51
|
Qi J, Wang W, Tang Y, Lou S, Wang J, Yuan T, He Q, Yang B, Zhu H, Cui S. Discovery of Novel Indazoles as Potent and Selective PI3Kδ Inhibitors with High Efficacy for Treatment of Hepatocellular Carcinoma. J Med Chem 2022; 65:3849-3865. [PMID: 35191698 DOI: 10.1021/acs.jmedchem.1c01520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PI3Kδ inhibitors have been developed for treatment of B-cell malignancies and inflammatory and autoimmune diseases. However, their therapeutic role in solid tumors like hepatocellular carcinoma (HCC) is rarely reported. Thus, the development of potent and selective PI3Kδ inhibitors with a new chemotype and therapy is highly desirable. Through the scaffold-hopping strategy, indazole was first described as the core structure of propeller-shaped PI3Kδ inhibitors. A total of 26 indazole derivatives were designed and prepared to identify a novel compound 9x with good isoform selectivity, PK profile, and potency. Compared to Idelalisib and Sorafenib, the pharmacodynamic (PD) studies showed that 9x exhibits superior efficacy in HCC cell lines and xenograft models, and the mechanistic study showed that 9x robustly suppresses the downstream AKT pathway to induce subsequent apoptotic cell death in HCC models. Therefore, this work provides a new structural design of PI3Kδ inhibitors for a novel and efficient therapeutic small molecule toward HCC.
Collapse
Affiliation(s)
- Jifeng Qi
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihua Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaer Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
52
|
Wei L, Wang M, Wang Q, Han Z. Dual targeting, a new strategy for novel PARP inhibitor discovery. Drug Discov Ther 2022; 15:300-309. [PMID: 35034923 DOI: 10.5582/ddt.2021.01100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a hallmark for cancer treatment, PARP inhibitors can effectively kill tumor cells with a mechanism termed as synthetic lethality, and are used to treat various cancers including ovarian, breast, prostate, pancreatic and others with DNA repair defects. However, along with the clinical trials progressing, the limitations of PARP-1 inhibitors became apparent such as limited activity and indications. Studies have shown that a molecule that is able to simultaneously restrict two or more targets involving in tumors is more effective in preventing and treating cancers due to the enhancing synergies. In order to make up for the shortcomings of PARP inhibitors, reduce the development cost and overcome the pharmacokinetic defects, multiple works were carried out to construct dual targeting PARP inhibitors for cancer therapy. Herein, they were summarized briefly.
Collapse
Affiliation(s)
- Lina Wei
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Meizhi Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiaoyun Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhiwu Han
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
53
|
Wang X, Zhang M, Zhu R, Wu Z, Wu F, Wang Z, Yu Y. Design, Synthesis, Biological Evaluation, and Molecular Modeling of 2-Difluoromethylbenzimidazole Derivatives as Potential PI3Kα Inhibitors. Molecules 2022; 27:387. [PMID: 35056702 PMCID: PMC8777764 DOI: 10.3390/molecules27020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
PI3Kα is one of the potential targets for novel anticancer drugs. In this study, a series of 2-difluoromethylbenzimidazole derivatives were studied based on the combination of molecular modeling techniques 3D-QSAR, molecular docking, and molecular dynamics. The results showed that the best comparative molecular field analysis (CoMFA) model had q2 = 0.797 and r2 = 0.996 and the best comparative molecular similarity indices analysis (CoMSIA) model had q2 = 0.567 and r2 = 0.960. It was indicated that these 3D-QSAR models have good verification and excellent prediction capabilities. The binding mode of the compound 29 and 4YKN was explored using molecular docking and a molecular dynamics simulation. Ultimately, five new PI3Kα inhibitors were designed and screened by these models. Then, two of them (86, 87) were selected to be synthesized and biologically evaluated, with a satisfying result (22.8 nM for 86 and 33.6 nM for 87).
Collapse
Affiliation(s)
- Xiangcong Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
| | - Moxuan Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
| | - Ranran Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
| | - Zhongshan Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, 100 Haiquan Road, Shanghai 201400, China
| | - Zhonghua Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, 100 Haiquan Road, Shanghai 201400, China
| | - Yanyan Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, 100 Haiquan Road, Shanghai 201400, China
| |
Collapse
|
54
|
Sonawane D, Sahu AK, Jadav T, Sengupta P. UHPLC-Q-TOF-MS/MS based metabolite profiling of duvelisib and establishment of its metabolism mechanisms. Biomed Chromatogr 2022; 36:e5314. [PMID: 34981541 DOI: 10.1002/bmc.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Duvelisib is a dual inhibitor of phosphoinositide 3 kinase that received global approval by USFDA in 2018 to treat follicular lymphoma after at least two prior systemic therapies. An extensive literature search revealed that till date, metabolites of duvelisib are not characterized and information on the same is not available in any literature. Moreover, its metabolism pathway is yet to be established. This study aimed to investigate and characterize the metabolites of duvelisib generated in microsomes and S9 fractions. In this study, five duvelisib metabolites have been identified using UHPLC-Q-TOF-MS/MS technique of analysis. The structural characterisation of the metabolites was performed by comparing the fragmentation pattern of duvelisib and its metabolites through an accurate mass measurement technique. Three metabolites were found to be generated through phase I hydroxylation and dechlorination reaction. The other two metabolites were generated through a phase II glucuronidation reaction. The metabolism mechanism established through this study can be useful to improve the safety profile of the drug of its similar category in the future after establishment their toxicity profile of the identified metabolites.
Collapse
Affiliation(s)
- Dipali Sonawane
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
55
|
Exploring the selective mechanism of inhibitors towards different subtypes of class I PI3K. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
56
|
Borsari C, Wymann MP. Targeting Phosphoinositide 3-Kinase - Five Decades of Chemical Space Exploration. Chimia (Aarau) 2021; 75:1037-1044. [PMID: 34920774 DOI: 10.2533/chimia.2021.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) plays a key role in a plethora of physiologic processes and controls cell growth, metabolism, immunity, cardiovascular and neurological function, and more. The discovery of wort-mannin as the first potent PI3K inhibitor (PI3Ki) in the 1990s provided rapid identification of PI3K-dependent processes, which drove the discovery of the PI3K/protein kinase B (PKB/Akt)/target of rapamycin (mTOR) pathway. Genetic mouse models and first PI3K isoform-specific inhibitors pinpointed putative therapeutic applications. The recognition of PI3K as target for cancer therapy drove subsequently drug development. Here we provide a brief journey through the emerging roles of PI3K to the development of preclinical and clinical PI3Ki candidates.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland;,
| |
Collapse
|
57
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
58
|
Cryo-EM structures of PI3Kα reveal conformational changes during inhibition and activation. Proc Natl Acad Sci U S A 2021; 118:2109327118. [PMID: 34725156 PMCID: PMC8609346 DOI: 10.1073/pnas.2109327118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are of critical importance in cell signaling and can function as drivers of disease. Information on the PI3K structure is essential for an understanding of the function of these proteins and for the identification of specific and effective small-molecule inhibitors. Here we present a single-particle cryo-electron microscopy (cryo-EM) analysis of PI3Kα, the dimer consisting of the p110α catalytic subunit bound to the p85α regulatory subunit. We investigated three conformational states of PI3Kα: the unbound dimer, the dimer bound to the isoform-specific inhibitor BYL-719, and the dimer associated with an activating phosphopeptide. Each of these conformations reveals specific structural features that provide insights into conformation-associated functions. Phosphoinositide 3-kinases (PI3Ks) are lipid kinases essential for growth and metabolism. Their aberrant activation is associated with many types of cancers. Here we used single-particle cryoelectron microscopy (cryo-EM) to determine three distinct conformations of full-length PI3Kα (p110α–p85α): the unliganded heterodimer PI3Kα, PI3Kα bound to the p110α-specific inhibitor BYL-719, and PI3Kα exposed to an activating phosphopeptide. The cryo-EM structures of unbound and of BYL-719–bound PI3Kα are in general accord with published crystal structures. Local deviations are presented and discussed. BYL-719 stabilizes the structure of PI3Kα, but three regions of low-resolution extra density remain and are provisionally assigned to the cSH2, BH, and SH3 domains of p85. One of the extra density regions is in contact with the kinase domain blocking access to the catalytic site. This conformational change indicates that the effects of BYL-719 on PI3Kα activity extend beyond competition with adenosine triphosphate (ATP). In unliganded PI3Kα, the DFG motif occurs in the “in” and “out” positions. In BYL-719–bound PI3Kα, only the DFG-in position, corresponding to the active conformation of the kinase, was observed. The phosphopeptide-bound structure of PI3Kα is composed of a stable core resolved at 3.8 Å. It contains all p110α domains except the adaptor-binding domain (ABD). The p85α domains, linked to the core through the ABD, are no longer resolved, implying that the phosphopeptide activates PI3Kα by fully releasing the niSH2 domain from binding to p110α. The structures presented here show the basal form of the full-length PI3Kα dimer and document conformational changes related to the activated and inhibited states.
