51
|
Ye Q, Wang Y, Shen S, Xu C, Wang J. Biomaterials-Based Delivery of Therapeutic Antibodies for Cancer Therapy. Adv Healthc Mater 2021; 10:e2002139. [PMID: 33870637 DOI: 10.1002/adhm.202002139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/05/2021] [Indexed: 12/19/2022]
Abstract
Considerable breakthroughs in the treatment of malignant tumors using antibody drugs, especially immunomodulating monoclonal antibodies (mAbs), have been made in the past decade. Despite technological advancements in antibody design and manufacture, multiple challenges face antibody-mediated cancer therapy, such as instability in vivo, poor tumor penetration, limited response rate, and undesirable off-target cytotoxicity. In recent years, an increasing number of biomaterials-based delivery systems have been reported to enhance the antitumor efficacy of antibody drugs. This review summarizes the advances and breakthroughs in integrating biomaterials with therapeutic antibodies for enhanced cancer therapy. A brief introduction to the principal mechanism of antibody-based cancer therapy is first established, and then various antibody immobilization strategies are provided. Finally, the current state-of-the-art in biomaterials-based antibody delivery systems and their applications in cancer treatment are summarized, highlighting how the delivery systems augment the therapeutic efficacy of antibody drugs. The outlook and perspective on biomaterials-based delivery of antitumor antibodies are also discussed.
Collapse
Affiliation(s)
- Qian‐Ni Ye
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
| | - Yue Wang
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 P. R. China
| | - Cong‐Fei Xu
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 P. R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
52
|
Tang J, Liu Y, Qi D, Yang L, Chen H, Wang C, Feng X. Nucleus-Targeted Delivery of Multi-Protein Self-Assembly for Combined Anticancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101219. [PMID: 34028978 DOI: 10.1002/smll.202101219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Protein therapy has the potential to revolutionize medicine, but the delivery of multiple proteins is challenging because it requires the development of a strategy that enables different proteins to be combined together and transported not only into cells, but also to the desired cell compartments, such as the nucleus. Here, an efficient intranuclear protein delivery nanoplatform based on modified ribonuclease A (RNase A) tuned self-assembly is presented. RNase A bioreversibly modified with adamantane is functionalized with wind chime-like lysine modified cyclodextrin (WLC) to generate RNase A-WLC (R-WLC). R-WLC can not only enhance the cellular uptake of RNase A and accumulate it into the nucleus, but also works as nanovehicles to efficiently transport deoxyribonuclease I (DNase I) into the nucleus, resulting in greatly improved antitumor efficacy in vitro and in vivo. This protein co-assembly strategy can be applied to other functional proteins and has great prospects in the treatment of many diseases.
Collapse
Affiliation(s)
- Jiakun Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Ye Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Dongmei Qi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Lan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
53
|
Zhang Q, Zhang J, Song J, Liu Y, Ren X, Zhao Y. Protein-Based Nanomedicine for Therapeutic Benefits of Cancer. ACS NANO 2021; 15:8001-8038. [PMID: 33900074 DOI: 10.1021/acsnano.1c00476] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteins, a type of natural biopolymer that possess many prominent merits, have been widely utilized to engineer nanomedicine for fighting against cancer. Motivated by their ever-increasing attention in the scientific community, this review aims to provide a comprehensive showcase on the current landscape of protein-based nanomedicine for cancer therapy. On the basis of role differences of proteins in nanomedicine, protein-based nanomedicine engineered with protein therapeutics, protein carriers, enzymes, and composite proteins is introduced. The cancer therapeutic benefits of the protein-based nanomedicine are also discussed, including small-molecular therapeutics-mediated therapy, macromolecular therapeutics-mediated therapy, radiation-mediated therapy, reactive oxygen species-mediated therapy, and thermal effect-mediated therapy. Lastly, future developments and potential challenges of protein-based nanomedicine are elucidated toward clinical translation. It is believed that protein-based nanomedicine will play a vital role in the battle against cancer. We hope that this review will inspire extensive research interests from diverse disciplines to further push the developments of protein-based nanomedicine in the biomedical frontier, contributing to ever-greater medical advances.
Collapse
Affiliation(s)
- Qiuhong Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yizhen Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangzhong Ren
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
54
|
Yu N, Ding M, Li J. Near-Infrared Photoactivatable Immunomodulatory Nanoparticles for Combinational Immunotherapy of Cancer. Front Chem 2021; 9:701427. [PMID: 34109160 PMCID: PMC8181730 DOI: 10.3389/fchem.2021.701427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022] Open
Abstract
As a promising treatment option for cancer, immunotherapy can eliminate local and distant metastatic tumors and even prevent recurrence through boosting the body’s immune system. However, immunotherapy often encounters the issues of limited therapeutic efficacy and severe immune-related adverse events in clinical practices, which should be mainly due to the non-specific accumulations of immunotherapeutic agents. Activatable immunomodulatory agents that are responsive to endogenous stimuli in tumor microenvironment can afford controlled immunotherapeutic actions, while they still face certain extent of off-target activation. Since light has the advantages of noninvasiveness, simple controllability and high spatio-temporal selectivity, therapeutic agents that can be activated by light, particularly near-infrared (NIR) light with minimal phototoxicity and strong tissue penetrating ability have been programmed for cancer treatment. In this mini review, we summarize the recent progress of NIR photoactivatable immunomodulatory nanoparticles for combinational cancer immunotherapy. The rational designs, constructions and working mechanisms of NIR photoactivatable agents are first briefly introduced. The uses of immunomodulatory nanoparticles with controlled immunotherapeutic actions upon NIR photoactivation for photothermal and photodynamic combinational immunotherapy of cancer are then summarized. A conclusion and discussion of the existing challenges and further perspectives for the development and clinical translation of NIR photoactivatable immunomodulatory nanoparticles are finally given.
