51
|
Arafat MA, Rubin LN, Jefferys JGR, Irazoqui PP. A Method of Flexible Micro-Wire Electrode Insertion in Rodent for Chronic Neural Recording and a Device for Electrode Insertion. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1724-1731. [DOI: 10.1109/tnsre.2019.2932032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
52
|
Böhm T, Joseph K, Kirsch M, Moroni R, Hilger A, Osenberg M, Manke I, Johnston M, Stieglitz T, Hofmann UG, Haas CA, Thiele S. Quantitative synchrotron X-ray tomography of the material-tissue interface in rat cortex implanted with neural probes. Sci Rep 2019; 9:7646. [PMID: 31113972 PMCID: PMC6529414 DOI: 10.1038/s41598-019-42544-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/01/2019] [Indexed: 01/13/2023] Open
Abstract
Neural probes provide many options for neuroscientific research and medical purposes. However, these implantable micro devices are not functionally stable over time due to host-probe interactions. Thus, reliable high-resolution characterization methods are required to understand local tissue changes upon implantation. In this work, synchrotron X-ray tomography is employed for the first time to image the interface between brain tissue and an implanted neural probe, showing that this 3D imaging method is capable of resolving probe and surrounding tissue at a resolution of about 1 micrometer. Unstained tissue provides sufficient contrast to identify electrode sites on the probe, cells, and blood vessels within tomograms. Exemplarily, we show that it is possible to quantify characteristics of the interaction region between probe and tissue, like the blood supply system. Our first-time study demonstrates a way for simultaneous 3D investigation of brain tissue with implanted probe, providing information beyond what was hitherto possible.
Collapse
Affiliation(s)
- Thomas Böhm
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
| | - Kevin Joseph
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Neuroelectronic Systems, Dept. of Neurosurgery, Faculty of Medicine, University Medical Center, Engesserstraße 4, 79108, Freiburg, Germany
| | - Matthias Kirsch
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 23, 79104, Freiburg, Germany
| | - Riko Moroni
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - André Hilger
- Helmholtz Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Markus Osenberg
- Helmholtz Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Institute of Materials Science and Technology, Technical University Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Ingo Manke
- Helmholtz Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Midori Johnston
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Experimental Epilepsy Research, Dept. of Neurosurgery, University Medical Center, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Laboratory for Biomedical Microtechnology, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 102, 79110, Freiburg, Germany
- Bernstein Center Freiburg, Hansastraße 9a, 79104, Freiburg, Germany
| | - Ulrich G Hofmann
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Neuroelectronic Systems, Dept. of Neurosurgery, Faculty of Medicine, University Medical Center, Engesserstraße 4, 79108, Freiburg, Germany
| | - Carola A Haas
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany
- Experimental Epilepsy Research, Dept. of Neurosurgery, University Medical Center, Breisacher Straße 64, 79106, Freiburg, Germany
- Bernstein Center Freiburg, Hansastraße 9a, 79104, Freiburg, Germany
| | - Simon Thiele
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
- BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany.
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058, Erlangen, Germany.
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany.
| |
Collapse
|
53
|
Wang K, Frewin CL, Esrafilzadeh D, Yu C, Wang C, Pancrazio JJ, Romero-Ortega M, Jalili R, Wallace G. High-Performance Graphene-Fiber-Based Neural Recording Microelectrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805867. [PMID: 30803072 DOI: 10.1002/adma.201805867] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/10/2019] [Indexed: 05/24/2023]
Abstract
Fabrication of flexible and free-standing graphene-fiber- (GF-) based microelectrode arrays with a thin platinum coating, acting as a current collector, results in a structure with low impedance, high surface area, and excellent electrochemical properties. This modification results in a strong synergistic effect between these two constituents leading to a robust and superior hybrid material with better performance than either graphene electrodes or Pt electrodes. The low impedance and porous structure of the GF results in an unrivalled charge injection capacity of 10.34 mC cm-2 with the ability to record and detect neuronal activity. Furthermore, the thin Pt layer transfers the collected signals along the microelectrode efficiently. In vivo studies show that microelectrodes implanted in the rat cerebral cortex can detect neuronal activity with remarkably high signal-to-noise ratio (SNR) of 9.2 dB in an area as small as an individual neuron.