Collapse
|
59
|
3D-QSAR and molecular docking studies of 4-methyl quinazoline derivatives as PI3Kα inhibitors. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
60
|
Mata G, Miles DH, Drew SL, Fournier J, Lawson KV, Mailyan AK, Sharif EU, Yan X, Beatty JW, Banuelos J, Chen J, Ginn E, Chen A, Gerrick KY, Pham AT, Wong K, Soni D, Dhanota P, Shaqfeh SG, Meleza C, Narasappa N, Singh H, Zhao X, Jin L, Schindler U, Walters MJ, Young SW, Walker NP, Leleti MR, Powers JP, Jeffrey JL. Design, Synthesis, and Structure-Activity Relationship Optimization of Pyrazolopyrimidine Amide Inhibitors of Phosphoinositide 3-Kinase γ (PI3Kγ). J Med Chem 2021; 65:1418-1444. [PMID: 34672584 DOI: 10.1021/acs.jmedchem.1c01153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphoinositide-3-kinase γ (PI3Kγ) is highly expressed in immune cells and promotes the production and migration of inflammatory mediators. The inhibition of PI3Kγ has been shown to repolarize the tumor immune microenvironment to a more inflammatory phenotype, thereby controlling immune suppression in cancer. Herein, we report the structure-based optimization of an early lead series of pyrazolopyrimidine isoindolinones, which culminated in the discovery of highly potent and isoform-selective PI3Kγ inhibitors with favorable drug-like properties. X-ray cocrystal structure analysis, molecular docking studies, and detailed structure-activity relationship investigations resulted in the identification of the optimal amide and isoindolinone substituents to achieve a desirable combination of potency, selectivity, and metabolic stability. Preliminary in vitro studies indicate that inhibition of PI3Kγ with compound 56 results in a significant immune response by increasing pro-inflammatory cytokine gene expression in M1 macrophages.
Collapse
Affiliation(s)
- Guillaume Mata
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Dillon H Miles
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Samuel L Drew
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jeremy Fournier
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Kenneth V Lawson
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Artur K Mailyan
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Ehesan U Sharif
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Xuelei Yan
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Joel W Beatty
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jesus Banuelos
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jie Chen
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Elaine Ginn
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Ada Chen
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Kimberline Y Gerrick
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Amber T Pham
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Kent Wong
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Divyank Soni
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Puja Dhanota
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Stefan G Shaqfeh
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Cesar Meleza
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Nell Narasappa
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Hema Singh
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Xiaoning Zhao
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Lixia Jin
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Ulrike Schindler
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Matthew J Walters
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Stephen W Young
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Nigel P Walker
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Manmohan Reddy Leleti
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jay P Powers
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| | - Jenna L Jeffrey
- Arcus Biosciences, Inc., 3928 Point Eden Way, Hayward, California 94545, United States
| |
Collapse
|
61
|
Meng D, He W, Zhang Y, Liang Z, Zheng J, Zhang X, Zheng X, Zhan P, Chen H, Li W, Cai L. Development of PI3K inhibitors: Advances in clinical trials and new strategies (Review). Pharmacol Res 2021; 173:105900. [PMID: 34547385 DOI: 10.1016/j.phrs.2021.105900] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are the family of vital lipid kinases widely distributed in mammalian cells. The overexpression of PI3Ks leads to hyperactivation of the PI3K/AKT/mTOR pathway, which is considered a pivotal pathway in the occurrence and development of tumors. Hence, PI3Ks are viewed as promising therapeutic targets for anti-cancer therapy. To date, some PI3K inhibitors have achieved desired therapeutic effect via inhibiting the activity of PI3Ks or reducing the level of PI3Ks in clinical trials, among which, Idelalisib, Alpelisib and Duvelisib have been approved by the FDA for treatment of ER+/HER2- advanced metastatic breast cancer and refractory chronic lymphocytic leukemia (CLL) and small lymphocytic lymphomas (SLL). This review focuses on the latest advances of PI3K inhibitors with efficacious anticancer activity, which are classified into Pan-PI3K inhibitors, isoform-specific PI3K inhibitors and dual PI3K/mTOR inhibitors based on the isoform affinity. Their corresponding structure characteristics and structures-activity relationship (SAR), together with the progress in the clinical application are mainly discussed. Additionally, the new PI3K inhibitory strategy, such as PI3K degradation agent, for the design of potential PI3K candidates to overcome drug resistance is referred as well.
Collapse
Affiliation(s)
- Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Wei He
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Zhenguo Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Peng Zhan
- School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Road, Jinan 250012, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
62
|
Buron F, Rodrigues N, Saurat T, Hiebel MA, Bourg S, Bonnet P, Nehmé R, Morin P, Percina N, Corret J, Vallée B, le Guevel R, Jourdan ML, Bénédetti H, Routier S. Design, Synthesis and SAR in 2,4,7-Trisubstituted Pyrido[3,2- d]Pyrimidine Series as Novel PI3K/mTOR Inhibitors. Molecules 2021; 26:molecules26175349. [PMID: 34500781 PMCID: PMC8434050 DOI: 10.3390/molecules26175349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022] Open
Abstract
This work describes the synthesis, enzymatic activities on PI3K and mTOR, in silico docking and cellular activities of various uncommon 2,4,7 trisubstituted pyrido[3,2-d]pyrimidines. The series synthesized offers a chemical diversity in C-7 whereas C-2 (3-hydroxyphenyl) and C-4 groups (morpholine) remain unchanged, in order to provide a better understanding of the molecular determinants of PI3K selectivity or dual activity on PI3K and mTOR. Some C-7 substituents were shown to improve the efficiency on kinases compared to the 2,4-di-substituted pyrimidopyrimidine derivatives used as references. Six novel derivatives possess IC50 values on PI3Kα between 3 and 10 nM. The compounds with the best efficiencies on PI3K and mTOR induced micromolar cytotoxicity on cancer cell lines possessing an overactivated PI3K pathway.
Collapse
Affiliation(s)
- Frédéric Buron
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Nuno Rodrigues
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Thibault Saurat
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France; (J.C.); (B.V.)
| | - Marie Aude Hiebel
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Philippe Morin
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Nathalie Percina
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Justine Corret
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France; (J.C.); (B.V.)
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France; (J.C.); (B.V.)
| | - Remy le Guevel
- Campus de Villejean, ImPACcell, Structure Fédérative de Recherche BIOSIT, Université de Rennes 1, Bat 8, 2 Avenue du Pr. Leon Bernard, CS34317, 35043 Rennes, France;
| | - Marie-Lise Jourdan
- Nutrition Croissance et Métabolisme, N2C, INSERM U1069, CHU Tours, Faculté de Médecine, 10 boulevard Tonnellé, 37032 Tours, France;
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France; (J.C.); (B.V.)
- Correspondence: (H.B.); (S.R.); Tel.: +33-(0)2-38-49-48-53 (S.R.)
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
- Correspondence: (H.B.); (S.R.); Tel.: +33-(0)2-38-49-48-53 (S.R.)
| |
Collapse
|
63
|
Zhang M, Wei W, Peng C, Ma X, He X, Zhang H, Zhou M. Discovery of novel pyrazolopyrimidine derivatives as potent mTOR/HDAC bi-functional inhibitors via pharmacophore-merging strategy. Bioorg Med Chem Lett 2021; 49:128286. [PMID: 34314844 DOI: 10.1016/j.bmcl.2021.128286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023]
Abstract
The mTOR and HDAC dual suppression is meaningful for counteracting drug resistance resulted from kinase mutation and bypass mechanisms. Herein, we communicate our recent discovery of a novel structural series of mTOR/HDAC bi-functional inhibitors featuring the pyrazolopyrimidine core via pharmacophore-merging strategy. More than half of them exerted potent dual-target inhibitory activities. In particular, compound 50 exhibited IC50 values of 0.49 and 0.91 nM against mTOR and HDAC1, respectively, along with remarkably enhanced anti-proliferative activity (IC50 = 1.74 μM) against MV4-11 cell line than mTOR inhibitor MLN-0128 (IC50 = 5.84 μM) and HDAC inhibitor SAHA (IC50 = 8.44 μM). Its intracellular intervention of both mTOR signaling and HDAC was validated by the Western blot analysis. Moreover, as the first disclosed mTOR/HDAC dual inhibitor with selectivity for some specific HDAC subtypes, it has the potential to alleviate the adverse effects resulted from pan-HDAC inhibition. Attributed to its favorable in vitro performance, compound 50 is valuable for further functional investigation as a polypharmacological anti-cancer agent.