Collapse
Affiliation(s)
- Ningyue Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Mengbin Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
55
|
Cremolini C, Vitale E, Rastaldo R, Giachino C. Advanced Nanotechnology for Enhancing Immune Checkpoint Blockade Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:661. [PMID: 33800368 PMCID: PMC7998763 DOI: 10.3390/nano11030661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Immune checkpoint receptor signaling pathways constitute a prominent class of "immune synapse," a cell-to-cell connection that represses T-lymphocyte effector functions. As a possible evolutionary countermeasure against autoimmunity, this strategy is aimed at lowering potential injury to uninfected cells in infected tissues and at minimizing systemic inflammation. Nevertheless, tumors can make use of these strategies to escape immune recognition, and consequently, such mechanisms represent chances for immunotherapy intervention. Recent years have witnessed the advance of pharmaceutical nanotechnology, or nanomedicine, as a possible strategy to ameliorate immunotherapy technical weaknesses thanks to its intrinsic biophysical properties and multifunctional modifying capability. To improve the long-lasting response rate of checkpoint blockade therapy, nanotechnology has been employed at first for the delivery of single checkpoint inhibitors. Further, while therapy via single immune checkpoint blockade determines resistance and a restricted period of response, strong interest has been raised to efficiently deliver immunomodulators targeting different inhibitory pathways or both inhibitory and costimulatory pathways. In this review, the partially explored promise in implementation of nanotechnology to improve the success of immune checkpoint therapy and solve the limitations of single immune checkpoint inhibitors is debated. We first present the fundamental elements of the immune checkpoint pathways and then outline recent promising results of immune checkpoint blockade therapy in combination with nanotechnology delivery systems.
Collapse
Affiliation(s)
- Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (E.V.); (C.G.)
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (E.V.); (C.G.)
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (E.V.); (C.G.)
| |
Collapse
|
56
|
Wang T, Xu X, Zhang K. Nanotechnology-Enabled Chemodynamic & Immunotherapy. Curr Cancer Drug Targets 2021; 21:545-557. [PMID: 33618647 DOI: 10.2174/1568009621666210219101552] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/07/2022]
Abstract
High-level reactive oxygen species (ROS) have been reported to exert a robust anti-tumor effect by inducing cell apoptosis or necroptosis. Based on the Fenton reaction or Fenton-like reaction, a therapeutic strategy (i.e., chemodynamic therapy (CDT)) is proposed, where hydroxyl radicals (•OH) that are one typical ROS via the spontaneous activation by endogenous stimulus can be produced to kill tumors. Moreover, high-level ROS can also facilitate tumor-associated antigen exposure, which benefits phagocytosis of corpses and debris by antigen-presenting cells (e.g., dendritic cells (DCs)) and further activates systematic immune responses. Great efforts wherein nanotechnology is underlined have been made in interdisciplinary communities to witness the development of this field. To provide a comprehensive understanding of CDT, the state of art of strategies on nanotechnology-enabled CDT is discussed in detail. In particular, the combination of CDT and its augmented immunotherapy against tumor for overcoming the poor outcome that mono-CDT suffers from is highlighted. Moreover, the potential challenges will also be discussed.
Collapse
Affiliation(s)
- Taixia Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072. China
| | - Xiaohong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072. China
| | - Kun Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072. China
| |
Collapse
|
57
|
Li Y, Zhang X, Liu X, Pan W, Li N, Tang B. Intelligent stimuli-responsive nano immunomodulators for cancer immunotherapy. Chem Sci 2021; 12:3130-3145. [PMID: 34164080 PMCID: PMC8179382 DOI: 10.1039/d0sc06557a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer immunotherapy is a revolutionary treatment method in oncology, which uses a human's own immune system against cancer. Many immunomodulators that trigger an immune response have been developed and applied in cancer immunotherapy. However, there is the risk of causing an excessive immune response upon directly injecting common immunomodulators into the human body to trigger an immune response. Therefore, the development of intelligent stimuli-responsive immunomodulators to elicit controlled immune responses in cancer immunotherapy is of great significance. Nanotechnology offers the possibility of designing smart nanomedicine to amplify the antitumor response in a safe and effective manner. Progress relating to intelligent stimuli-responsive nano immunomodulators for cancer immunotherapy is highlighted as a new creative direction in the field. Considering the clinical demand for cancer immunotherapy, we put forward some suggestions for constructing new intelligent stimuli-responsive nano immunomodulators, which will advance the development of cancer immunotherapy.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
58
|
Lim J, Lee J, Jung S, Kim WJ. Phenylboronic-acid-based nanocomplex as a feasible delivery platform of immune checkpoint inhibitor for potent cancer immunotherapy. J Control Release 2021; 330:1168-1177. [DOI: 10.1016/j.jconrel.2020.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
|
59
|
Zhou X, Liu X, Huang L. Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006220. [PMID: 33692665 PMCID: PMC7939128 DOI: 10.1002/adfm.202006220] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/05/2023]
Abstract
Macrophages are one of the most abundant non-malignant cells in the tumor microenvironment, playing critical roles in mediating tumor immunity. As important innate immune cells, macrophages possess the potential to engulf tumor cells and present tumor-specific antigens for adaptive antitumor immunity induction, leading to growing interest in targeting macrophage phagocytosis for cancer immunotherapy. Nevertheless, live tumor cells have evolved to evade phagocytosis by macrophages via the extensive expression of anti-phagocytic molecules, such as CD47. In addition, macrophages also rapidly recognize and engulf apoptotic cells (efferocytosis) in the tumor microenvironment, which inhibits inflammatory responses and facilitates immune escape of tumor cells. Thus, intervention of macrophage phagocytosis by blocking anti-phagocytic signals on live tumor cells or inhibiting tumor efferocytosis presents a promising strategy for the development of cancer immunotherapies. Here, the regulation of macrophage-mediated tumor cell phagocytosis is first summarized, followed by an overview of strategies targeting macrophage phagocytosis for the development of antitumor therapies. Given the potential off-target effects associated with the administration of traditional therapeutics (for example, monoclonal antibodies, small molecule inhibitors), we highlight the opportunity for nanomedicine in macrophage phagocytosis intervention.