Collapse
Affiliation(s)
- Kezhong Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Christopher L Frewin
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Changchun Yu
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Caiyun Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Mario Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Rouhollah Jalili
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
54
|
Zoll RS, Schindler CB, Massey TL, Drew DS, Maharbiz MM, Pister KSJ. MEMS-Actuated Carbon Fiber Microelectrode for Neural Recording. IEEE Trans Nanobioscience 2019; 18:234-239. [PMID: 30892226 DOI: 10.1109/tnb.2019.2905505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microwire and microelectrode arrays used for cortical neural recording typically consist of tens to hundreds of recording sites, but often only a fraction of these sites are in close enough proximity to firing neurons to record single-unit activity. Recent work has demonstrated precise, depth-controllable mechanisms for the insertion of single neural recording electrodes, but these methods are mostly only capable of inserting electrodes which elicit an adverse biological response. We present an electrostatic-based actuator capable of inserting individual carbon fiber microelectrodes which elicit minimal to no adverse biological response. The device is shown to insert a carbon fiber recording electrode into an agar brain phantom and can record an artificial neural signal in saline. This technique provides a platform generalizable to many microwire-style recording electrodes.
Collapse
|
55
|
Guan S, Wang J, Gu X, Zhao Y, Hou R, Fan H, Zou L, Gao L, Du M, Li C, Fang Y. Elastocapillary self-assembled neurotassels for stable neural activity recordings. SCIENCE ADVANCES 2019; 5:eaav2842. [PMID: 30944856 PMCID: PMC6436924 DOI: 10.1126/sciadv.aav2842] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/06/2019] [Indexed: 05/18/2023]
Abstract
Implantable neural probes that are mechanically compliant with brain tissue offer important opportunities for stable neural interfaces in both basic neuroscience and clinical applications. Here, we developed a Neurotassel consisting of an array of flexible and high-aspect ratio microelectrode filaments. A Neurotassel can spontaneously assemble into a thin and implantable fiber through elastocapillary interactions when withdrawn from a molten, tissue-dissolvable polymer. Chronically implanted Neurotassels elicited minimal neuronal cell loss in the brain and enabled stable activity recordings of the same population of neurons in mice learning to perform a task. Moreover, Neurotassels can be readily scaled up to 1024 microelectrode filaments, each with a neurite-scale cross-sectional footprint of 3 × 1.5 μm2, to form implantable fibers with a total diameter of ~100 μm. With their ultrasmall sizes, high flexibility, and scalability, Neurotassels offer a new approach for stable neural activity recording and neuroprosthetics.
Collapse
Affiliation(s)
- S. Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - X. Gu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Y. Zhao
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - R. Hou
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - H. Fan
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - L. Zou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - L. Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - M. Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - C. Li
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Corresponding author. (C.L.); (Y.F.)
| | - Y. Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Corresponding author. (C.L.); (Y.F.)
| |
Collapse
|
56
|
Robinson JT, Pohlmeyer E, Gather MC, Kemere C, Kitching JE, Malliaras GG, Marblestone A, Shepard KL, Stieglitz T, Xie C. Developing Next-generation Brain Sensing Technologies - A Review. IEEE SENSORS JOURNAL 2019; 19:10.1109/jsen.2019.2931159. [PMID: 32116472 PMCID: PMC7047830 DOI: 10.1109/jsen.2019.2931159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Advances in sensing technology raise the possibility of creating neural interfaces that can more effectively restore or repair neural function and reveal fundamental properties of neural information processing. To realize the potential of these bioelectronic devices, it is necessary to understand the capabilities of emerging technologies and identify the best strategies to translate these technologies into products and therapies that will improve the lives of patients with neurological and other disorders. Here we discuss emerging technologies for sensing brain activity, anticipated challenges for translation, and perspectives for how to best transition these technologies from academic research labs to useful products for neuroscience researchers and human patients.
Collapse
Affiliation(s)
- Jacob T. Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Pohlmeyer
- John Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Malte C. Gather
- SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS Scotland, UK
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - John E. Kitching
- Time and Frequency Division, NIST, 325 Broadway, Boulder, Colorado 80305, USA
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Adam Marblestone
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Thomas Stieglitz
- Institute of Microsystem Technology, Laboratory for Biomedical Microtechnology, D-79110 Freiburg, Germany
- Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Chong Xie
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
57
|
Goding J, Vallejo-Giraldo C, Syed O, Green R. Considerations for hydrogel applications to neural bioelectronics. J Mater Chem B 2019; 7:1625-1636. [DOI: 10.1039/c8tb02763c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogels have garnered interest as materials in bioelectronics due to the capacity to tailor their properties. Appropriate selection and design of hydrogel systems for this application requires an understanding of the physical, chemical and biological properties as well as their structure–property relationships.
