51
|
Zarei A, Feyissa BA, Davis B, Tavakouli Dinani E. Cannabis Synthetic Seeds: An Alternative Approach for Commercial Scale of Clonal Propagation and Germplasm Conservation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3186. [PMID: 36501226 PMCID: PMC9738115 DOI: 10.3390/plants11233186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Indoor cannabis (Cannabis sativa) cultivation has been rapidly increasing in many countries after legalization. Besides conventional propagation through cuttings, synthetic seed production provides a competent system for mass propagation, germplasm conservation and international exchange of genetic materials. The present study developed a reliable protocol for cannabis synthetic seed production using encapsulation of nodal segments derived from in vitro or in vivo sources. Synthetic seeds were produced in 3% sodium alginate and 75 mM calcium chloride in Murashige and Skoog (MS) medium and stored under various environmental conditions for up to 150 days. The plantlets regrowth efficiency was monitored on culture media up to 30 days after the storage period. Regrowth rates of 70% and 90% were observed in synthetic seeds from in vitro and in vivo-derived sources, respectively, when stored in 6 °C under 50 μmol s-1 m-2 light for 150 days. Furthermore, addition of acetylsalicylic acid (ASA) to the encapsulation matrix not only postponed precocious germination of synthetic seeds at 22 °C, but also improved the regrowth rate of in vivo-derived synthetic seeds to 100% when they were stored in 6 °C under light. Exposure to light during storage significantly increased shoot length of regrown synseeds when compared to those stored in darkness. This difference in shoot growth disappeared when synseeds were treated with 25 µM ASA. All regenerated plantlets were rooted and acclimatized in sterile rockwool plugs without morphological changes.
Collapse
|
52
|
Shrestha A, Marahatha R, Basnet S, Regmi BP, Katuwal S, Dahal SR, Sharma KR, Adhikari A, Chandra Basnyat R, Parajuli N. Molecular Docking and Dynamics Simulation of Several Flavonoids Predict Cyanidin as an Effective Drug Candidate against SARS-CoV-2 Spike Protein. Adv Pharmacol Pharm Sci 2022; 2022:3742318. [PMID: 36407836 PMCID: PMC9668477 DOI: 10.1155/2022/3742318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 10/15/2022] [Indexed: 09/08/2024] Open
Abstract
The in silico method has provided a versatile process of developing lead compounds from a large database in a short duration. Therefore, it is imperative to look for vaccinations and medications that can stop the havoc caused by SARS-CoV-2. The spike protein of SARS-CoV-2 is required for the viral entry into the host cells, hence inhibiting the virus from fusing and infecting the host. This study determined the binding interactions of 36 flavonoids along with two FDA-approved drugs against the spike protein receptor-binding domain of SARS-CoV-2 through molecular docking and molecular dynamics (MD) simulations. In addition, the molecular mechanics generalized Born surface area (MM/GBSA) approach was used to calculate the binding-free energy (BFE). Flavonoids were selected based on their in vitro assays on SARS-CoV and SARS-CoV-2. Our pharmacokinetics study revealed that cyanidin showed good drug-likeness, fulfilled Lipinski's rule of five, and conferred favorable toxicity parameters. Furthermore, MD simulations showed that cyanidin interacts with spike protein and alters the conformation and binding-free energy suited. Finally, an in vitro assay indicated that about 50% reduction in the binding of hACE2 with S1-RBD in the presence of cyanidin-containing red grapes crude extract was achieved at approximately 1.25 mg/mL. Hence, cyanidin may be a promising adjuvant medication for the SARS-CoV-2 spike protein based on in silico and in vitro research.
Collapse
Affiliation(s)
- Asmita Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Rishab Marahatha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Saroj Basnet
- Center for Drug Design and Molecular Simulation Division, Cancer Care and Research Center, Kathmandu, Nepal
| | - Bishnu P. Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Salik Ram Dahal
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Ram Chandra Basnyat
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
53
|
Wang J, Liu J, Luo M, Cui H, Zhang W, Zhao K, Dai H, Song F, Chen K, Yu Y, Zhou D, Li MJ, Yang H. Rational drug repositioning for coronavirus-associated diseases using directional mapping and side-effect inference. iScience 2022; 25:105348. [PMID: 36267550 PMCID: PMC9556799 DOI: 10.1016/j.isci.2022.105348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen of coronavirus disease 2019 (COVID-19), has infected hundreds of millions of people and caused millions of deaths. Looking for valid druggable targets with minimal side effects for the treatment of COVID-19 remains critical. After discovering host genes from multiscale omics data, we developed an end-to-end network method to investigate drug-host gene(s)-coronavirus (CoV) paths and the mechanism of action between the drug and the host factor in a directional network. We also inspected the potential side effect of the candidate drug on several common comorbidities. We established a catalog of host genes associated with three CoVs. Rule-based prioritization yielded 29 Food and Drug Administration (FDA)-approved drugs via accounting for the effects of drugs on CoVs, comorbidities, and drug-target confidence information. Seven drugs are currently undergoing clinical trials as COVID-19 treatment. This catalog of druggable host genes associated with CoVs and the prioritized repurposed drugs will provide a new sight in therapeutics discovery for severe COVID-19 patients.