Collapse
Affiliation(s)
- Xuefei Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
60
|
Yang G, Ni JS, Li Y, Zha M, Tu Y, Li K. Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angew Chem Int Ed Engl 2021; 60:5386-5393. [PMID: 33236483 DOI: 10.1002/anie.202013228] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Indexed: 12/17/2022]
Abstract
Reprogramming tumor-associated macrophages to an antitumor M1 phenotype by photodynamic therapy is a promising strategy to overcome the immunosuppression of tumor microenvironment for boosted immunotherapy. However, it remains unclear how the reactive oxygen species (ROS) generated from type I and II mechanisms, relate to the macrophage polarization efficacy. Herein, we design and synthesize three donor-acceptor structured photosensitizers with varied ROS-generating efficiencies. Surprisingly, we discovered that the extracellular ROS generated from type I mechanism are mainly responsible for reprogramming the macrophages from a pro-tumor type (M2) to an anti-tumor state (M1). In vivo experiments prove that the photosensitizer can trigger photodynamic immunotherapy for effective suppression of the tumor growth, while the therapeutic outcome is abolished with depleted macrophages. Overall, our strategy highlights the designing guideline of macrophage-activatable photosensitizers.
Collapse
Affiliation(s)
- Guang Yang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jen-Shyang Ni
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yaxi Li
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Menglei Zha
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yao Tu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
61
|
Yang G, Ni J, Li Y, Zha M, Tu Y, Li K. Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guang Yang
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Jen‐Shyang Ni
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yaxi Li
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Menglei Zha
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yao Tu
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Kai Li
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| |
Collapse
|
62
|
Jin Q, Liu Z, Chen Q. Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery. J Control Release 2021; 329:882-893. [PMID: 33053396 DOI: 10.1016/j.jconrel.2020.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022]
Abstract
Cancer immunotherapy has been demonstrated as a promising therapeutic strategy in clinic owing to its unique advantages. However, although more and more immunotherapeutic agents have been approved for clinical use to activate the immune system, they also could interfere with the homeostatic role of immune system at non-target sites after systemic administration, which may be associated with fatal side effects such as lifelong autoimmune diseases. Thus, it is desirable to develop local delivery systems that could be applied at the targeted sides and engineered to locally control the pharmacokinetics of various immunotherapeutics, including small molecules, macromolecules or even cells. Advancements in biomaterials, biotechnology, nanomedicine and engineering have facilitated the development of local delivery systems for enhanced cancer immunotherapy. This review will summarize the recent advances in developing different local delivery systems and discuss how these delivery systems could be designed to regulate the release behavior of different immunotherapeutics to sustainably stimulate the systemic immune system, effectively and safely inhibiting the cancer recurrence and metastasis. Furthermore, we will discuss how biomaterials-assisted local delivery systems would contribute to the development of cancer immunotherapy, together with their challenges and potential of clinical translation.
Collapse
Affiliation(s)
- Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
63
|
Zeng Z, Zhang C, Li J, Cui D, Jiang Y, Pu K. Activatable Polymer Nanoenzymes for Photodynamic Immunometabolic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007247. [PMID: 33306220 DOI: 10.1002/adma.202007247] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Indexed: 05/14/2023]
Abstract
Tumor immunometabolism contributes substantially to tumor proliferation and immune cell activity, and thus plays a crucial role in the efficacy of cancer immunotherapy. Modulation of immunometabolism to boost cancer immunotherapy is mostly based on small-molecule inhibitors, which often encounter the issues of off-target adverse effects, drug resistance, and unsustainable response. In contrast, enzymatic therapeutics can potentially bypass these limitations but has been less exploited. Herein, an organic polymer nanoenzyme (SPNK) with near-infrared (NIR) photoactivatable immunotherapeutic effects is reported for photodynamic immunometabolic therapy. SPNK is composed of a semiconducting polymer core conjugated with kynureninase (KYNase) via PEGylated singlet oxygen (1 O2 ) cleavable linker. Upon NIR photoirradiation, SPNK generates 1 O2 not only to exert photodynamic effect to induce the immunogenic cell death of cancer, but also to unleash KYNase and trigger its activity to degrade the immunosuppressive kynurenine (Kyn). Such a combinational effect mediated by SPNK promotes the proliferation and infiltration of effector T cells, enhances systemic antitumor T cell immunity, and ultimately permits inhibition of both primary and distant tumors in living mice. Therefore, this study provides a promising photodynamic approach toward remotely controlled enzymatic immunomodulation for improved anticancer therapy.
