID: PMC10756071 DOI: 10.1021/acs.jcim.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We describe the formalization of the reactive docking protocol, a method developed to model and predict reactions between small molecules and biological macromolecules. The method has been successfully used in a number of applications already, including recapitulating large proteomics data sets, performing structure-reactivity target optimizations, and prospective virtual screenings. By modeling a near-attack conformation-like state, no QM calculations are required to model the ligand and receptor geometries. Here, we present its generalization using a large data set containing more than 400 ligand-target complexes, 8 nucleophilic modifiable residue types, and more than 30 warheads. The method correctly predicts the modified residue in ∼85% of complexes and shows enrichments comparable to standard focused virtual screenings in ranking ligands. This performance supports this approach for the docking and screening of reactive ligands in virtual chemoproteomics and drug design campaigns.
Collapse
Affiliation(s)
- Giulia Bianco
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| | - Andreas Tillack
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| | - Althea Hansel-Harris
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| |
Collapse
|
98
|
Wang W, Wang X, Tang G, Zhu C, Xiang M, Xiao Q, Zhang ZM, Gao L, Yao SQ. Multitarget inhibitors/probes that target LRRK2 and AURORA A kinases noncovalently and covalently. Chem Commun (Camb) 2023; 59:10789-10792. [PMID: 37594149 DOI: 10.1039/d3cc03530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Herein, we report a salicylaldehyde-based, reversible covalent inhibitor (A2) that possesses moderate cellular activity against AURKA with a prolonged residence time and shows significant non-covalent inhibition towards LRRK2. Our results indicated that this multitarget kinase inhibitor may be used as the starting point for future development of more potent, selective and dual-targeting covalent kinase inhibitors against AURKA and LRRK2 for mitophagy.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
99
|
Henches R, Ozga T, Gao Y, Tu Z, Zhang T, Francis CL. Synthesis and biological evaluation of 2-(Tetrazol-5-yl)sulfonylacetamides as inhibitors of Mycobacterium tuberculosis and Mycobacterium marinum. Bioorg Med Chem Lett 2023; 92:129391. [PMID: 37369331 DOI: 10.1016/j.bmcl.2023.129391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
A series of 2-(tetrazol-5-yl)sulfonylacetamide derivatives were synthesized and evaluated for their in vitro inhibitory activity against Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm). The most active compounds exhibited in vitro MIC90 values of 1.25 μg/mL against Mtb, but they were less effective against Mm (MIC90 ≥ 10 μg/mL). Despite the most active compounds having favourable physicochemical properties and one of them having a half-life of ∼3 h when incubated with mouse liver microsomes, two representative highly active compounds showed strong chemical reactivity to cysteine derivatives, as surrogate in vivo sulfur-centred nucleophiles, indicating excessive electrophilicity, and therefore, likely indiscriminate chemical reactivity in vivo, representing an unacceptably high risk of general toxicity, and low likelihood of being therapeutically effective.
Collapse
Affiliation(s)
- Robin Henches
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC 3168, Australia
| | - Théo Ozga
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC 3168, Australia
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengchao Tu
- Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Craig L Francis
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC 3168, Australia.
| |
Collapse
|
100
|
Pan S, Ding A, Li Y, Sun Y, Zhan Y, Ye Z, Song N, Peng B, Li L, Huang W, Shao H. Small-molecule probes from bench to bedside: advancing molecular analysis of drug-target interactions toward precision medicine. Chem Soc Rev 2023; 52:5706-5743. [PMID: 37525607 DOI: 10.1039/d3cs00056g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.
Collapse
Affiliation(s)
- Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yisi Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaxin Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yueqin Zhan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Zhenkun Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Ning Song
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|