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Epidemiology and Biostatistics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China,Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Menghan Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Cui
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenwen Zhang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ke Zhao
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Corresponding author
| | - Mulin Jun Li
- Department of Epidemiology and Biostatistics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China,Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Corresponding author
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Corresponding author
| |
Collapse
|
54
|
McGrail J, Martín-Banderas L, Durán-Lobato M. Cannabinoids as Emergent Therapy Against COVID-19. Cannabis Cannabinoid Res 2022; 7:582-590. [PMID: 35512732 PMCID: PMC9587773 DOI: 10.1089/can.2022.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory distress syndrome coronavirus 2 (SARS-Cov-2), was identified for the first time in late 2019 in China, resulting in a global pandemic of massive impact. Despite a fast development and implementation of vaccination strategies, and the scouting of several pharmacological treatments, alternative effective treatments are still needed. In this regard, cannabinoids represent a promising approach because they have been proven to exhibit several immunomodulatory, anti-inflammatory, and antiviral properties in COVID-19 disease models and related pathological conditions. This mini-review aims at providing a practical brief overview of the potential applications of cannabinoids so far identified for the treatment and prevention of COVID-19, finally considering key aspects related to their technological and clinical implementation.
Collapse
Affiliation(s)
- Joseph McGrail
- Department Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Lucía Martín-Banderas
- Department Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Matilde Durán-Lobato
- Department Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
55
|
Jafry AH, LaGrow A, Akhtar KH, Hacker E, Russell S, Kliewer B, Asad ZUA. Synthetic cannabinoids and ST elevation myocardial infarction. Am J Med Sci 2022; 364:481-491. [PMID: 35545143 DOI: 10.1016/j.amjms.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023]
Abstract
Synthetic cannabinoids cannot be detected on a standard urine drug screen (UDS), making them a convenient drug of abuse. We report the first case of ST elevation myocardial infarction (STEMI) in a young patient due to coronary artery thrombosis secondary to synthetic cannabinoid use and concurrent COVID-19 infection. A 38-year-old previously healthy male developed severe chest pain and was found to have anterior STEMI and COVID-19 infection. Coronary angiography showed acute thrombotic occlusion of the mid-left anterior descending artery that was managed with thrombectomy and stent placement. He only required supportive care for COVID-19. A comprehensive literature search revealed 34 additional cases of STEMI with synthetic cannabinoid use; majority were males (97%) with mean age of 29 years. 29 patients (85.3%) underwent coronary angiography and majority had left anterior descending artery (LAD) involvement (55%), with 13 (44.8%) undergoing stent placement. We highlight STEMI as a potentially lethal complication of synthetic cannabinoids; prompt angiography may be lifesaving.
Collapse
Affiliation(s)
- Ali Haider Jafry
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.
| | - Austin LaGrow
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Khawaja Hassan Akhtar
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Ethan Hacker
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Sage Russell
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Brian Kliewer
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Zain Ul Abideen Asad
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
56
|
Liu C, Puopolo T, Li H, Cai A, Seeram NP, Ma H. Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186127. [PMID: 36144858 PMCID: PMC9502466 DOI: 10.3390/molecules27186127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
Abstract
The replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its main protease (Mpro), which is a plausible therapeutic target for coronavirus disease 2019 (COVID-19). Although numerous in silico studies reported the potential inhibitory effects of natural products including cannabis and cannabinoids on SARS-CoV-2 Mpro, their anti-Mpro activities are not well validated by biological experimental data. Herein, a library of minor cannabinoids belonging to several chemotypes including tetrahydrocannabinols, cannabidiols, cannabigerols, cannabichromenes, cannabinodiols, cannabicyclols, cannabinols, and cannabitriols was evaluated for their anti-Mpro activity using a biochemical assay. Additionally, the binding affinities and molecular interactions between the active cannabinoids and the Mpro protein were studied by a biophysical technique (surface plasmon resonance; SPR) and molecular docking, respectively. Cannabinoids tetrahydrocannabutol and cannabigerolic acid were the most active Mpro inhibitors (IC50 = 3.62 and 14.40 μM, respectively) and cannabigerolic acid had a binding affinity KD=2.16×10-4 M). A preliminary structure and activity relationship study revealed that the anti-Mpro effects of cannabinoids were influenced by the decarboxylation of cannabinoids and the length of cannabinoids' alkyl side chain. Findings from the biochemical, biophysical, and computational assays support the growing evidence of cannabinoids' inhibitory effects on SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Cannabis Research Collaborative, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tess Puopolo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Huifang Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ang Cai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Cannabis Research Collaborative, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (N.P.S.); (H.M.); Tel.: +1-(401)-874-9367 (N.P.S.); +1-(401)-874-2711 (H.M.)
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Cannabis Research Collaborative, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (N.P.S.); (H.M.); Tel.: +1-(401)-874-9367 (N.P.S.); +1-(401)-874-2711 (H.M.)
| |
Collapse
|
57
|
Ramatapa T, Msobo A, Maphari PW, Ncube EN, Nogemane N, Mhlongo MI. Identification of Plant-Derived Bioactive Compounds Using Affinity Mass Spectrometry and Molecular Networking. Metabolites 2022; 12:863. [PMID: 36144267 PMCID: PMC9504387 DOI: 10.3390/metabo12090863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/01/2022] Open
Abstract
Affinity selection-mass spectrometry (AS-MS) is a label-free binding assay system that uses UHPLC-MS size-based separation methods to separate target-compound complexes from unbound compounds, identify bound compounds, classify compound binding sites, quantify the dissociation rate constant of compounds, and characterize affinity-extracted ligands. This label-free binding assay, in contrast to conventional biochemical (i.e., high-throughput screening (HTS)) approaches, is applicable to any drug target, and is also concise, accurate, and adaptable. Although AS-MS is an innovative approach for identifying lead compounds, the possibilities of finding bioactive compounds are limited by competitive binding, which occurs during the equilibration of extracts with the target protein(s). Here, we discuss the potential for metabolite profiling complemented with molecular networking to be used alongside AS-MS to improve the identification of bioactive compounds in plant extracts. AS-MS has gained significant prominence in HTS labs and shows potential to emerge as the driving force behind novel drug development in the future.