Collapse
Affiliation(s)
- Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Chi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
64
|
Jiang M, Mu J, Jacobson O, Wang Z, He L, Zhang F, Yang W, Lin Q, Zhou Z, Ma Y, Lin J, Qu J, Huang P, Chen X. Reactive Oxygen Species Activatable Heterodimeric Prodrug as Tumor-Selective Nanotheranostics. ACS NANO 2020; 14:16875-16886. [PMID: 33206522 DOI: 10.1021/acsnano.0c05722] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanotheranostics based on tumor-selective small molecular prodrugs could be more advantageous in clinical translation for cancer treatment, given its defined chemical structure, high drug loading efficiency, controlled drug release, and reduced side effects. To this end, we have designed and synthesized a reactive oxygen species (ROS)-activatable heterodimeric prodrug, namely, HRC, and nanoformulated it for tumor-selective imaging and synergistic chemo- and photodynamic therapy. The prodrug consists of the chemodrug camptothecin (CPT), the photosensitizer 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH), and a thioketal linker. Compared to CPT- or HPPH-loaded polymeric nanoparticles (NPs), HRC-loaded NPs possess higher drug loading capacity, better colloidal stability, and less premature drug leakage. Interestingly, HRC NPs were almost nonfluorescent due to the strong π-π stacking and could be effectively activated by endogenous ROS once entering cells. Thanks to the higher ROS levels in cancer cells than normal cells, HRC NPs could selectively light up the cancer cells and exhibit much more potent cytotoxicity to cancer cells. Moreover, HRC NPs demonstrated highly effective tumor accumulation and synergistic tumor inhibition with reduced side effects on mice.
Collapse
Affiliation(s)
- Meijuan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jing Mu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Liangcan He
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Qiaoya Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
65
|
Gong Y, Chen M, Tan Y, Shen J, Jin Q, Deng W, Sun J, Wang C, Liu Z, Chen Q. Injectable Reactive Oxygen Species-Responsive SN38 Prodrug Scaffold with Checkpoint Inhibitors for Combined Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50248-50259. [PMID: 33135879 DOI: 10.1021/acsami.0c13943] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemotherapeutic agents have been widely used for cancer treatment in clinics. Aside from their direct cytotoxicity to cancer cells, some of them could activate the immune system of the host, contributing to the enhanced antitumor activity. Here, the reactive oxygen species (ROS)-responsive hydrogel, covalently cross-linked by phenylboronic acid-modified 7-ethyl-10-hydroxycamptothecin (SN38-SA-BA) with poly(vinyl alcohol) (PVA), is fabricated for topical delivery of anti-programmed cell death protein ligand 1 antibodies (aPDL1). In the presence of endogenous ROS, SN38-SA-BA will be oxidized and hydrolyzed, leading to the degradation of hydrogel and the release of initial free SN38 and encapsulated aPDL1. It is demonstrated that SN38 could elicit specific immune responses by triggering immunogenic cell death (ICD) of cancer cells, a distinct cell death pathway featured with the release of immunostimulatory damage-associated molecular patterns (DAMPs). Meanwhile, the released aPDL1 could bind to programmed cell death protein ligand 1 (PDL1) expressed on cancer cells to augment antitumor T cell responses. Thus, the ROS-responsive prodrug hydrogel loaded with aPDL1 could induce effective innate and adaptive antitumor immune responses after local injection, significantly inhibiting or even eliminating those tumors.
Collapse
Affiliation(s)
- Yimou Gong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Yanjun Tan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Wutong Deng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
| | - Jian Sun
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
66
|
Zhang YR, Luo JQ, Zhang JY, Miao WM, Wu JS, Huang H, Tong QS, Shen S, Leong KW, Du JZ, Wang J. Nanoparticle-Enabled Dual Modulation of Phagocytic Signals to Improve Macrophage-Mediated Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004240. [PMID: 33107142 DOI: 10.1002/smll.202004240] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/07/2020] [Indexed: 05/13/2023]
Abstract
Activation of the phagocytosis of macrophages to tumor cells is an attractive strategy for cancer immunotherapy, but the effectiveness is limited by the fact that many tumor cells express an increased level of anti-phagocytic signals (e.g., CD47 molecules) on their surface. To promote phagocytosis of macrophages, a pro-phagocytic nanoparticle (SNPACALR&aCD47 ) that concurrently carries CD47 antibody (aCD47) and a pro-phagocytic molecule calreticulin (CALR) is constructed to simultaneously modulate the phagocytic signals of macrophages. SNPACALR&aCD47 can achieve targeted delivery to tumor cells by specifically binding to the cell-surface CD47 and block the CD47-SIRPα pathway to inhibit the "don't eat me" signal. Tumor cell-targeted delivery increases the exposure of recombinant CALR on the cell surface and stimulates an "eat me" signal. Simultaneous modulation of the two signals enhances the phagocytosis of 4T1 tumor cells by macrophages, which leads to significantly improved anti-tumor efficacy in vivo. The findings demonstrate that the concurrent blockade of anti-phagocytic signals and activation of pro-phagocytic signals can be effective in macrophage-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Ya-Ru Zhang
- Guangzhou First People's Hospital, and Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Jia-Qi Luo
- Guangzhou First People's Hospital, and Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Jing-Yang Zhang
- Guangzhou First People's Hospital, and Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Wei-Min Miao
- Guangzhou First People's Hospital, and Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Jia-Si Wu
- Guangzhou First People's Hospital, and Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Hua Huang
- Guangzhou First People's Hospital, and Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Qi-Song Tong
- Guangzhou First People's Hospital, and Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Song Shen