Collapse
Affiliation(s)
- Mingming Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Chengjun Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xiaodong Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Xiao He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Heng Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mingkang Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
64
|
Kim YS, Cheon MG, Boggu PR, Koh SY, Park GM, Kim G, Park SH, Park SL, Lee CW, Kim JW, Jung YH. Synthesis and biological evaluation of novel purinyl quinazolinone derivatives as PI3Kδ-specific inhibitors for the treatment of hematologic malignancies. Bioorg Med Chem 2021; 45:116312. [PMID: 34332211 DOI: 10.1016/j.bmc.2021.116312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) mediate intracellular signal transduction. Aberrant PI3K signaling is associated with oncogenesis and disease progression in solid tumors and hematologic malignancies. Idelalisib (1), a first-in-class PI3Kδ inhibitor for the treatment of hematologic malignancies, was developed, but its sales were limited by black box warnings due to unexpected adverse effects. Therefore, to overcome these adverse events, various quinazolinone derivatives were synthesized and evaluated in vitro based on their inhibitory activity against the PI3K enzyme and the viability of cell lines such as MOLT and SUDHL. Among them, 6f (IC50 = 0.39 nM) and 6m (IC50 = 0.09 nM) showed excellent enzyme activity, and 6m displayed an approximately four-fold higher selectivity for PI3Kγ/δ compared with Idelalisib (1). Furthermore, in vivo PK experiments with 6f and 6m revealed that 6f (AUClast = 81.04 h*ng/mL, Cmax = 18.34 ng/mL, Tmax = 0.5 h, t1/2 = 10.2 h in 1 mpk dose) had improved PK compared with 1. Finally, further experiments will be conducted with 6f selected as a candidate, and the potential for it to be developed as a treatment with good efficacy for hematologic malignancies will be determined.
Collapse
Affiliation(s)
- Yeon Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | | | - Pulla Reddy Boggu
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Su Youn Koh
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Gi Min Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Gahee Kim
- Bioway, Inc., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Seo Hyun Park
- Bioway, Inc., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Sung Lyea Park
- Bioway, Inc., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Chi Woo Lee
- Bioway, Inc., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Jong Woo Kim
- Bioway, Inc., Chuncheon, Gangwon-do 24232, Republic of Korea.
| | - Young Hoon Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
65
|
Liu K, Li D, Zheng W, Shi M, Chen Y, Tang M, Yang T, Zhao M, Deng D, Zhang C, Liu J, Yuan X, Yang Z, Chen L. Discovery, Optimization, and Evaluation of Quinazolinone Derivatives with Novel Linkers as Orally Efficacious Phosphoinositide-3-Kinase Delta Inhibitors for Treatment of Inflammatory Diseases. J Med Chem 2021; 64:8951-8970. [PMID: 34138567 DOI: 10.1021/acs.jmedchem.1c00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Guided by molecular docking, a commonly used open-chain linker was cyclized into a five-membered pyrrolidine to lock the overall conformation of the propeller-shaped molecule. Different substituents were introduced into the pyrrolidine moiety to block oxidative metabolism. Surprisingly, it was found that a small methyl substituent could be used to alleviate the oxidative metabolism of pyrrolidine while maintaining or enhancing potency, which could be described as a "magic methyl". Further optimization around the "3rd blade" of the propeller led to identification of a series of potent and selective PI3Kδ inhibitors. Among them, compound 50 afforded an optimum balance of PK profiles and potency. Oral administration of 50 attenuated the arthritis severity in a dose-dependent manner in a collagen-induced arthritis model without obvious toxicity. Furthermore, 50 demonstrated excellent pharmacokinetic properties with high bioavailability, suggesting that 50 might be an acceptable candidate for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Dan Li
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wei Zheng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Mingsong Shi
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jiang Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xue Yuan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhuang Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
66
|
Zhang K, Ji M, Lin S, Peng S, Zhang Z, Zhang M, Zhang J, Zhang Y, Wu D, Tian H, Chen X, Xu H. Design, Synthesis, and Biological Evaluation of a Novel Photocaged PI3K Inhibitor toward Precise Cancer Treatment. J Med Chem 2021; 64:7331-7340. [PMID: 33876637 DOI: 10.1021/acs.jmedchem.0c02186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aberrant activation of the PI3K pathway has been intensively targeted for cancer therapeutics for decades, leading to more than 40 PI3K inhibitors advanced into clinical trials. However, it is increasingly noticed that PI3K inhibitors often showed limited efficacy as well as a number of serious on-target adverse effects during the clinical development. In this work, we designed and synthesized a novel photocaged PI3K inhibitor 1, which could be readily activated by UV irradiation to release a highly potent PI3K inhibitor 2. Upon UV irradiation, the photocaged inhibitor 1 demonstrated remarkably enhanced antiproliferative activity against multiple cancer cell lines and significant efficacy in the patient-derived tumor organoid model. Furthermore, 1 also showed favorable anticancer activity in an in vivo zebrafish xenograft model. Taken together, the photocaged PI3K inhibitor 1 represents a promising avenue for novel therapeutics toward precise cancer treatment.
Collapse
|
67
|
Fradera X, Deng Q, Achab A, Garcia Y, Kattar SD, McGowan MA, Methot JL, Wilson K, Zhou H, Shaffer L, Goldenblatt P, Tong V, Augustin MA, Altman MD, Lesburg CA, Shah S, Katz JD. Discovery of a new series of PI3K-δ inhibitors from Virtual Screening. Bioorg Med Chem Lett 2021; 42:128046. [PMID: 33865969 DOI: 10.1016/j.bmcl.2021.128046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
PI3K-δ mediates key immune cell signaling pathways and is a target of interest for treatment of oncological and immunological disorders. Here we describe the discovery and optimization of a novel series of PI3K-δ selective inhibitors. We first identified hits containing an isoindolinone scaffold using a combined ligand- and receptor-based virtual screening workflow, and then improved potency and selectivity guided by structural data and modeling. Careful optimization of molecular properties led to compounds with improved permeability and pharmacokinetic profile, and high potency in a whole blood assay.
Collapse
Affiliation(s)
- Xavier Fradera
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA.
| | - Qiaolin Deng
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Yudith Garcia
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | | | | | - Joey L Methot
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Kevin Wilson
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Hua Zhou
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Lynsey Shaffer
- Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | | | | | | | - Michael D Altman
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Charles A Lesburg
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Sanjiv Shah
- Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Jason D Katz
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| |
Collapse
|
68
|
Methot JL, Zhou H, McGowan MA, Anthony NJ, Christopher M, Garcia Y, Achab A, Lipford K, Trotter BW, Altman MD, Fradera X, Lesburg CA, Li C, Alves S, Chappell CP, Jain R, Mangado R, Pinheiro E, Williams SMG, Goldenblatt P, Hill A, Shaffer L, Chen D, Tong V, McLeod RL, Lee HH, Yu H, Shah S, Katz JD. Projected Dose Optimization of Amino- and Hydroxypyrrolidine Purine PI3Kδ Immunomodulators. J Med Chem 2021; 64:5137-5156. [PMID: 33797901 DOI: 10.1021/acs.jmedchem.1c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The approvals of idelalisib and duvelisib have validated PI3Kδ inhibitors for the treatment for hematological malignancies driven by the PI3K/AKT pathway. Our program led to the identification of structurally distinct heterocycloalkyl purine inhibitors with excellent isoform and kinome selectivity; however, they had high projected human doses. Improved ligand contacts gave potency enhancements, while replacement of metabolic liabilities led to extended half-lives in preclinical species, affording PI3Kδ inhibitors with low once-daily predicted human doses. Treatment of C57BL/6-Foxp3-GDL reporter mice with 30 and 100 mg/kg/day of 3c (MSD-496486311) led to a 70% reduction in Foxp3-expressing regulatory T cells as observed through bioluminescence imaging with luciferin, consistent with the role of PI3K/AKT signaling in Treg cell proliferation. As a model for allergic rhinitis and asthma, treatment of ovalbumin-challenged Brown Norway rats with 0.3 to 30 mg/kg/day of 3c gave a dose-dependent reduction in pulmonary bronchoalveolar lavage inflammation eosinophil cell count.