Collapse
Affiliation(s)
- Thabo Ramatapa
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Anathi Msobo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Pfano W. Maphari
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Efficient N. Ncube
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Florida 1710, South Africa
| | - Noluyolo Nogemane
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Florida 1710, South Africa
| | - Msizi I. Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
58
|
Yamacli S, Avci M. Computation of the Binding Energies between Human ACE2 and Spike RBDs of the Original Strain, Delta and Omicron Variants of the SARS-CoV-2: A DFT Simulation Approach. ADVANCED THEORY AND SIMULATIONS 2022; 5:2200337. [PMID: 36248211 PMCID: PMC9538088 DOI: 10.1002/adts.202200337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Indexed: 11/09/2022]
Abstract
The receptor binding domain (RBD) of SARS-CoV-2 binds to human ACE2 leading to infection. In this study, the complexes that are formed by the attachment of the SARS-CoV-2 spike RBDs of the original strain, delta and omicron variants to the human ACE2 are investigated via density functional theory (DFT) simulations to obtain binding energies. The DFT computations are performed without fragmenting the interfaces to involve longer-range interactions for improved accuracy, which is one of the primary features of the approach used in this study. Basis set superposition error corrections and van der Waals dispersions are also included in the DFT simulations. The binding energies of the SARS-CoV-2 spike RBDs of the original strain, delta and omicron variants to the human ACE2 are computed as -4.76, -6.68, and -11.77 eV, respectively. These binding energy values indicate that the binding of the omicron variant to the ACE2 is much more favorable than the binding of the original strain and the delta variant, which constitute a molecular reason for the takeover of the omicron variant. The binding energies and the decomposition of these energies found in this study are expected to aid in the development of neutralizing agents.
Collapse
Affiliation(s)
- Serhan Yamacli
- Department of Electrical‐Electronics EngineeringNuh Naci Yazgan UniversityKayseri38090Turkey
| | - Mutlu Avci
- Department of Biomedical EngineeringCukurova UniversityAdana01330Turkey
| |
Collapse
|
59
|
Yao X, Wuzhang K, Peng B, Chen T, Zhang Y, Liu H, Li L, Fu X, Tang K. Engineering the expression of plant secondary metabolites-genistein and scutellarin through an efficient transient production platform in Nicotiana benthamiana L. FRONTIERS IN PLANT SCIENCE 2022; 13:994792. [PMID: 36147222 PMCID: PMC9485999 DOI: 10.3389/fpls.2022.994792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Plant natural products (PNPs) are active substances indispensable to human health with a wide range of medical and commercial applications. However, excessive population growth, overexploitation of natural resources, and expensive total chemical synthesis have led to recurrent supply shortages. Despite the fact that the microbial production platform solved these challenges, the platform still has drawbacks such as environmental pollution, high costs, and non-green production. In this study, an efficient platform for the production of PNPs based on the transient expression system of Nicotiana benthamiana L. combined with synthetic biology strategies was developed. Subsequently, the feasibility of the platform was verified by a simple "test unit." This platform was used to synthesize two high-value PNPs: genistein (5.51 nmol g-1 FW) and scutellarin (11.35 nmol g-1 FW). Importantly, this is the first report on the synthesis of scutellarin in heterologous plants. The platform presented here will possibly be adopted for the heterologous production of genistein and scutellarin in tobacco plants as a novel and sustainable production strategy.
Collapse
|
60
|
Broad-Spectrum Small-Molecule Inhibitors of the SARS-CoV-2 Spike-ACE2 Protein-Protein Interaction from a Chemical Space of Privileged Protein Binders. Pharmaceuticals (Basel) 2022; 15:ph15091084. [PMID: 36145305 PMCID: PMC9504289 DOI: 10.3390/ph15091084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Therapeutically useful small-molecule inhibitors (SMIs) of protein−protein interactions (PPIs) initiating the cell attachment and entry of viruses could provide novel alternative antivirals that act via mechanisms similar to that of neutralizing antibodies but retain the advantages of small-molecule drugs such as oral bioavailability and low likelihood of immunogenicity. From screening our library, which is focused around the chemical space of organic dyes to provide good protein binders, we have identified several promising SMIs of the SARS-CoV-2 spike—ACE2 interaction, which is needed for the attachment and cell entry of this coronavirus behind the COVID-19 pandemic. They included organic dyes, such as Congo red, direct violet 1, and Evans blue, which seem to be promiscuous PPI inhibitors, as well as novel drug-like compounds (e.g., DRI-C23041). Here, we show that in addition to the original SARS-CoV-2 strain, these SMIs also inhibit this PPI for variants of concern including delta (B.1.617.2) and omicron (B.1.1.529) as well as HCoV-NL63 with low- or even sub-micromolar activity. They also concentration-dependently inhibited SARS-CoV-2-S expressing pseudovirus entry into hACE2-expressing cells with low micromolar activity (IC50 < 10 μM) both for the original strain and the delta variant. DRI-C23041 showed good therapeutic (selectivity) index, i.e., separation between activity and cytotoxicity (TI > 100). Specificities and activities require further optimization; nevertheless, these results provide a promising starting point toward novel broad-spectrum small-molecule antivirals that act via blocking the interaction between the spike proteins of coronaviruses and their ACE2 receptor initiating cellular entry.