- Guangzhou First People's Hospital, and Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jin-Zhi Du
- Guangzhou First People's Hospital, and Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Jun Wang
- Guangzhou First People's Hospital, and Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| |
Collapse
|
67
|
Min S, Jeon YS, Choi H, Khatua C, Li N, Bae G, Jung HJ, Kim Y, Hong H, Shin J, Ko MJ, Ko HS, Kim T, Moon JH, Song JJ, Dravid VP, Kim YK, Kang H. Large and Externally Positioned Ligand-Coated Nanopatches Facilitate the Adhesion-Dependent Regenerative Polarization of Host Macrophages. NANO LETTERS 2020; 20:7272-7280. [PMID: 32910662 DOI: 10.1021/acs.nanolett.0c02655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Macrophages can associate with extracellular matrix (ECM) demonstrating nanosequenced cell-adhesive RGD ligand. In this study, we devised barcoded materials composed of RGD-coated gold and RGD-absent iron nanopatches to show various frequencies and position of RGD-coated nanopatches with similar areas of iron and RGD-gold nanopatches that maintain macroscale and nanoscale RGD density invariant. Iron patches were used for substrate coupling. Both large (low frequency) and externally positioned RGD-coated nanopatches stimulated robust attachment in macrophages, compared with small (high frequency) and internally positioned RGD-coated nanopatches, respectively, which mediate their regenerative/anti-inflammatory M2 polarization. The nanobarcodes exhibited stability in vivo. We shed light into designing ligand-engineered nanostructures in an external position to facilitate host cell attachment, thereby eliciting regenerative host responses.
Collapse
Affiliation(s)
- Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yoo Sang Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Research Institute of Engineering and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hyojun Choi
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chandra Khatua
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Na Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeongeun Shin
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Han Seok Ko
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Taesoon Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jun Hwan Moon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
68
|
Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002054. [PMID: 32856350 DOI: 10.1002/adma.202002054] [Citation(s) in RCA: 478] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/13/2020] [Indexed: 05/23/2023]
Abstract
Macrophages play an important role in cancer development and metastasis. Proinflammatory M1 macrophages can phagocytose tumor cells, while anti-inflammatory M2 macrophages such as tumor-associated macrophages (TAMs) promote tumor growth and invasion. Modulating the tumor immune microenvironment through engineering macrophages is efficacious in tumor therapy. M1 macrophages target cancerous cells and, therefore, can be used as drug carriers for tumor therapy. Herein, the strategies to engineer macrophages for cancer immunotherapy, such as inhibition of macrophage recruitment, depletion of TAMs, reprograming of TAMs, and blocking of the CD47-SIRPα pathway, are discussed. Further, the recent advances in drug delivery using M1 macrophages, macrophage-derived exosomes, and macrophage-membrane-coated nanoparticles are elaborated. Overall, there is still significant room for development in macrophage-mediated immune modulation and macrophage-mediated drug delivery, which will further enhance current tumor therapies against various malignant solid tumors, including drug-resistant tumors and metastatic tumors.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Huimin Yao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Zhongliang Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Pengbo Ning
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
69
|
Improving safety of cancer immunotherapy via delivery technology. Biomaterials 2020; 265:120407. [PMID: 32992118 DOI: 10.1016/j.biomaterials.2020.120407] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Breakthroughs in molecular mechanisms underlying immune-suppressive tumor microenvironment and paradigm shifts in the cancer-immunity response cycle have profoundly changed the landscape of cancer immunotherapy. However, one of the challenges is to mitigate the serious side effects caused by systemic autoimmunity and autoinflammatory responses following immunotherapy. Thus, restraining the activation of the immune system in healthy tissues is highly desirable to address this problem. Bioengineering and delivery technologies provide a solution to the issue. In this Review, we first introduce immune-related adverse effects of main immunotherapies and the underlying mechanisms, summarize strategies of designingde bioengineering and delivery systems to reduce their immunotoxicities, and highlight the importance of the development of immunotoxicity-related animal models.
Collapse
|
70
|
Chen M, Tan Y, Dong Z, Lu J, Han X, Jin Q, Zhu W, Shen J, Cheng L, Liu Z, Chen Q. Injectable Anti-inflammatory Nanofiber Hydrogel to Achieve Systemic Immunotherapy Post Local Administration. NANO LETTERS 2020; 20:6763-6773. [PMID: 32787149 DOI: 10.1021/acs.nanolett.0c02684] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the great promise achieved by immune checkpoint blockade (ICB) therapy in harnessing the immune system to combat different tumors, limitations such as low objective response rates and adverse effects remain to be resolved. Here, an anti-inflammatory nanofiber hydrogel self-assembled by steroid drugs is developed for local delivery of antiprogrammed cell death protein ligand 1 (αPDL1). Interestingly, on the one hand this carrier-free system based on steroid drugs can reprogram the pro-tumoral immunosuppressive tumor microenvironment (TME) to antitumoral TME; on the other hand, it would serve as a reservoir for sustained release of αPDL1 so as to synergistically boost the immune system. By local injection of such αPDL1-loaded hydrogel, effective therapeutic effects were observed in inhibiting both local tumors and abscopal tumors without any treatment. This work presents a unique hydrogel-based delivery system using clinically approved drugs, showing promise in improving the objective response rate of ICB therapy and minimizing its systemic toxicity.