Collapse
Affiliation(s)
- Josef Goding
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | | | - Omaer Syed
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | - Rylie Green
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| |
Collapse
|
58
|
Adnan M, Pinnick RA, Tang Z, Taylor LW, Pamulapati SS, Carfagni GR, Pasquali M. Bending behavior of CNT fibers and their scaling laws. SOFT MATTER 2018; 14:8284-8292. [PMID: 30175834 DOI: 10.1039/c8sm01129j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon nanotube (CNT) fibers are a promising material for wearable electronics and biomedical applications due to their combined flexibility and electrical conductivity. To engineer the bending properties for such applications requires understanding how the bending stiffness of CNT fibers scales with CNT length and fiber diameter. We measure bending stiffness with a cantilever setup interpreted within Euler Elastica theory. We find that the bending stiffness scales with a power law of 1.9 for the fiber diameter and 1.6 for the CNT length. The diameter scaling exponent for fiber diameter agrees with results from earlier experiments and theory for microscopic CNT bundles. We develop a simple model which predicts the experimentally observed scaling exponents within statistical significance.
Collapse
Affiliation(s)
- Mohammed Adnan
- Rice University, 6100 Main St. MS-369, Houston, TX, USA.
| | | | - Zhao Tang
- Rice University, 6100 Main St. MS-369, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
59
|
Vitale F, Shen W, Driscoll N, Burrell JC, Richardson AG, Adewole O, Murphy B, Ananthakrishnan A, Oh H, Wang T, Lucas TH, Cullen DK, Allen MG, Litt B. Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays. PLoS One 2018; 13:e0206137. [PMID: 30383805 PMCID: PMC6211660 DOI: 10.1371/journal.pone.0206137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/08/2018] [Indexed: 01/15/2023] Open
Abstract
Intracranial electrodes are a vital component of implantable neurodevices, both for acute diagnostics and chronic treatment with open and closed-loop neuromodulation. Their performance is hampered by acute implantation trauma and chronic inflammation in response to implanted materials and mechanical mismatch between stiff synthetic electrodes and pulsating, natural soft host neural tissue. Flexible electronics based on thin polymer films patterned with microscale conductive features can help alleviate the mechanically induced trauma; however, this strategy alone does not mitigate inflammation at the device-tissue interface. In this study, we propose a biomimetic approach that integrates microscale extracellular matrix (ECM) coatings on microfabricated flexible subdural microelectrodes. Taking advantage of a high-throughput process employing micro-transfer molding and excimer laser micromachining, we fabricate multi-channel subdural microelectrodes primarily composed of ECM protein material and demonstrate that the electrochemical and mechanical properties match those of standard, uncoated controls. In vivo ECoG recordings in rodent brain confirm that the ECM microelectrode coatings and the protein interface do not alter signal fidelity. Astrogliotic, foreign body reaction to ECM coated devices is reduced, compared to uncoated controls, at 7 and 30 days, after subdural implantation in rat somatosensory cortex. We propose microfabricated, flexible, biomimetic electrodes as a new strategy to reduce inflammation at the device-tissue interface and improve the long-term stability of implantable subdural electrodes.