Collapse
|
61
|
Chatzimitakos T, Chousidis I, Leonardos D, Stalikas C, Leonardos I. In the Swim of Cannabis: Developmental Toxicity and Metabolomic Pathway Alterations of Zebrafish Larvae Exposed to THC for the Assessment of Its Potential Environmental and Human Health Impact. Molecules 2022; 27:molecules27175506. [PMID: 36080275 PMCID: PMC9458094 DOI: 10.3390/molecules27175506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
As the pharmacological properties and therapeutic applications of Cannabis sativa L. pace with the upsurge of interest of the scientific community in harnessing its constituent phytocannabinoids, illicit use may raise serious health issues. Tetrahydrocannabinol (THC) is one of the most well-known phytoactive constituents of cannabis and continues to garner scientific and public attention not only because of its pharmacological value but also because over-the-counter products of THC and prescription medications are becoming increasingly available from pharmacies, dispensaries, Internet, local retail stores, or by illicit means. Hence, a multidimensional approach was employed to examine the impact of THC on zebrafish larvae. The acute toxicity, expressed as LC50, was 1.54 mg/L. Adverse effects were observed on the phenotype, such as tail bending, pericardial edema, etc., even at concentrations lower than LC50, and fundamental functions of larvae (e.g., heart rate and cardiac contractility, and rhythm) were significantly affected. Behavioral changes were noticed, which were reflected in locomotor activity and sensitivity to light/dark changes. Finally, an untargeted metabolomic study was carried out to shed light on the metabolic alterations that occurred, providing substantiating evidence of the observed phenotype alterations. Overall, the potentially detrimental effects of THC on a vertebrate model are depicted.
Collapse
Affiliation(s)
- Theodoros Chatzimitakos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Ieremias Chousidis
- Laboratory of Zoology, Biological Applications and Technology Department, University of Ioannina, 45110 Ioannina, Greece
| | | | - Constantine Stalikas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- Correspondence:
| | - Ioannis Leonardos
- Laboratory of Zoology, Biological Applications and Technology Department, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
62
|
Wang Z, Wang N, Yang L, Song XQ. Bioactive natural products in COVID-19 therapy. Front Pharmacol 2022; 13:926507. [PMID: 36059994 PMCID: PMC9438897 DOI: 10.3389/fphar.2022.926507] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
The devastating COVID-19 pandemic has caused more than six million deaths worldwide during the last 2 years. Effective therapeutic agents are greatly needed, yet promising magic bullets still do not exist. Numerous natural products (cordycepin, gallinamide A, plitidepsin, telocinobufagin, and tylophorine) have been widely studied and play a potential function in treating COVID-19. In this paper, we reviewed published studies (from May 2021 to April 2022) relating closely to bioactive natural products (isolated from medicinal plants, animals products, and marine organisms) in COVID-19 therapy in vitro to provide some essential guidance for anti-SARS-CoV-2 drug research and development.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ning Wang
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, China
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China
| |
Collapse
|
63
|
Hong H, Sloan L, Saxena D, Scott DA. The Antimicrobial Properties of Cannabis and Cannabis-Derived Compounds and Relevance to CB2-Targeted Neurodegenerative Therapeutics. Biomedicines 2022; 10:1959. [PMID: 36009504 PMCID: PMC9406052 DOI: 10.3390/biomedicines10081959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Cannabinoid receptor 2 (CB2) is of interest as a much-needed target for the treatment or prevention of several neurogenerative diseases. However, CB2 agonists, particularly phytocannabinoids, have been ascribed antimicrobial properties and are associated with the induction of microbiome compositional fluxes. When developing novel CB2 therapeutics, CB2 engagement and antimicrobial functions should both be considered. This review summarizes those cannabinoids and cannabis-informed molecules and preparations (CIMPs) that show promise as microbicidal agents, with a particular focus on the most recent developments. CIMP-microbe interactions and anti-microbial mechanisms are discussed, while the major knowledge gaps and barriers to translation are presented. Further research into CIMPs may proffer novel direct or adjunctive strategies to augment the currently available antimicrobial armory. The clinical promise of CIMPs as antimicrobials, however, remains unrealized. Nevertheless, the microbicidal effects ascribed to several CB2 receptor-agonists should be considered when designing therapeutic approaches for neurocognitive and other disorders, particularly in cases where such regimens are to be long-term. To this end, the potential development of CB2 agonists lacking antimicrobial properties is also discussed.