Collapse
Affiliation(s)
- Joey L Methot
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Hua Zhou
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Meredeth A McGowan
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Neville John Anthony
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Matthew Christopher
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Yudith Garcia
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Abdelghani Achab
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Kathryn Lipford
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Benjamin Wesley Trotter
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Michael D Altman
- Computational and Structural Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Xavier Fradera
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Charles A Lesburg
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Chaomin Li
- Process Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Stephen Alves
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Craig P Chappell
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Renu Jain
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Ruban Mangado
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Elaine Pinheiro
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Sybill M G Williams
- Discovery Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Peter Goldenblatt
- In Vitro Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Armetta Hill
- In Vitro Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Lynsey Shaffer
- In Vitro Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Dapeng Chen
- Preclinical Pharmacokinetics and Drug Metabolism, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Vincent Tong
- Preclinical Pharmacokinetics and Drug Metabolism, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Robbie L McLeod
- In Vivo Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Hyun-Hee Lee
- In Vivo Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Hongshi Yu
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Sanjiv Shah
- In Vitro Pharmacology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | - Jason D Katz
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| |
Collapse
|
69
|
Li X, Golden JE. Construction of N-Boc-2-Alkylaminoquinazolin-4(3 H)-Ones via a Three-Component, One-Pot Protocol Mediated by Copper(II) Chloride that Spares Enantiomeric Purity. Adv Synth Catal 2021; 363:1638-1645. [PMID: 33867902 PMCID: PMC8048503 DOI: 10.1002/adsc.202001279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/27/2020] [Indexed: 12/21/2022]
Abstract
Chiral 2-alkylquinazolinones are key synthetic intermediates, but their preparation in high optical purity is challenging. Thus, a multicomponent procedure integrating anthranilic acids, N-Boc-amino acids, and amines in the presence of methanesulfonyl chloride, N-methylimidazole, and copper(II) chloride was developed to mildly afford N-Boc-2-alkylaminoquinazolin-4(3H)-ones with excellent preservation of enantiomeric purity (>99% ee). Copper(II) chloride was essential to retaining enantiopurity, and reaction component structural changes were well tolerated, resulting in an efficient, all-in-one procedure that promotes sequential coupling, lactonization, aminolysis, and cyclization in good yields. The method was applied to the rapid assembly of four key intermediates used in the synthesis of high profile quinazolinones, including several PI3K inhibitor drugs.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Wisconsin-MadisonMadisonWisconsin53705-2222USA
| | - Jennifer E. Golden
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Wisconsin-MadisonMadisonWisconsin53705-2222USA
| |
Collapse
|
70
|
Targeting SHIP1 and SHIP2 in Cancer. Cancers (Basel) 2021; 13:cancers13040890. [PMID: 33672717 PMCID: PMC7924360 DOI: 10.3390/cancers13040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Phosphoinositol signaling pathways and their dysregulation have been shown to have a fundamental role in health and disease, respectively. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, are regulators of the PI3K/AKT pathway that have crucial roles in cancer progression. This review aims to summarize the role of SHIP1 and SHIP2 in cancer signaling and the immune response to cancer, the discovery and use of SHIP inhibitors and agonists as possible cancer therapeutics. Abstract Membrane-anchored and soluble inositol phospholipid species are critical mediators of intracellular cell signaling cascades. Alterations in their normal production or degradation are implicated in the pathology of a number of disorders including cancer and pro-inflammatory conditions. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, play a fundamental role in these processes by depleting PI(3,4,5)P3, but also by producing PI(3,4)P2 at the inner leaflet of the plasma membrane. With the intent of targeting SHIP1 or SHIP2 selectively, or both paralogs simultaneously, small molecule inhibitors and agonists have been developed and tested in vitro and in vivo over the last decade in various disease models. These studies have shown promising results in various pre-clinical models of disease including cancer and tumor immunotherapy. In this review the potential use of SHIP inhibitors in cancer is discussed with particular attention to the molecular structure, binding site and efficacy of these SHIP inhibitors.
Collapse
|
71
|
Hu S, Hui Z, Lirussi F, Garrido C, Ye XY, Xie T. Small molecule DNA-PK inhibitors as potential cancer therapy: a patent review (2010-present). Expert Opin Ther Pat 2021; 31:435-452. [PMID: 33347360 DOI: 10.1080/13543776.2021.1866540] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: DNA-dependent protein kinase (DNA-PK) plays a crucial role in the repair of DSBs via non-homologous end joining (NHEJ). Several DNA-PK inhibitors are being investigated for potential anticancer treatment in clinical trials.Area covered: This review aims to give an overview of patents published since 2010 by analyzing the patent space and structure features of scaffolds used in those patents. It also discusses the recent clinical developments and provides perspectives on future challenges and directions in this field.Expert opinion: As a key component of the DNA damage response (DDR) pathway, DNA-PK appears to be a viable drug target for anticancer therapy. The clinical investigation of a DNA-PK inhibitor employs both a monotherapy and a combination strategy. In the combination strategy, a DNA-PK inhibitor is typically combined with a DSB inducer, radiation, a chemotherapy agent, or a PARP inhibitor, etc. Patent analyses suggest that diverse structures comprising different scaffolds from mono-heteroaryl to bicyclic heteroaryl to tricyclic heteroaryl are capable to achieve good DNA-PK inhibitory activity and good DNA-PK selectivity over other closely related enzymes. Several DNA-PK inhibitors are currently being evaluated in clinics, with the hope to get approval in the near future.
Collapse
Affiliation(s)
- Suwen Hu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, Zhejiang, People's Republic of China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Zhejiang Province, People's Republic of China.,;cCollaborative Innovation Center of Chinese Medicines from Zhejiang Province, Zhejiang Province, People's Republic of China.,;dKey Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.,;eHangzhou Huadong Medicine Group, Pharmaceutical Research Institute Co. Ltd, Hanzhou City, Zhejiang Province, People's Republic of China
| | - Zi Hui
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, Zhejiang, People's Republic of China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Zhejiang Province, People's Republic of China.,;cCollaborative Innovation Center of Chinese Medicines from Zhejiang Province, Zhejiang Province, People's Republic of China.,;Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Frédéric Lirussi
- ;fINSERM, U1231, Label LipSTIC, and Ligue Nationale Contre Le Cancer, Dijon, France.,;gUniversité De Bourgogne-Franche Comté, I-SITE, France.,;hDepartment of Pharmacology-Toxicology & Metabolomics, University hospital of Besançon (CHU), 2 Boulevard Fleming, 25030 BESANCON, France
| | - Carmen Garrido
- ;INSERM, U1231, Label LipSTIC, and Ligue Nationale Contre Le Cancer, Dijon, France.,;Université De Bourgogne-Franche Comté, I-SITE, France.,;iAnti-cancer Center George-François Leclerc, CGFL, Dijon, France
| | - Xiang-Yang Ye
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, Zhejiang, People's Republic of China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Zhejiang Province, People's Republic of China.,;cCollaborative Innovation Center of Chinese Medicines from Zhejiang Province, Zhejiang Province, People's Republic of China.,;Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, Zhejiang, People's Republic of China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Zhejiang Province, People's Republic of China.,;cCollaborative Innovation Center of Chinese Medicines from Zhejiang Province, Zhejiang Province, People's Republic of China.,;Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
72
|
Su M, Gong X, Liu F. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opin Drug Discov 2021; 16:745-761. [PMID: 33530771 DOI: 10.1080/17460441.2021.1877656] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION HDACs catalyze the removal of acetyl groups from the ε-N-acetylated lysine residues of various protein substrates including both histone and nonhistone proteins. Different HDACs have distinct biological functions and are recruited to specific regions of the genome. HDAC inhibitors have attracted much attention in recent decades; indeed, there have been more than thirty HDAC inhibitors investigated in clinic trials with five approvals being achieved. AREAS COVERED This review covers the emerging approaches for HDAC inhibitor drug discovery from the past five years and includes discussion of structure-based rational design, isoform selectivity, and dual mechanism/multi-targeting. Chemical structures in addition to the in vitro and in vivo inhibiting activity of these compounds have also been discussed. EXPERT OPINION The exact role and biological functions of HDACs is still under investigation with a variety of HDAC inhibitors having been designed and evaluated. HDAC inhibitors have shown promise in treating cancer, AD, metabolic disease, viral infection, and multiple sclerosis, but there is still a lot of room for clinical improvement. In the future, more efforts should be put into (i) HDAC isoform identification (ii) the optimization of selectivity, activity, and pharmacokinetics; and (iii) unconventional approaches for discovering different effective scaffolds and pharmacophores.
Collapse
Affiliation(s)
- Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Xingyu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| |
Collapse
|
73
|
He R, Xu B, Ping L, Lv X. Structural optimization towards promising β-methyl-4-acrylamido quinoline derivatives as PI3K/mTOR dual inhibitors for anti-cancer therapy: The in vitro and in vivo biological evaluation. Eur J Med Chem 2021; 214:113249. [PMID: 33561608 DOI: 10.1016/j.ejmech.2021.113249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
Built upon the 4-acrylamido quinoline derivative 4, a previously discovered PI3K/mTOR dual inhibitor, structural modification was undertaken in this study with the attempt to improve its oral exposure via introducing steric hindrance to the 4-acrylamido functionality. Consequently, 14d, as the representative among the synthesized compounds, exhibited IC50 values of 0.80, 0.67, 1.30, 1.30 and 5.0 nM against PI3Kα, PI3Kβ, PI3Kγ, PI3Kδ and mTOR, respectively. Besides, 14d displayed comparable anti-proliferative activity against both PC3 and U87MG cell lines to that of the positive reference GSK2126458 with respective GI50 value of 0.36 and 0.14 μM. Kinase selectivity assay showed that 14d was selective to PI3K family. In U87MG cells, 14d can strongly down-regulate PI3K/Akt/mTOR pathway via blocking both PI3K and mTOR signaling at the concentration as low as 25 nM. Importantly, following a PO dose of 5 mg/kg in male SD rats, 14d displayed favorable oral exposure (AUC0-t = 1336.16 h × ng/mL, AUC0-∞ = 1447.63 h × ng/mL) and high maximum plasma concentration (Cmax = 903.00 ng/mL). In a U87MG glioblastoma xenograft model, tumor growth inhibition of 93.5% and tumor regression were observed at PO dose of 30 and 60 mg/kg, respectively. Meanwhile, no overt loss of body weight was observed in the 14d-treated groups. Taken together, 14d, by virtue of its attractive performance, merits further development as a potential anti-tumor candidate.