Collapse
Affiliation(s)
- Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Yanjun Tan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Ziliang Dong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Jiaqi Lu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Xiao Han
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Qiutong Jin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Wenjun Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| |
Collapse
|
71
|
Abdou P, Wang Z, Chen Q, Chan A, Zhou DR, Gunadhi V, Gu Z. Advances in engineering local drug delivery systems for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1632. [PMID: 32255276 PMCID: PMC7725287 DOI: 10.1002/wnan.1632] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aims to leverage the immune system to suppress the growth of tumors and to inhibit metastasis. The recent promising clinical outcomes associated with cancer immunotherapy have prompted research and development efforts towards enhancing the efficacy of immune checkpoint blockade, cancer vaccines, cytokine therapy, and adoptive T cell therapy. Advancements in biomaterials, nanomedicine, and micro-/nano-technology have facilitated the development of enhanced local delivery systems for cancer immunotherapy, which can enhance treatment efficacy while minimizing toxicity. Furthermore, locally administered cancer therapies that combine immunotherapy with chemotherapy, radiotherapy, or phototherapy have the potential to achieve synergistic antitumor effects. Herein, the latest studies on local delivery systems for cancer immunotherapy are surveyed, with an emphasis on the therapeutic benefits associated with the design of biomaterials and nanomedicines. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Amanda Chan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Daojia R. Zhou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Vivienne Gunadhi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
72
|
Chen W, Yuan Y, Jiang X. Antibody and antibody fragments for cancer immunotherapy. J Control Release 2020; 328:395-406. [PMID: 32853733 DOI: 10.1016/j.jconrel.2020.08.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Antibody has become the most rapidly expanding class of pharmaceuticals for treating a wide variety of human diseases including cancers. Especially, with the fast development of cancer immunotherapy, antibody drugs have become the most promising therapeutic for curing cancers. Immune-mediated cell killing by antibodies including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) as well as regulation of T cell function through immune checkpoint blockade. Due to the absence of Fc fragment, antibody fragments including single-chain variable fragments (scFvs) and single-domain antibodies (sdAds) are mainly applied in chimeric antigen receptors (CAR) T cell therapy for redirecting T cells to tumors and T cell activation by immune checkpoint blockade. In this review, the cancer immunity is first discussed. Then the principal mechanisms of antibody-based immunotherapy will be reviewed. Next, the antibody and antibody fragments applied for cancer immunotherapy will be summarized. Bispecific and multispecific antibodies and a combination of cancer immunotherapy with other tumor treatments will also be mentioned. Finally, an outlook and perspective of antibody-based cancer immunotherapy will be given. This review would provide a comprehensive guidance for the researchers who are interested in and intended to involve in the antibodies- or antibody fragments-based tumor immunity.
Collapse
Affiliation(s)
- Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Yang Yuan
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
73
|
Ni K, Luo T, Culbert A, Kaufmann M, Jiang X, Lin W. Nanoscale Metal-Organic Framework Co-delivers TLR-7 Agonists and Anti-CD47 Antibodies to Modulate Macrophages and Orchestrate Cancer Immunotherapy. J Am Chem Soc 2020; 142:12579-12584. [PMID: 32658476 DOI: 10.1021/jacs.0c05039] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanoscale metal-organic frameworks (nMOFs) are excellent radiosensitizers for radiotherapy-radiodynamic therapy (RT-RDT). Herein, we report surface modification of a Hf-DBP nMOF for the co-delivery of a hydrophobic small-molecule toll-like receptor 7 agonist, imiquimod (IMD), and a hydrophilic macromolecule, anti-CD47 antibody (αCD47), for macrophage modulation and reversal of immunosuppression in tumors. IMD repolarizes immunosuppressive M2 macrophages to immunostimulatory M1 macrophages, while αCD47 blocks CD47 tumor cell surface marker to promote phagocytosis. Upon X-ray irradiation, IMD@Hf-DBP/αCD47 effectively modulates the immunosuppressive tumor microenvironment and activates innate immunity to orchestrate adaptive immunity when synergized with an anti-PD-L1 immune checkpoint inhibitor, leading to complete eradication of both primary and distant tumors on a bilateral colorectal tumor model. nMOFs thus provide a unique platform to co-deliver multiple immunoadjuvants for macrophage therapy to induce systematic immune responses and superb antitumor efficacy.