Collapse
Affiliation(s)
- HeeJue Hong
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Lucy Sloan
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Deepak Saxena
- Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - David A. Scott
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
64
|
Reher R, Aron AT, Fajtová P, Stincone P, Wagner B, Pérez-Lorente AI, Liu C, Shalom IYB, Bittremieux W, Wang M, Jeong K, Matos-Hernandez ML, Alexander KL, Caro-Diaz EJ, Naman CB, Scanlan JHW, Hochban PMM, Diederich WE, Molina-Santiago C, Romero D, Selim KA, Sass P, Brötz-Oesterhelt H, Hughes CC, Dorrestein PC, O'Donoghue AJ, Gerwick WH, Petras D. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Nat Commun 2022; 13:4619. [PMID: 35941113 PMCID: PMC9358669 DOI: 10.1038/s41467-022-32016-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
The identity and biological activity of most metabolites still remain unknown. A bottleneck in the exploration of metabolite structures and pharmaceutical activities is the compound purification needed for bioactivity assignments and downstream structure elucidation. To enable bioactivity-focused compound identification from complex mixtures, we develop a scalable native metabolomics approach that integrates non-targeted liquid chromatography tandem mass spectrometry and detection of protein binding via native mass spectrometry. A native metabolomics screen for protease inhibitors from an environmental cyanobacteria community reveals 30 chymotrypsin-binding cyclodepsipeptides. Guided by the native metabolomics results, we select and purify five of these compounds for full structure elucidation via tandem mass spectrometry, chemical derivatization, and nuclear magnetic resonance spectroscopy as well as evaluation of their biological activities. These results identify rivulariapeptolides as a family of serine protease inhibitors with nanomolar potency, highlighting native metabolomics as a promising approach for drug discovery, chemical ecology, and chemical biology studies. Bioactivity-guided isolation of specialized metabolites is an iterative process. Here, the authors demonstrate a native metabolomics approach that allows for fast screening of complex metabolite extracts against a protein of interest and simultaneous structure annotation.
Collapse
Affiliation(s)
- Raphael Reher
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Institute of Pharmaceutical Biology and Biotechnology, University of Marburg, Marburg, Germany
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Paolo Stincone
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany
| | - Berenike Wagner
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Alicia I Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Chenxi Liu
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Ido Y Ben Shalom
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Wout Bittremieux
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Mingxun Wang
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Kyowon Jeong
- Applied Bioinformatics, Computer Science Department, University of Tuebingen, Tuebingen, Germany
| | - Marie L Matos-Hernandez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico
| | - Kelsey L Alexander
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Eduardo J Caro-Diaz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - J H William Scanlan
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology (ZTI), University of Marburg, Marburg, Germany
| | - Phil M M Hochban
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology (ZTI), University of Marburg, Marburg, Germany
| | - Wibke E Diederich
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology (ZTI), University of Marburg, Marburg, Germany
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Khaled A Selim
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Peter Sass
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Chambers C Hughes
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA. .,Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA.
| | - Daniel Petras
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA. .,Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA. .,Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany. .,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
65
|
Shover CM, Yan P, Jackson NJ, Buhr RG, Fulcher JA, Tashkin DP, Barjaktarevic I. Cannabis consumption is associated with lower COVID-19 severity among hospitalized patients: a retrospective cohort analysis. J Cannabis Res 2022; 4:46. [PMID: 35932069 PMCID: PMC9356466 DOI: 10.1186/s42238-022-00152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background While cannabis is known to have immunomodulatory properties, the clinical consequences of its use on outcomes in COVID-19 have not been extensively evaluated. We aimed to assess whether cannabis users hospitalized for COVID-19 had improved outcomes compared to non-users. Methods We conducted a retrospective analysis of 1831 patients admitted to two medical centers in Southern California with a diagnosis of COVID-19. We evaluated outcomes including NIH COVID-19 Severity Score, need for supplemental oxygen, ICU (intensive care unit) admission, mechanical ventilation, length of hospitalization, and in-hospital death for cannabis users and non-users. Cannabis use was reported in the patient’s social history. Propensity matching was used to account for differences in age, body-mass index, sex, race, tobacco smoking history, and comorbidities known to be risk factors for COVID-19 mortality between cannabis users and non-users. Results Of 1831 patients admitted with COVID-19, 69 patients reported active cannabis use (4% of the cohort). Active users were younger (44 years vs. 62 years, p < 0.001), less often diabetic (23.2% vs 37.2%, p < 0.021), and more frequently active tobacco smokers (20.3% vs. 4.1%, p < 0.001) compared to non-users. Notably, active users had lower levels of inflammatory markers upon admission than non-users—CRP (C-reactive protein) (3.7 mg/L vs 7.6 mg/L, p < 0.001), ferritin (282 μg/L vs 622 μg/L, p < 0.001), D-dimer (468 ng/mL vs 1140 ng/mL, p = 0.017), and procalcitonin (0.10 ng/mL vs 0.15 ng/mL, p = 0.001). Based on univariate analysis, cannabis users had significantly better outcomes compared to non-users as reflected in lower NIH scores (5.1 vs 6.0, p < 0.001), shorter hospitalization (4 days vs 6 days, p < 0.001), lower ICU admission rates (12% vs 31%, p < 0.001), and less need for mechanical ventilation (6% vs 17%, p = 0.027). Using propensity matching, differences in overall survival were not statistically significant between cannabis users and non-users, nevertheless ICU admission was 12 percentage points lower (p = 0.018) and intubation rates were 6 percentage points lower (p = 0.017) in cannabis users. Conclusions This retrospective cohort study suggests that active cannabis users hospitalized with COVID-19 had better clinical outcomes compared with non-users, including decreased need for ICU admission or mechanical ventilation. However, our results need to be interpreted with caution given the limitations of a retrospective analysis. Prospective and observational studies will better elucidate the effects cannabis use in COVID-19 patients. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-022-00152-x.