Collapse
Affiliation(s)
- Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China; College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Bingyong Xu
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; Zhejiang Heze Pharmaceutical Technology Co., LTD, Hangzhou, 310018, China
| | - Li Ping
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
74
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
75
|
You G, Chang ZX, Yan J, Xia C, Li FR, Li HS. Rhodium-catalyzed sequential intermolecular hydroacylation and deconjugative isomerization toward diversified diketones. Org Chem Front 2021. [DOI: 10.1039/d0qo01174f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodium(i)-catalyzed reaction via an intermolecular hydroacylation/deconjugative isomerization cascade was developed which enabled the facile synthesis of valuable 1,4-, 1,5-, and 1,6-diketones with good to excellent yields.
Collapse
Affiliation(s)
- Guirong You
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- China
- Institute of Pharmacology
| | - Zhi-Xin Chang
- Institute of Pharmacology
- School of Pharmaceutical Sciences
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian 271016
- China
| | - Jizhong Yan
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Chengcai Xia
- Institute of Pharmacology
- School of Pharmaceutical Sciences
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian 271016
- China
| | - Fu-Rong Li
- Institute of Pharmacology
- School of Pharmaceutical Sciences
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian 271016
- China
| | - Hong-Shuang Li
- Institute of Pharmacology
- School of Pharmaceutical Sciences
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian 271016
- China
| |
Collapse
|
76
|
Sun Y, Fu R, Lin S, Zhang J, Ji M, Zhang Y, Wu D, Zhang K, Tian H, Zhang M, Sheng L, Li Y, Jin J, Chen X, Xu H. Discovery of new thieno[2,3-d]pyrimidine and thiazolo[5,4-d]pyrimidine derivatives as orally active phosphoinositide 3-kinase inhibitors. Bioorg Med Chem 2021; 29:115890. [PMID: 33285407 DOI: 10.1016/j.bmc.2020.115890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
As abnormal PI3K signaling is a feature of many types of cancer, the development of orally active PI3K inhibitors is of great significance for targeted cancer therapy. Through integrating strategies of reducing aromatic character/increasing the fraction of sp3 carbons together with scaffold hopping, we designed and synthesized two new series of thieno[2,3-d]pyrimidine and thiazolo[5,4-d]pyrimidine derivatives for use as PI3K inhibitors. Our structure-activity relationship studies led to the identification of thieno[2,3-d]pyrimidine 6a and thiazolo[5,4-d]pyrimidine 7a, which exhibited remarkable nanomolar PI3K potency, good antiproliferative activity, favorable pharmacokinetic properties and significant in vivo anti-cancer efficacy. Notably, thiazolo[5,4-d]pyrimidine 7a had better anti-cancer activity than thieno[2,3-d]pyrimidine 6a and is worthy of further pre-clinical evaluation for its use in cancer treatment.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rong Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingbo Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingyi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
77
|
Koenig SG, Green KL, Müller B, Sowell CG, Askin D, Gosselin F. Development of a practical synthesis to PI3K α-selective inhibitor GDC-0326. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
78
|
Xiang HY, Wang X, Chen YH, Zhang X, Tan C, Wang Y, Su Y, Gao ZW, Chen XY, Xiong B, Gao ZB, Chen Y, Ding J, Meng LH, Yang CH. Identification of methyl (5-(6-((4-(methylsulfonyl)piperazin-1-yl)methyl)-4-morpholinopyrrolo[2,1-f][1,2,4]triazin-2-yl)-4-(trifluoromethyl)pyridin-2-yl)carbamate (CYH33) as an orally bioavailable, highly potent, PI3K alpha inhibitor for the treatment of advanced solid tumors. Eur J Med Chem 2021; 209:112913. [PMID: 33109399 DOI: 10.1016/j.ejmech.2020.112913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 10/03/2020] [Indexed: 01/10/2023]
Abstract
In various human cancers, PI3Ks pathway is ubiquitously dysregulated and thus become a promising anti-cancer target. To discover new potent and selective PI3K inhibitors as potential anticancer drugs, new pyrrolo[2,1-f][1,2,4]triazines were designed, leading to the discovery of compound 37 (CYH33), a selective PI3Kα inhibitor (IC50 = 5.9 nM, β/α, δ/α,γ/α = 101-, 13-, 38-fold). Western blot analysis confirmed that compound 37 could inhibit phosphorylation of AKT in human cancer cells to modulate the cellular PI3K/AKT/mTOR pathway. And further evaluation in vivo against SKOV-3 xenograft models demonstrated that a dose-dependent antitumor efficacy was achieved.
Collapse
Affiliation(s)
- Hao-Yue Xiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Xiang Wang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yan-Hong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Xi Zhang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Cun Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yi Wang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yi Su
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Zhi-Wei Gao
- Center for Drug Metabolism Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Xiao-Yan Chen
- Center for Drug Metabolism Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Bing Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Zhao-Bing Gao
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yi Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Shanghai HaiHe Pharmaceutical Co. Ltd., Shanghai, 201203, PR China.
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Chun-Hao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|
79
|
Gu D, Cheng G, Zhang M, Zhou YB, Li J, Sheng R. Discovery of 2-(5-(quinolin-6-yl)-1,3,4-oxadiazol-2-yl)acetamide derivatives as novel PI3Kα inhibitors via docking-based virtual screening. Bioorg Med Chem 2021; 29:115863. [PMID: 33199203 DOI: 10.1016/j.bmc.2020.115863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 01/23/2023]
Abstract
PI3Kα is an attractive target for PIK3CA mutated malignant tumor and searching for lead compounds with novel scaffold is important for the development of PI3Kα inhibitors. Therefore, the strategy of docking-based virtual screening was performed to discovery potent inhibitors. The 4L2Y_A PI3Kα crystal structure was used as the model protein receptor due to its high docking reliability. After the multistep virtual screening protocol and biological evaluation, three hits were picked up and further similarity searching led to more potent 2-(5-(quinolin-6-yl)-1,3,4-oxadiazol-2-yl)acetamide derivatives ES-25 and ES-27. In addition, the primary SAR of these novel derivatives was discussed, which provide a basis for the further structural modification.
Collapse
Affiliation(s)
- Dongyan Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Gang Cheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Mengmeng Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
80
|
Cheng H, Orr STM, Bailey S, Brooun A, Chen P, Deal JG, Deng YL, Edwards MP, Gallego GM, Grodsky N, Huang B, Jalaie M, Kaiser S, Kania RS, Kephart SE, Lafontaine J, Ornelas MA, Pairish M, Planken S, Shen H, Sutton S, Zehnder L, Almaden CD, Bagrodia S, Falk MD, Gukasyan HJ, Ho C, Kang X, Kosa RE, Liu L, Spilker ME, Timofeevski S, Visswanathan R, Wang Z, Meng F, Ren S, Shao L, Xu F, Kath JC. Structure-Based Drug Design and Synthesis of PI3Kα-Selective Inhibitor (PF-06843195). J Med Chem 2020; 64:644-661. [PMID: 33356246 DOI: 10.1021/acs.jmedchem.0c01652] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway is a frequently dysregulated pathway in human cancer, and PI3Kα is one of the most frequently mutated kinases in human cancer. A PI3Kα-selective inhibitor may provide the opportunity to spare patients the side effects associated with broader inhibition of the class I PI3K family. Here, we describe our efforts to discover a PI3Kα-selective inhibitor by applying structure-based drug design (SBDD) and computational analysis. A novel series of compounds, exemplified by 2,2-difluoroethyl (3S)-3-{[2'-amino-5-fluoro-2-(morpholin-4-yl)-4,5'-bipyrimidin-6-yl]amino}-3-(hydroxymethyl)pyrrolidine-1-carboxylate (1) (PF-06843195), with high PI3Kα potency and unique PI3K isoform and mTOR selectivity were discovered. We describe here the details of the design and synthesis program that lead to the discovery of 1.