Collapse
|
74
|
Wu M, Zheng D, Zhang D, Yu P, Peng L, Chen F, Lin Z, Cai Z, Li J, Wei Z, Lin X, Liu J, Liu X. Converting Immune Cold into Hot by Biosynthetic Functional Vesicles to Boost Systematic Antitumor Immunity. iScience 2020; 23:101341. [PMID: 32683314 PMCID: PMC7371908 DOI: 10.1016/j.isci.2020.101341] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023] Open
Abstract
Immune cold tumor characterized by low immunogenicity, insufficient and exhausted tumor-infiltrating lymphocytes, and immunosuppressive microenvironment is the main bottleneck responsible for low patient response rate of immune checkpoint blockade. Here, we developed biosynthetic functional vesicles (BFVs) to convert immune cold into hot through overcoming hypoxia, inducing immunogenic cell death, and immune checkpoint inhibition. The BFVs present PD1 and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the surface, whereas load catalase into their inner core. The TRAIL can specifically induce immunogenic death of cancer cells to initiate immune response, which is further synergistically strengthened by blocking PD1/PDL1 checkpoint signal through ectogenic PD1 proteins on BFVs. The catalase can produce O2 to overcome tumor hypoxia, in turn to increase infiltration of effector T cells while deplete immunosuppressive cells in tumor. The BFVs elicit robust and systematic antitumor immunity, as demonstrated by significant regression of tumor growth, prevention of abscopal tumors, and excellent inhibition of lung metastasis. BFVs integrated PD1, TRAIL, and Catalase to convert immune cold tumor into hot TRAIL induces cancer cell immunogenic death, ectogenic PD1 blocks checkpoint signal Catalase reduces TME hypoxia to enhance effector T cell infiltration and activation BFVs boost systematic antitumor immunity and achieve long-term immune memory
Collapse
Affiliation(s)
- Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Dongye Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Peiwen Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Lianli Peng
- College of Engineering and Computer Science, The Australian National University, Canberra 2601, Australia
| | - Feng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Ziguo Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jiong Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, P. R. China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, P. R. China.
| |
Collapse
|
75
|
Khatua C, Min S, Jung HJ, Shin JE, Li N, Jun I, Liu HW, Bae G, Choi H, Ko MJ, Jeon YS, Kim YJ, Lee J, Ko M, Shim G, Shin H, Lee S, Chung S, Kim YK, Song JJ, Dravid VP, Kang H. In Situ Magnetic Control of Macroscale Nanoligand Density Regulates the Adhesion and Differentiation of Stem Cells. NANO LETTERS 2020; 20:4188-4196. [PMID: 32406688 DOI: 10.1021/acs.nanolett.0c00559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing materials with remote controllability of macroscale ligand presentation can mimic extracellular matrix (ECM) remodeling to regulate cellular adhesion in vivo. Herein, we designed charged mobile nanoligands with superparamagnetic nanomaterials amine-functionalized and conjugated with polyethylene glycol linker and negatively charged RGD ligand. We coupled negatively a charged nanoligand to a positively charged substrate by optimizing electrostatic interactions to allow reversible planar movement. We demonstrate the imaging of both macroscale and in situ nanoscale nanoligand movement by magnetically attracting charged nanoligand to manipulate macroscale ligand density. We show that in situ magnetic control of attracting charged nanoligand facilitates stem cell adhesion, both in vitro and in vivo, with reversible control. Furthermore, we unravel that in situ magnetic attraction of charged nanoligand stimulates mechanosensing-mediated differentiation of stem cells. This remote controllability of ECM-mimicking reversible ligand variations is promising for regulating diverse reparative cellular processes in vivo.
Collapse
Affiliation(s)
- Chandra Khatua
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeong Eun Shin
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Na Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Indong Jun
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hui-Wen Liu
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyojun Choi
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yoo Sang Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yu Jin Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Joonbum Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minji Ko
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gyubo Shim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hongchul Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sangbum Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seok Chung
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
76
|
Bai S, Yang LL, Wang Y, Zhang T, Fu L, Yang S, Wan S, Wang S, Jia D, Li B, Xue P, Kang Y, Sun ZJ, Xu Z. Prodrug-Based Versatile Nanomedicine for Enhancing Cancer Immunotherapy by Increasing Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000214. [PMID: 32309900 DOI: 10.1002/smll.202000214] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 05/23/2023]
Abstract
Nanoparticle-based tumor immunotherapy has emerged to show great potential for simultaneously regulating the immunosuppressive tumor microenvironment, reducing the unpleasant side effects, and activating tumor immunity. Herein, an excipient-free glutathione/pH dual-responsive prodrug nanoplatform is reported for immunotherapy, simply by sequentially liberating 5-aminolevulinic acid and immunogenically inducing doxorubicin drug molecules, which can leverage the acidity and reverse tumor microenvironment. The obtained nanoplatform effectively boosts the immune system by promoting dendritic cell maturation and reducing the number of immune suppressive immune cells, which shows the enhanced adjunctive effect of anti-programmed cell death protein 1 therapy. Overall, the prodrug-based immunotherapy nanoplatform may offer a reliable strategy for improving synergistic antitumor efficacy.
Collapse
Affiliation(s)
- Shuang Bai
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Yajun Wang
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Lvqin Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Shaochen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Shucheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Die Jia
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Peng Xue
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
77
|
Yang J, Zhang C. Regulation of cancer‐immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1612. [PMID: 32114718 DOI: 10.1002/wnan.1612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jingxing Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated 6th Hospital, School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
| | - Chunfu Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated 6th Hospital, School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
78
|
Recent advances in physiologically based pharmacokinetic and pharmacodynamic models for anticancer nanomedicines. Arch Pharm Res 2020; 43:80-99. [PMID: 31975317 DOI: 10.1007/s12272-020-01209-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) have distinct pharmacokinetic (PK) properties and can potentially improve the absorption, distribution, metabolism, and elimination (ADME) of small-molecule drugs loaded therein. Owing to the unwanted toxicities of anticancer agents in healthy organs and tissues, their precise delivery to the tumor is an essential requirement. There have been numerous advancements in the development of nanomedicines for cancer therapy. Physiologically based PK (PBPK) models serve as excellent tools for describing and predicting the ADME properties and the efficacy and toxicity of drugs, in combination with pharmacodynamic (PD) models. The recent preliminary application of these modeling approaches to NPs demonstrated their potential benefits in research and development processes relevant to the ADME and pharmacodynamics of NPs and nanomedicines. Here, we comprehensively review the pharmacokinetics of NPs, the developed PBPK models for anticancer NPs, and the developed PD model for anticancer agents.