Collapse
|
66
|
Boadu A, Agoni C, Karpoormath R, Soliman M, Nlooto M. Repurposing antiviral phytochemicals from the leaf extracts of Spondias mombin (Linn) towards the identification of potential SARSCOV-2 inhibitors. Sci Rep 2022; 12:10896. [PMID: 35764663 PMCID: PMC9240089 DOI: 10.1038/s41598-022-14558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a pneumonia-like disease with a pattern of acute respiratory symptoms, currently remains a significant public health concern causing tremendous human suffering. Although several approved vaccines exist, vaccine hesitancy, limited vaccine availability, high rate of viral mutation, and the absence of approved drugs account for the persistence of SARS-CoV-2 infections. The investigation of possibly repurposing of phytochemical compounds as therapeutic alternatives has gained momentum due to their reported affordability and minimal toxicity. This study investigated anti-viral phytochemical compounds from ethanolic leaf extracts of Spondias mombin L as potential inhibitor candidates against SARS-CoV-2. We identified Geraniin and 2-O-Caffeoyl-(+)-allohydroxycitric acid as potential SARS-CoV-2 inhibitor candidates targeting the SARS-CoV-2 RNA-dependent polymerase receptor-binding domain (RBD) of SARS-CoV-2 viral S-protein and the 3C-like main protease (3CLpro). Geraniin exhibited binding free energy (ΔGbind) of - 25.87 kcal/mol and - 21.74 kcal/mol towards SARS-CoV-2 RNA-dependent polymerase and receptor-binding domain (RBD) of SARS-CoV-2 viral S-protein respectively, whereas 2-O-Caffeoyl-(+)-allohydroxycitric acid exhibited a ΔGbind of - 32 kcal/mol towards 3CLpro. Molecular Dynamics simulations indicated a possible interference to the functioning of SARS-CoV-2 targets by the two identified inhibitors. However, further in vitro and in vivo evaluation of these potential SARS-CoV-2 therapeutic inhibitor candidates is needed.
Collapse
Affiliation(s)
- Akwasi Boadu
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
- Synthetic and Medicinal Chemistry Research Group (SMCRG), Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Clement Agoni
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Rajshekhar Karpoormath
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- Synthetic and Medicinal Chemistry Research Group (SMCRG), Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mahmoud Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Manimbulu Nlooto
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- Department of Pharmacy, School of Health Care Sciences, University of Limpopo, Private Bag X1106, Polokwane, Sovenga, 0727, South Africa
| |
Collapse
|
67
|
Mińczuk K, Baranowska-Kuczko M, Krzyżewska A, Schlicker E, Malinowska B. Cross-Talk between the (Endo)Cannabinoid and Renin-Angiotensin Systems: Basic Evidence and Potential Therapeutic Significance. Int J Mol Sci 2022; 23:6350. [PMID: 35683028 PMCID: PMC9181166 DOI: 10.3390/ijms23116350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II-AT2 receptor system or angiotensin 1-7-Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism.
Collapse
Affiliation(s)
- Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| |
Collapse
|
68
|
Tashkin DP, Tan WC. Inhaled Marijuana and the Lung. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2822-2829. [PMID: 35609784 DOI: 10.1016/j.jaip.2022.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
Although vaping has recently increased as a mode of inhaling marijuana and has been associated with numerous and sometimes fatal cases of acute severe lung injury, smoking remains the most common method of inhaling marijuana and has been studied more extensively. Smoking marijuana has been shown to produce modest but significant short-term bronchodilation both in healthy subjects and those with asthma. Long-term effects of habitual marijuana smoking include the following: 1) symptoms of chronic bronchitis (increased cough, sputum production and wheezing); 2) modest effects on lung function in cross-sectional studies (no significant decrease in forced expired volume in 1 second [FEV1) but mild reductions in FEV1/forced vital capacity ratio [FEV1/FVC], an increase in FVC and other lung volumes, reductions in specific airway conductance, and variable effects of maximal mid-expiratory flow rates and diffusing capacity; and 3) variable effects on age-related decline in FEV1 in longitudinal studies. Most cohort and case-control studies have failed to show that marijuana smoking is a significant risk-factor for lung cancer despite the presence of pro-carcinogenic components in marijuana smoke, although further study is warranted. The question whether marijuana smoking is associated with asthma is unclear and requires further investigation. Although delta-9 tetrahydrocannabinol (THC), the principal psychoactive component of marijuana, has immunomodulatory properties that hypothetically could increase the risk of pneumonia, the few available studies in marijuana smokers have failed to find an increased risk of pneumonia in immunocompetent users, although effects in immunosuppressed individuals have been variable.
Collapse
Affiliation(s)
- Donald P Tashkin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA Health Sciences, Los Angeles, CA 90095, USA
| | - Wan-Cheng Tan
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, V6Z 1Y6, Canada
| |
Collapse
|
69
|
Behl T, Makkar R, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Exploration of Multiverse Activities of Endocannabinoids in Biological Systems. Int J Mol Sci 2022; 23:ijms23105734. [PMID: 35628545 PMCID: PMC9147046 DOI: 10.3390/ijms23105734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2022] Open
Abstract
Over the last 25 years, the human endocannabinoid system (ECS) has come into the limelight as an imperative neuro-modulatory system. It is mainly comprised of endogenous cannabinoid (endocannabinoid), cannabinoid receptors and the associated enzymes accountable for its synthesis and deterioration. The ECS plays a proven role in the management of several neurological, cardiovascular, immunological, and other relevant chronic conditions. Endocannabinoid or endogenous cannabinoid are endogenous lipid molecules which connect with cannabinoid receptors and impose a fashionable impact on the behavior and physiological processes of the individual. Arachidonoyl ethanolamide or Anandamide and 2-arachidonoyl glycerol or 2-AG were the endocannabinoid molecules that were first characterized and discovered. The presence of lipid membranes in the precursor molecules is the characteristic feature of endocannabinoids. The endocannabinoids are released upon rapid enzymatic reactions into the extracellular space via activation through G-protein coupled receptors, which is contradictory to other neurotransmitter that are synthesized beforehand, and stock up into the synaptic vesicles. The current review highlights the functioning, synthesis, and degradation of endocannabinoid, and explains its functioning in biological systems.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.)