Collapse
Affiliation(s)
- Hengmiao Cheng
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Suvi T M Orr
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Simon Bailey
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Alexei Brooun
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ping Chen
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Judith G Deal
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Yali L Deng
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Martin P Edwards
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Gary M Gallego
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Neil Grodsky
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Buwen Huang
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Mehran Jalaie
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Stephen Kaiser
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Robert S Kania
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Susan E Kephart
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Jennifer Lafontaine
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Martha A Ornelas
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Mason Pairish
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Simon Planken
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Hong Shen
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Scott Sutton
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Luke Zehnder
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Chau D Almaden
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Shubha Bagrodia
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Matthew D Falk
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Hovhannes J Gukasyan
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Caroline Ho
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Xiaolin Kang
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Rachel E Kosa
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ling Liu
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Mary E Spilker
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Sergei Timofeevski
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ravi Visswanathan
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Zhenxiong Wang
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Fanxiu Meng
- Wuxi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shijian Ren
- Wuxi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Li Shao
- Wuxi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Feng Xu
- Wuxi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - John C Kath
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| |
Collapse
|
81
|
Methot JL, Achab A, Christopher M, Zhou H, McGowan MA, Trotter BW, Fradera X, Lesburg CA, Goldenblatt P, Hill A, Chen D, Otte KM, Augustin M, Shah S, Katz JD. Optimization of Versatile Oxindoles as Selective PI3Kδ Inhibitors. ACS Med Chem Lett 2020; 11:2461-2469. [PMID: 33335668 PMCID: PMC7734802 DOI: 10.1021/acsmedchemlett.0c00441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
The 3,3-disubstituted oxindole moiety is a versatile and rigid three-dimensionally shaped scaffold. When engineered with a purine hinge-binding core, exceptionally selective PI3Kδ kinase inhibitors were discovered by exploiting small differences in isoform selectivity pockets. Crystal structures of early lead 2f bound to PI3Kδ and PI3Kα helped rationalize the high selectivity observed with 2f. By attenuating the lypophilicity and metabolic liabilities of an oxindole moiety, we improved the preclinical species PK and solubility and reduced adenosine uptake activity. The excellent potency and kinome selectivity of 7-azaoxindole 4d and spirooxindole 5d, together with a low plasma clearance and good half-life in rat and dog, supported a low once-daily predicted human dose.
Collapse
Affiliation(s)
- Joey L. Methot
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Abdelghani Achab
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew Christopher
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Hua Zhou
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Meredeth A. McGowan
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - B. Wesley Trotter
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Xavier Fradera
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Charles A. Lesburg
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Peter Goldenblatt
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Armetta Hill
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Dapeng Chen
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Karin M. Otte
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Sanjiv Shah
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Jason D. Katz
- Discovery Chemistry, Computational and Structural Chemistry, In Vitro Pharmacology, Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
82
|
Zhu J, Li K, Yu L, Chen Y, Cai Y, Jin J, Hou T. Targeting phosphatidylinositol 3-kinase gamma (PI3Kγ): Discovery and development of its selective inhibitors. Med Res Rev 2020; 41:1599-1621. [PMID: 33300614 DOI: 10.1002/med.21770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 10/13/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
Phosphatidylinositol 3-kinase gamma (PI3Kγ) has been regarded as a promising drug target for the treatment of advanced solid tumors, leukemia, lymphoma, and inflammatory and autoimmune diseases. However, the high level of structural conservation among the members of the PI3K family and the diverse physiological roles of Class I PI3K isoforms (α, β, δ, and γ) highlight the importance of isoform selectivity in the development of PI3Kγ inhibitors. In this review, we provide an overview of the structural features of PI3Kγ that influence γ-isoform selectivity and discuss the structure-selectivity-activity relationship of existing clinical PI3Kγ inhibitors. Additionally, we summarize the experimental and computational techniques utilized to identify PI3Kγ inhibitors. The insights gained so far could be used to overcome the main challenges in development and accelerate the discovery of PI3Kγ-selective inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Kan Li
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu, China
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanfei Cai
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
83
|
Li F, Liang X, Jiang Z, Wang A, Wang J, Chen C, Wang W, Zou F, Qi Z, Liu Q, Hu Z, Cao J, Wu H, Wang B, Wang L, Liu J, Liu Q. Discovery of (S)-2-(1-(4-Amino-3-(3-fluoro-4-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)propyl)-3-cyclopropyl-5-fluoroquinazolin-4(3H)-one (IHMT-PI3Kδ-372) as a Potent and Selective PI3Kδ Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease. J Med Chem 2020; 63:13973-13993. [DOI: 10.1021/acs.jmedchem.0c01544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Feng Li
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaofei Liang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zongru Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Junjie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenliang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhenquan Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
84
|
Miles DH, Yan X, Thomas-Tran R, Fournier J, Sharif EU, Drew SL, Mata G, Lawson KV, Ginn E, Wong K, Soni D, Dhanota P, Shaqfeh SG, Meleza C, Chen A, Pham AT, Park T, Swinarski D, Banuelos J, Schindler U, Walters MJ, Walker NP, Zhao X, Young SW, Chen J, Jin L, Leleti MR, Powers JP, Jeffrey JL. Discovery of Potent and Selective 7-Azaindole Isoindolinone-Based PI3Kγ Inhibitors. ACS Med Chem Lett 2020; 11:2244-2252. [PMID: 33214836 DOI: 10.1021/acsmedchemlett.0c00387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The successful application of immunotherapy in the treatment of cancer relies on effective engagement of immune cells in the tumor microenvironment. Phosphoinositide 3-kinase γ (PI3Kγ) is highly expressed in tumor-associated macrophages, and its expression levels are associated with tumor immunosuppression and growth. Selective inhibition of PI3Kγ offers a promising strategy in immuno-oncology, which has led to the development of numerous potent PI3Kγ inhibitors with variable selectivity profiles. To facilitate further investigation of the therapeutic potential of PI3Kγ inhibition, we required a potent and PI3Kγ-selective tool compound with sufficient metabolic stability for use in future in vivo studies. Herein, we describe some of our efforts to realize this goal through the systematic study of SARs within a series of 7-azaindole-based PI3Kγ inhibitors. The large volume of data generated from this study helped guide our subsequent lead optimization efforts and will inform further development of PI3Kγ-selective inhibitors for use in immunomodulation.
Collapse
Affiliation(s)
- Dillon H. Miles
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Xuelei Yan
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | | | - Jeremy Fournier
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Ehesan U. Sharif
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Samuel L. Drew
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Guillaume Mata
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | | | - Elaine Ginn
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Kent Wong
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Divyank Soni
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Puja Dhanota
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | | | - Cesar Meleza
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Ada Chen
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Amber T. Pham
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Timothy Park
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Debbie Swinarski
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Jesus Banuelos
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Ulrike Schindler
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | | | - Nigel P. Walker
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Xiaoning Zhao
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Stephen W. Young
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Jie Chen
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Lixia Jin
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | | | - Jay P. Powers
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| | - Jenna L. Jeffrey
- Arcus Biosciences, Inc., Hayward, California 94545, United States
| |
Collapse
|
85
|
Rodrigues DA, Pinheiro PSM, Fraga CAM. Multitarget Inhibition of Histone Deacetylase (HDAC) and Phosphatidylinositol-3-kinase (PI3K): Current and Future Prospects. ChemMedChem 2020; 16:448-457. [PMID: 33049098 DOI: 10.1002/cmdc.202000643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2020] [Indexed: 12/11/2022]
Abstract
The discovery of histone deacetylase (HDAC) inhibitors is a hot topic in the medicinal chemistry community regarding cancer research. This is related primarily to two factors: success in the clinic, e. g., the four FDA-approved HDAC inhibitors, and strong versatility to combine their pharmacophoric features to design new hybrid compounds with multitarget profiles. Thus, the selection of adequate pharmacophores to combine, i. e., combining targets that can result in a synergistic effect, is desirable, as it increases the probability of discovering a new useful therapeutic strategy. In this work, we highlight the design of multitarget HDAC/PI3K inhibitors. Although this approach is still in its early stages, many significant works have described the design and pharmacological evaluation of this new promising class of multitarget inhibitors, where compound CUDC-907, which is already in clinical trials, stands out. Therefore, the question emerges of whether there still space for the design and evaluation of new multitarget HDAC/PI3K inhibitors. When considering the selectivity profile of the described multitarget compounds, the answer appears to be in the affirmative, especially since the first examples of compounds with a certain selectivity profile only recently appeared in 2020.
Collapse
Affiliation(s)
- Daniel A Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Pedro S M Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Carlos A M Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
86
|
Mahajan D, Sen S, Kuila B, Sharma A, Arora R, Sagar M, Mahapatra AR, Gawade LB, Dugar S. Discovery and Development of SPR519 as a Potent, Selective, and Orally Bioavailable Inhibitor of PI3Kα and mTOR Kinases for the Treatment of Solid Tumors. J Med Chem 2020; 63:11121-11130. [PMID: 32897703 DOI: 10.1021/acs.jmedchem.0c01061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report the identification and preclinical profile of a lead compound 10, (SPR519) as an equally potent dual inhibitor of PI3Kα and mTOR kinases. SPR519 exhibits an EC50 of low sub-micromolar range among various tested cancer cell lines such as A2780 (0.23 μM), PC3 (0.48 μM), and SKOV3 (0.50 μM). When administrated orally, it shows a considerably high plasma exposure (area under curve: 26,858 nM/h at 1 mg/kg) in mice. Moreover, it is found to be safe in animals with a dose of 30 mg/kg BID for 12 days in the dose tolerance study. SPR519 did not show any CYP or hERG liability. The identified lead compound demonstrates significant efficacy and bioavailability in ovarian and colon cancer xenograft models when evaluated for dose-ranging efficacy studies, at a dose as low as 2.5 mg/kg.