Collapse
Affiliation(s)
- Flavia Vitale
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Physical Medicine & Rehabilitation, University of Pennsylvania, Philadelphia PA, United States of America
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia PA, United States of America
| | - Wendy Shen
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, United States of America
| | - Nicolette Driscoll
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA, United States of America
| | - Justin C. Burrell
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia PA, United States of America
| | - Andrew G. Richardson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia PA, United States of America
| | - Oladayo Adewole
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA, United States of America
| | - Brendan Murphy
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA, United States of America
| | - Akshay Ananthakrishnan
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, United States of America
| | - Hanju Oh
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, United States of America
| | - Theodore Wang
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA, United States of America
| | - Timothy H. Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia PA, United States of America
| | - D. Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia PA, United States of America
| | - Mark G. Allen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia PA, United States of America
| | - Brian Litt
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA, United States of America
| |
Collapse
|
60
|
Kim GH, Kim K, Lee E, An T, Choi W, Lim G, Shin JH. Recent Progress on Microelectrodes in Neural Interfaces. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1995. [PMID: 30332782 PMCID: PMC6213370 DOI: 10.3390/ma11101995] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
Brain‒machine interface (BMI) is a promising technology that looks set to contribute to the development of artificial limbs and new input devices by integrating various recent technological advances, including neural electrodes, wireless communication, signal analysis, and robot control. Neural electrodes are a key technological component of BMI, as they can record the rapid and numerous signals emitted by neurons. To receive stable, consistent, and accurate signals, electrodes are designed in accordance with various templates using diverse materials. With the development of microelectromechanical systems (MEMS) technology, electrodes have become more integrated, and their performance has gradually evolved through surface modification and advances in biotechnology. In this paper, we review the development of the extracellular/intracellular type of in vitro microelectrode array (MEA) to investigate neural interface technology and the penetrating/surface (non-penetrating) type of in vivo electrodes. We briefly examine the history and study the recently developed shapes and various uses of the electrode. Also, electrode materials and surface modification techniques are reviewed to measure high-quality neural signals that can be used in BMI.
Collapse
Affiliation(s)
- Geon Hwee Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
| | - Kanghyun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
| | - Eunji Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
| | - Taechang An
- Department of Mechanical Design Engineering, Andong National University, Kyungbuk 760-749, Korea.
| | - WooSeok Choi
- Department of Mechanical Engineering, Korea National University of Transportation, Chungju 380-702, Korea.
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
| | - Jung Hwal Shin
- School of Mechanical Engineering, Kyungnam University, Changwon 51767, Korea.
| |
Collapse
|
61
|
Pas J, Rutz AL, Quilichini PP, Slézia A, Ghestem A, Kaszas A, Donahue MJ, Curto VF, O’Connor RP, Bernard C, Williamson A, Malliaras GG. A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes. J Neural Eng 2018; 15:065001. [DOI: 10.1088/1741-2552/aadc1d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
62
|
Rastogi SK, Kalmykov A, Johnson N, Cohen-Karni T. Bioelectronics with nanocarbons. J Mater Chem B 2018; 6:7159-7178. [PMID: 32254631 DOI: 10.1039/c8tb01600c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Characterizing the electrical activity of cardiomyocytes and neurons is crucial in understanding the complex processes in the heart and brain tissues, both in healthy and diseased states. Micro- and nanotechnologies have significantly improved the electrophysiological investigation of cellular networks. Carbon-based nanomaterials or nanocarbons, such as carbon nanotubes (CNTs), nanodiamonds (NDs) and graphene are promising building blocks for bioelectronics platforms owing to their outstanding chemical and physical properties. In this review, we discuss the various bioelectronics applications of nanocarbons and their derivatives. Furthermore, we touch upon the challenges that remain in the field and describe the emergence of carbon-based hybrid-nanomaterials that will potentially address those limitations, thus improving the capabilities to investigate the electrophysiology of excitable cells, both as a network and at the single cell level.
Collapse
Affiliation(s)
- Sahil Kumar Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
63
|
Klimovich AV, Bosch TCG. Rethinking the Role of the Nervous System: Lessons From the Hydra Holobiont. Bioessays 2018; 40:e1800060. [PMID: 29989180 DOI: 10.1002/bies.201800060] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/28/2018] [Indexed: 12/30/2022]
Abstract
Here we evaluate our current understanding of the function of the nervous system in Hydra, a non-bilaterian animal which is among the first metazoans that contain neurons. We highlight growing evidence that the nervous system, with its rich repertoire of neuropeptides, is involved in controlling resident beneficial microbes. We also review observations that indicate that microbes affect the animal's behavior by directly interfering with neuronal receptors. These findings provide new insight into the original role of the nervous system, and suggest that it emerged to orchestrate multiple functions including host-microbiome interactions. The excitement of future research in the Hydra model now relies on uncovering the common rules and principles that govern the interaction between neurons and microbes and the extent to which such laws might apply to other and more complex organisms.
Collapse
Affiliation(s)
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts University, 24118 Kiel, Germany
| |
Collapse
|