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department of College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hassan A. Alhazmi
- Department of Pharmaceutcal Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department of College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (T.B.); (S.B.)
| |
Collapse
|
70
|
Aghamahdi F, Shafiee A, Rostami S, Mokhames Z, Safavi M, Yaslianifard S, Siami Z, Kabir K, Azizi G, Bakhtiyari M, Mozhgani SH. Comparative study of CNR1 and CNR2 cannabinoid receptors expression levels in COVID-19 patients with and without diabetes mellitus: Recommendations for future research targets. Diabetes Metab Syndr 2022; 16:102499. [PMID: 35580523 PMCID: PMC9078453 DOI: 10.1016/j.dsx.2022.102499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS The COVID-19 pandemic has prompted researchers to look for effective therapeutic targets. The effect of endocannabinoid system against infectious diseases is investigated for several years. In this study, we evaluated the expression level of CNR1 and CNR2 genes in patients with COVID-19 with and without diabetes to provide new insights regarding these receptors and their potential effect in COVID-19 disease. METHODS In this study, peripheral blood monocytes cells (PBMCs) were isolated from eight different groups including COVID-19 patients, diabetic patients, and healthy individuals. RNA were extracted to evaluate the expression level of CNR1 and CNR2 genes using real-time PCR. The correlation between the expression levels of these genes in different groups were assessed. RESULTS A total of 80 samples were divided into 8 groups, with each group consisting of ten samples. When comparing severe and moderate COVID-19 groups to healthy control group, the expression levels of the CNR1 and CNR2 genes were significantly higher in the severe and moderate COVID-19 groups. There were no significant differences between the mild COVID-19 group and the healthy control group. It was found that the expression levels of these genes in patients with diabetes who were infected with SARS-COV-2 did not differ across COVID-19 groups with varying severity, but they were significantly higher when compared to healthy controls. CONCLUSION Our study suggests the possible role of endocannabinoid system during SARS-COV-2 pathogenicity as the expression of CNR1 and CNR2 were elevated during the disease.
Collapse
Affiliation(s)
- Fatemeh Aghamahdi
- Department of Pediatrics, Non-communicable Diseases Research Center, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayeh Rostami
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zakiye Mokhames
- Department of Molecular Diagnostics, Emam Ali Educational and Therapeutic Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahshid Safavi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zeinab Siami
- Department of Infectious Diseases, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Kourosh Kabir
- Department of Community Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmood Bakhtiyari
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
71
|
Janecki M, Graczyk M, Lewandowska AA, Pawlak Ł. Anti-Inflammatory and Antiviral Effects of Cannabinoids in Inhibiting and Preventing SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:ijms23084170. [PMID: 35456990 PMCID: PMC9025270 DOI: 10.3390/ijms23084170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus made it necessary to search for new options for both causal treatment and mitigation of its symptoms. Scientists and researchers around the world are constantly looking for the best therapeutic options. These difficult circumstances have also spurred the re-examination of the potential of natural substances contained in Cannabis sativa L. Cannabinoids, apart from CB1 and CB2 receptors, may act multifacetedly through a number of other receptors, such as the GPR55, TRPV1, PPARs, 5-HT1A, adenosine and glycine receptors. The complex anti-inflammatory and antiviral effects of cannabinoids have been confirmed by interactions with various signaling pathways. Considering the fact that the SARS-CoV-2 virus causes excessive immune response and triggers an inflammatory cascade, and that cannabinoids have the ability to regulate these processes, it can be assumed that they have potential to be used in the treatment of COVID-19. During the pandemic, there were many publications on the subject of COVID-19, which indicate the potential impact of cannabinoids not only on the course of the disease, but also their role in prevention. It is worth noting that the anti-inflammatory and antiviral potential are shown not only by well-known cannabinoids, such as cannabidiol (CBD), but also secondary cannabinoids, such as cannabigerolic acid (CBGA) and terpenes, emphasizing the role of all of the plant’s compounds and the entourage effect. This article presents a narrative review of the current knowledge in this area available in the PubMed, Scopus and Web of Science medical databases.
Collapse
Affiliation(s)
- Marcin Janecki
- Department of Palliative Care and Palliative Medicine, Silesian Medical University in Katowice, 40-752 Katowice, Poland;
| | - Michał Graczyk
- Department of Palliative Care, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: (M.G.); (A.A.L.)
| | - Agata Anna Lewandowska
- 10th Military Research Hospital and Polyclinic in Bydgoszcz, 85-681 Bydgoszcz, Poland
- Correspondence: (M.G.); (A.A.L.)
| | - Łukasz Pawlak
- Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| |
Collapse
|
72
|
Simultaneous Quantification of 17 Cannabinoids in Cannabis Inflorescence by Liquid Chromatography-Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9040085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With an increasing appreciation for the unique pharmacological properties associated with distinct, individual cannabinoids of Cannabis sativa, there is demand for accurate and reliable quantification for a growing number of them. Although recent methods are based on highly selective chromatography-mass spectrometry technology, most are limited to a few cannabinoids, while relying on unnecessarily sophisticated and expensive ultra-high performance liquid chromatography and tandem mass spectrometry. Here we report an optimised, simple extraction method followed by a reliable and simple high performance liquid chromatography method for separation. The detection is performed using a time-of-flight mass spectrometer that is available in most natural products research laboratories. Due to the simplicity of instrumentation, and the robustness resulting from a high resolution in the chromatography of isobaric cannabinoids, the method is well suited for routine phytocannabinoid analysis for a range of applications. The method was validated in terms of detection and quantification limits, repeatability, and recoveries for a total of 17 cannabinoids: detection limits were in the range 11–520 pg when using a 1 µL sample injection volume, and the recovery percentages ranged from 85% to 108%. The validated method was subsequently applied to determine cannabinoid composition in the inflorescences of several medicinal Cannabis sativa varieties.