Collapse
Affiliation(s)
- Dinesh Mahajan
- Sphaera Pharma Pvt. Ltd., Plot 32, Sec 5, IMT Manesar, Haryana 122051, India
| | - Somdutta Sen
- Sphaera Pharma Pvt. Ltd., Plot 32, Sec 5, IMT Manesar, Haryana 122051, India
| | - Bilash Kuila
- Sphaera Pharma Pvt. Ltd., Plot 32, Sec 5, IMT Manesar, Haryana 122051, India
| | - Amit Sharma
- Sphaera Pharma Pvt. Ltd., Plot 32, Sec 5, IMT Manesar, Haryana 122051, India
| | - Reena Arora
- Sphaera Pharma Pvt. Ltd., Plot 32, Sec 5, IMT Manesar, Haryana 122051, India
| | - Milind Sagar
- Sphaera Pharma Pvt. Ltd., Plot 32, Sec 5, IMT Manesar, Haryana 122051, India
| | - Amal Ray Mahapatra
- Sphaera Pharma Pvt. Ltd., Plot 32, Sec 5, IMT Manesar, Haryana 122051, India
| | | | | |
Collapse
|
87
|
Gilchrist VH, Jémus-Gonzalez E, Said A, Alain T. Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine Growth Factor Rev 2020; 56:83-93. [PMID: 32690442 DOI: 10.1016/j.cytogfr.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.
Collapse
Affiliation(s)
- Victoria Heather Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| | - Estephanie Jémus-Gonzalez
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
88
|
Zhang M, Jang H, Nussinov R. PI3K inhibitors: review and new strategies. Chem Sci 2020; 11:5855-5865. [PMID: 32953006 PMCID: PMC7472334 DOI: 10.1039/d0sc01676d] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
The search is on for effective specific inhibitors for PI3Kα mutants. PI3Kα, a critical lipid kinase, has two subunits, catalytic and inhibitory. PIK3CA, the gene that encodes the p110α catalytic subunit is a highly mutated protein in cancer. Dysregulation of PI3Kα signalling is commonly associated with tumorigenesis and drug resistance. Despite its vast importance, only recently the FDA approved the first drug (alpelisib by Novartis) for breast cancer. A second (GDC0077), classified as PI3Kα isoform-specific, is undergoing clinical trials. Not surprisingly, these ATP-competitive drugs commonly elicit severe concentration-dependent side effects. Here we briefly review PI3Kα mutations, focus on PI3K drug repertoire and propose new, to-date unexplored PI3Kα therapeutic strategies. These include (1) an allosteric and orthosteric inhibitor combination and (2) taking advantage of allosteric rescue mutations to guide drug discovery.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
| | - Hyunbum Jang
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
| | - Ruth Nussinov
- Computational Structural Biology Section , Frederick National Laboratory for Cancer Research , National Cancer Institute at Frederick , Frederick , MD 21702 , USA . ; Tel: +1-301-846-5579
- Department of Human Molecular Genetics and Biochemistry , Sackler School of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| |
Collapse
|
89
|
Perreault S, Arjmand F, Chandrasekhar J, Hao J, Keegan KS, Koditek D, Lepist EI, Matson CK, McGrath ME, Patel L, Sedillo K, Therrien J, Till NA, Tomkinson A, Treiberg J, Zherebina Y, Phillips G. Discovery of an Atropisomeric PI3Kβ Selective Inhibitor through Optimization of the Hinge Binding Motif. ACS Med Chem Lett 2020; 11:1236-1243. [PMID: 32551006 DOI: 10.1021/acsmedchemlett.0c00095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/13/2020] [Indexed: 01/26/2023] Open
Abstract
A series of PI3Kβ selective inhibitors derived from a novel 4-(1H-benzo[d]imidazol-1-yl)quinoline chemotype has been rationally designed. Crucial to achieving the desired selectivity over the other class I PI3K isoforms, including the challenging δ-isoform, was the identification of a subset of substituted pyridine hinge binders. This work led to the discovery of (P)-14, a highly selective and orally bioavailable PI3Kβ inhibitor displaying an excellent pharmacokinetic profile in addition to great cellular potency in various PTEN-deficient tumor cell lines. Results from a dog toxicology study revealing structure-related, off-target ocular toxicity are also briefly discussed.
Collapse
Affiliation(s)
- Stephane Perreault
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Fatima Arjmand
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Jia Hao
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Kathleen S. Keegan
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| | - David Koditek
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eve-Irene Lepist
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Clinton K. Matson
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Mary E. McGrath
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Leena Patel
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Kassandra Sedillo
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Joseph Therrien
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Nicholas A. Till
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Adrian Tomkinson
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jennifer Treiberg
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| | - Yelena Zherebina
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gary Phillips
- Gilead Sciences, Inc., 199 East Blaine Street, Seattle, Washington 98102, United States
| |
Collapse
|
90
|
Bheemanaboina RR. Isoform-Selective PI3K Inhibitors for Various Diseases. Curr Top Med Chem 2020; 20:1074-1092. [DOI: 10.2174/1568026620666200106141717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of ubiquitously distributed lipid kinases that
control a wide variety of intracellular signaling pathways. Over the years, PI3K has emerged as an attractive
target for the development of novel pharmaceuticals to treat cancer and various other diseases.
In the last five years, four of the PI3K inhibitors viz. Idelalisib, Copanlisib, Duvelisib, and Alpelisib
were approved by the FDA for the treatment of different types of cancer and several other PI3K inhibitors
are currently under active clinical development. So far clinical candidates are non-selective kinase
inhibitors with various off-target liabilities due to cross-reactivities. Hence, there is a need for the discovery
of isoform-selective inhibitors with improved efficacy and fewer side-effects. The development
of isoform-selective inhibitors is essential to reveal the unique functions of each isoform and its corresponding
therapeutic potential. Although the clinical effect and relative benefit of pan and isoformselective
inhibition will ultimately be determined, with the development of drug resistance and the demand
for next-generation inhibitors, it will continue to be of great significance to understand the potential
mechanism of isoform-selectivity. Because of the important role of type I PI3K family members in
various pathophysiological processes, isoform-selective PI3K inhibitors may ultimately have considerable
efficacy in a wide range of human diseases. This review summarizes the progress of isoformselective
PI3K inhibitors in preclinical and early clinical studies for anticancer and other various diseases.
Collapse
Affiliation(s)
- Rammohan R.Y. Bheemanaboina
- Department of Chemistry and Biochemistry, Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ 07043, United States
| |
Collapse
|
91
|
Thakur A, Tawa GJ, Henderson MJ, Danchik C, Liu S, Shah P, Wang AQ, Dunn G, Kabir M, Padilha EC, Xu X, Simeonov A, Kharbanda S, Stone R, Grewal G. Design, Synthesis, and Biological Evaluation of Quinazolin-4-one-Based Hydroxamic Acids as Dual PI3K/HDAC Inhibitors. J Med Chem 2020; 63:4256-4292. [PMID: 32212730 DOI: 10.1021/acs.jmedchem.0c00193] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of quinazolin-4-one based hydroxamic acids was rationally designed and synthesized as novel dual PI3K/HDAC inhibitors by incorporating an HDAC pharmacophore into a PI3K inhibitor (Idelalisib) via an optimized linker. Several of these dual inhibitors were highly potent (IC50 < 10 nM) and selective against PI3Kγ, δ and HDAC6 enzymes and exhibited good antiproliferative activity against multiple cancer cell lines. The lead compound 48c, induced necrosis in several mutant and FLT3-resistant AML cell lines and primary blasts from AML patients, while showing no cytotoxicity against normal PBMCs, NIH3T3, and HEK293 cells. Target engagement of PI3Kδ and HDAC6 by 48c was demonstrated in MV411 cells using the cellular thermal shift assay (CETSA). Compound 48c showed good pharmacokinetics properties in mice via intraperitoneal (ip) administration and provides a means to examine the biological effects of inhibiting these two important enzymes with a single molecule, either in vitro or in vivo.