Collapse
|
73
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
74
|
Dada S, Ellis SLS, Wood C, Nohara LL, Dreier C, Garcia NH, Saranchova I, Munro L, Pfeifer CG, Eyford BA, Kari S, Garrovillas E, Caspani G, Al Haddad E, Gray PW, Morova T, Lack NA, Andersen RJ, Tjoelker L, Jefferies WA. Specific cannabinoids revive adaptive immunity by reversing immune evasion mechanisms in metastatic tumours. Front Immunol 2022; 13:982082. [PMID: 36923728 PMCID: PMC10010394 DOI: 10.3389/fimmu.2022.982082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 02/24/2023] Open
Abstract
Emerging cancers are sculpted by neo-Darwinian selection for superior growth and survival but minimal immunogenicity; consequently, metastatic cancers often evolve common genetic and epigenetic signatures to elude immune surveillance. Immune subversion by metastatic tumours can be achieved through several mechanisms; one of the most frequently observed involves the loss of expression or mutation of genes composing the MHC-I antigen presentation machinery (APM) that yields tumours invisible to Cytotoxic T lymphocytes, the key component of the adaptive cellular immune response. Fascinating ethnographic and experimental findings indicate that cannabinoids inhibit the growth and progression of several categories of cancer; however, the mechanisms underlying these observations remain clouded in uncertainty. Here, we screened a library of cannabinoid compounds and found molecular selectivity amongst specific cannabinoids, where related molecules such as Δ9-tetrahydrocannabinol, cannabidiol, and cannabigerol can reverse the metastatic immune escape phenotype in vitro by inducing MHC-I cell surface expression in a wide variety of metastatic tumours that subsequently sensitizing tumours to T lymphocyte recognition. Remarkably, H3K27Ac ChIPseq analysis established that cannabigerol and gamma interferon induce overlapping epigenetic signatures and key gene pathways in metastatic tumours related to cellular senescence, as well as APM genes involved in revealing metastatic tumours to the adaptive immune response. Overall, the data suggest that specific cannabinoids may have utility in cancer immunotherapy regimens by overcoming immune escape and augmenting cancer immune surveillance in metastatic disease. Finally, the fundamental discovery of the ability of cannabinoids to alter epigenetic programs may help elucidate many of the pleiotropic medicinal effects of cannabinoids on human physiology.
Collapse
Affiliation(s)
- Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L S Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Christi Wood
- Biotechnology - Biomedical Science and Technology (BST), University of Applied Sciences, Mannheim, Germany
| | - Lilian L Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Carola Dreier
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Biotechnology - Biomedical Science and Technology (BST), University of Applied Sciences, Mannheim, Germany
| | | | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Brett A Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Suresh Kari
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuel Garrovillas
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Eliana Al Haddad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Tunc Morova
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Nathan A Lack
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,School of Medicine, Koç University, Istanbul, Türkiye
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Urological Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
75
|
Alshahrani SM, Orayj K, Alqahtani AM, Alfatease A, Alshahrani A, Ibrahim ARN. Attitude and Willingness to Get COVID-19 Vaccines by a Community Pharmacist in Saudi Arabia: A Cross-Sectional Study. Patient Prefer Adherence 2022; 16:2821-2834. [PMID: 36284545 PMCID: PMC9588287 DOI: 10.2147/ppa.s379309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Community pharmacists play a key role as vaccinators for COVID-19. They can reduce the burden of the disease worldwide. OBJECTIVE This study used a cross-sectional questionnaire to determine whether the Saudi Arabian public was willing to obtain the COVID-19 vaccine via community pharmacists. RESULTS The questionnaire focused on the satisfaction, concerns, and opinions towards providing vaccination by community pharmacists. The study featured 415 individuals aged 18 and older (eligible for the COVID-19 vaccine). Of the participants in this study, 58.1% were aged 18-25, with 55.4% female. Most participants (72.8%) have not been exposed to COVID-19 and are not aware of the approval of COVID-19 vaccination by community pharmacists. Of the 415 complete questionnaires, 45% believed that community pharmacists are not experienced in administering vaccines. However, 63% of participants are satisfied with getting the COVID-19 vaccination by a community pharmacist if no other option is available. More than 68% of the respondents agree that community pharmacies should expand their health care services to include vaccinations, prescriptions, checkups, and other forms of preventative medicine. DISCUSSION The availability of community pharmacist-administered vaccination in Saudi Arabia could be a significant factor in the success of the country's vaccination program. This study may serve as a model to expand the role of pharmacists in other countries' vaccination programs.
Collapse
Affiliation(s)
- Sultan M Alshahrani
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Khalid Orayj
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali M Alqahtani
- Pharmacology Department, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Adel Alfatease
- Pharmaceutics Department, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Ahmed R N Ibrahim
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Correspondence: Ahmed RN Ibrahim, Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, Saudi Arabia, Tel +966 554088979, Email
| |
Collapse
|