Collapse
Affiliation(s)
- Ashish Thakur
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Gregory J Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Carina Danchik
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Suiyang Liu
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Garrett Dunn
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Md Kabir
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Elias C Padilha
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Surender Kharbanda
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Richard Stone
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Gurmit Grewal
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
92
|
Structurally novel PI3Kδ/γ dual inhibitors characterized by a seven-membered spirocyclic spacer: The SARs investigation and PK evaluation. Eur J Med Chem 2020; 191:112143. [DOI: 10.1016/j.ejmech.2020.112143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022]
|
93
|
Wang K, Zhu H, Zhao H, Zhang K, Tian Y. Application of carbamyl in structural optimization. Bioorg Chem 2020; 98:103757. [PMID: 32217370 DOI: 10.1016/j.bioorg.2020.103757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Carbamyl is considered a privileged structure in medicinal chemistry. It has a wide range of biological activities such as antimicrobial, anticancer, anti-epilepsy, for which the best evidence is a number of marketed carbamyl-containing drugs. Carbamyl is formed of primary amine and carbonyl moieties that act as hydrogen bond donors and hydrogen acceptors with residues of targets respectively, which are benefit for improving pharmacological activities. In other cases, the introduced carbamyl improves drug-like properties including oral bioavailability. In this review, we introduce the carbamyl-containing drugs and the application of carbamyl in structural optimization as a result of enhancing activities or/and drug-like properties.
Collapse
Affiliation(s)
- Kuanglei Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxi Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongqian Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yongshou Tian
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
94
|
Yu Y, Han Y, Zhang F, Gao Z, Zhu T, Dong S, Ma M. Design, Synthesis, and Biological Evaluation of Imidazo[1,2-a]pyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors. J Med Chem 2020; 63:3028-3046. [DOI: 10.1021/acs.jmedchem.9b01736] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ya’nan Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Yuqiao Han
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Fupo Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhenmei Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
95
|
Saha D, Kharbanda A, Yan W, Lakkaniga NR, Frett B, Li HY. The Exploration of Chirality for Improved Druggability within the Human Kinome. J Med Chem 2020; 63:441-469. [PMID: 31550151 PMCID: PMC10536157 DOI: 10.1021/acs.jmedchem.9b00640] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chirality is important in drug discovery because stereoselective drugs can ameliorate therapeutic difficulties including adverse toxicity and poor pharmacokinetic profiles. The human kinome, a major druggable enzyme class has been exploited to treat a wide range of diseases. However, many kinase inhibitors are planar and overlap in chemical space, which leads to selectivity and toxicity issues. By exploring chirality within the kinome, a new iteration of kinase inhibitors is being developed to better utilize the three-dimensional nature of the kinase active site. Exploration into novel chemical space, in turn, will also improve drug solubility and pharmacokinetic profiles. This perspective explores the role of chirality to improve kinome druggability and will serve as a resource for pioneering kinase inhibitor development to address current therapeutic needs.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
96
|
Goldberg FW, Finlay MRV, Ting AKT, Beattie D, Lamont GM, Fallan C, Wrigley GL, Schimpl M, Howard MR, Williamson B, Vazquez-Chantada M, Barratt DG, Davies BR, Cadogan EB, Ramos-Montoya A, Dean E. The Discovery of 7-Methyl-2-[(7-methyl[1,2,4]triazolo[1,5- a]pyridin-6-yl)amino]-9-(tetrahydro-2 H-pyran-4-yl)-7,9-dihydro-8 H-purin-8-one (AZD7648), a Potent and Selective DNA-Dependent Protein Kinase (DNA-PK) Inhibitor. J Med Chem 2020; 63:3461-3471. [PMID: 31851518 DOI: 10.1021/acs.jmedchem.9b01684] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA-PK is a key component within the DNA damage response, as it is responsible for recognizing and repairing double-strand DNA breaks (DSBs) via non-homologous end joining. Historically it has been challenging to identify inhibitors of the DNA-PK catalytic subunit (DNA-PKcs) with good selectivity versus the structurally related PI3 (lipid) and PI3K-related protein kinases. We screened our corporate collection for DNA-PKcs inhibitors with good PI3 kinase selectivity, identifying compound 1. Optimization focused on further improving selectivity while improving physical and pharmacokinetic properties, notably co-optimization of permeability and metabolic stability, to identify compound 16 (AZD7648). Compound 16 had no significant off-target activity in the protein kinome and only weak activity versus PI3Kα/γ lipid kinases. Monotherapy activity in murine xenograft models was observed, and regressions were observed when combined with inducers of DSBs (doxorubicin or irradiation) or PARP inhibition (olaparib). These data support progression into clinical studies (NCT03907969).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Derek G Barratt
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0FZ, U.K
| | | | | | | | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge CB4 0FZ, U.K
| |
Collapse
|
97
|
Yu S, Chen J, Liu G, Lei J, Hu W, Qiu H. A gold(i)-catalysed chemoselective three-component reaction between phenols, α-diazocarbonyl compounds and allenamides. Chem Commun (Camb) 2020; 56:1649-1652. [DOI: 10.1039/c9cc09470a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold(i)-catalysed highly chemoselective three-component reaction of phenols, α-diazocarbonyl compounds and allenamides is presented. This transformation features mild reaction conditions, high functional group tolerance, and broad applicability.
Collapse
Affiliation(s)
- Sifan Yu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jinzhou Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Gengxin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jinping Lei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
98
|
McPhail JA, Burke JE. Drugging the Phosphoinositide 3-Kinase (PI3K) and Phosphatidylinositol 4-Kinase (PI4K) Family of Enzymes for Treatment of Cancer, Immune Disorders, and Viral/Parasitic Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:203-222. [DOI: 10.1007/978-3-030-50621-6_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
99
|
Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Eur J Med Chem 2019; 183:111718. [DOI: 10.1016/j.ejmech.2019.111718] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
100
|
Barnes L, Blaber H, Brooks DTK, Byers L, Buckley D, Byron ZC, Chilvers RG, Cochrane L, Cooney E, Damian HA, Francis L, Fu He D, Grace JMJ, Green HJ, Hogarth EJP, Jusu L, Killalea CE, King O, Lambert J, Lee ZJ, Lima NS, Long CL, Mackinnon ML, Mahdy S, Matthews-Wright J, Millward MJ, Meehan MF, Merrett C, Morrison L, Parke HRI, Payne C, Payne L, Pike C, Seal A, Senior AJ, Smith KM, Stanelyte K, Stillibrand J, Szpara R, Taday FFH, Threadgould AM, Trainor RJ, Waters J, Williams O, Wong CKW, Wood K, Barton N, Gruszka A, Henley Z, Rowedder JE, Cookson R, Jones KL, Nadin A, Smith IE, Macdonald SJF, Nortcliffe A. Free-Wilson Analysis of Comprehensive Data on Phosphoinositide-3-kinase (PI3K) Inhibitors Reveals Importance of N-Methylation for PI3Kδ Activity. J Med Chem 2019; 62:10402-10422. [PMID: 31647659 DOI: 10.1021/acs.jmedchem.9b01499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphoinositide-3-kinase δ (PI3Kδ) is a critical regulator of cell growth and transformation and has been explored as a therapeutic target for a range of diseases. Through the exploration of the thienopyrimidine scaffold, we have identified a ligand-efficient methylation that leads to remarkable selectivity for PI3Kδ over the closely related isoforms. Interrogation through the Free-Wilson analysis highlights the innate selectivity the thienopyrimidine scaffold has for PI3Kδ and provides a predictive model for the activity against the PI3K isoforms.
Collapse
Affiliation(s)
- Lydia Barnes
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Hollie Blaber
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - David T K Brooks
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Lewis Byers
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Daniel Buckley
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Zoe C Byron
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Richard G Chilvers
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Liam Cochrane
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Edward Cooney
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Heather A Damian
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Luke Francis
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Daniel Fu He
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Jack M J Grace
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Harley J Green
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Edmund J P Hogarth
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Leyla Jusu
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - C Elizabeth Killalea
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Oliver King
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Joseph Lambert
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Zoe J Lee
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Nuria S Lima
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Christina L Long
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - May-Li Mackinnon
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Shusha Mahdy
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Jolyon Matthews-Wright
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Makenzie J Millward
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Matthew F Meehan
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Christopher Merrett
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Lisa Morrison
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Hal R I Parke
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Charlotte Payne
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Lawrence Payne
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Craig Pike
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Alexander Seal
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Aaron J Senior
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Keenan M Smith
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Kamile Stanelyte
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Joe Stillibrand
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Rachel Szpara
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Freya F H Taday
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Antony M Threadgould
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Rohan J Trainor
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Jordan Waters
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Oliver Williams
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Carrie K W Wong
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Katherine Wood
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| | - Nick Barton
- GlaxoSmithKline, Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Anna Gruszka
- GlaxoSmithKline, Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Zoe Henley
- GlaxoSmithKline, Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - James E Rowedder
- GlaxoSmithKline, Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Rosa Cookson
- GlaxoSmithKline, Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Katherine L Jones
- GlaxoSmithKline, Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Alan Nadin
- GlaxoSmithKline, Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Ian E Smith
- GlaxoSmithKline, Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Simon J F Macdonald
- GlaxoSmithKline, Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Andrew Nortcliffe
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry , University of Nottingham , Triumph Road , Nottingham NG7 2TU , U.K
| |
Collapse
|