Collapse
|
79
|
Han S, Huang K, Gu Z, Wu J. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. NANOSCALE 2020; 12:413-436. [PMID: 31829394 DOI: 10.1039/c9nr08086d] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The past years have witnessed promising clinical feedback for anti-cancer immunotherapies, which have become one of the hot research topics; however, they are limited by poor delivery kinetics, narrow patient response profiles, and systemic side effects. To the best of our knowledge, the development of cancer is highly associated with the immune system, especially the tumor immune microenvironment (TIME). Based on the comprehensive understanding of the complexity and diversity of TIME, drug delivery strategies focused on the modulation of TIME can be of great significance for directing and improving cancer immunotherapy. This review highlights the TIME modulation in cancer immunotherapy and summarizes the versatile TIME modulation-based cancer immunotherapeutic strategies, medicative principles and accessory biotechniques for further clinical transformation. Remarkably, the recent advances of cancer immunotherapeutic drug delivery systems and future prospects of TIME modulation-based drug delivery systems for much more controlled and precise cancer immunotherapy will be emphatically discussed.
Collapse
Affiliation(s)
- Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China.
| | | | | | | |
Collapse
|
80
|
Zhang C, Pu K. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem Soc Rev 2020; 49:4234-4253. [DOI: 10.1039/c9cs00773c] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the development of activatable immunotherapeutic nanoagents that activate antitumor immunity only in response to internal or external stimuli, which potentially enhance patient response rates while reducing immune-related adverse events during cancer immunotherapy.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|
81
|
Fang H, Chen J, Lin L, Liu F, Tian H, Chen X. A Strategy of Killing Three Birds with One Stone for Cancer Therapy through Regulating the Tumor Microenvironment by H 2O 2-Responsive Gene Delivery System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47785-47797. [PMID: 31773940 DOI: 10.1021/acsami.9b18144] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Constructing an efficient in vivo gene delivery system has always been extremely challenging. Herein, a highly efficient H2O2-responsive in vivo polycationic gene delivery system is developed for the first time. The efficient vector PLL-RT (i.e., polylysine grafted with p-tosyl-l-arginine) is used to mediate plasmid DNA (pDNA) delivery, and H2O2-responsive thioketal dipropanedioic acid-modified dextran (TDPAD) is used as a shielding system for effectively coating vector/pDNA polyplexes. The constructed gene delivery system exhibits a prolonged circulatory half-life in vivo and accelerates the accumulation of vector/DNA polyplexes in tumor tissue by the enhanced permeability and retention (EPR) effect. Moreover, this gene delivery system exhibits highly efficient and synergistic antitumor effects through a strategy of killing three birds with one stone. First, upon the arrival of TDPAD/PLL-RT/pDNA [abbreviated as T(PD)] at the tumor site by the EPR effect, TDPAD reacts with excess H2O2 in tumor tissue, contributing to the detachment of TDPAD, and PLL-RT then mediates the enhanced endocytosis of pDNA encoding shVEGF and significantly downregulates the expression of vascular endothelial growth factor (VEGF) in tumor tissue, exhibiting an outstanding antitumor effect. Second, the H2O2 consumption by TDPAD significantly decreases the H2O2 level in tumor tissue, which synergistically suppresses tumor growth. Third, small-molecule product mercaptopropionic acid, generated by the reaction of TDPAD with H2O2, can induce cancer cell apoptosis and exert pronounced antitumor efficacy. This polycationic gene delivery system shows negligible toxicity in vitro and in vivo. This strategy provides an ideal platform for constructing an efficient in vivo gene delivery system and has bright prospects for cancer therapy.
Collapse
Affiliation(s)
- Huapan Fang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Feng Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| |
Collapse
|
82
|
Nie W, Wu G, Zhang J, Huang L, Ding J, Jiang A, Zhang Y, Liu Y, Li J, Pu K, Xie H. Responsive Exosome Nano‐bioconjugates for Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912524] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Weidong Nie
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Guanghao Wu
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jinfeng Zhang
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Li‐Li Huang
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jingjing Ding
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Anqi Jiang
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yahui Zhang
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yanhong Liu
- Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingchao Li
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Hai‐Yan Xie
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
83
|
Nie W, Wu G, Zhang J, Huang LL, Ding J, Jiang A, Zhang Y, Liu Y, Li J, Pu K, Xie HY. Responsive Exosome Nano-bioconjugates for Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2019; 59:2018-2022. [PMID: 31746532 DOI: 10.1002/anie.201912524] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Indexed: 12/28/2022]
Abstract
Exosomes hold great potential in therapeutic development. However, native exosomes usually induce insufficient effects in vivo and simply act as drug delivery vehicles. Herein, we synthesize responsive exosome nano-bioconjugates for cancer therapy. Azide-modified exosomes derived from M1 macrophages are conjugated with dibenzocyclooctyne-modified antibodies of CD47 and SIRPα (aCD47 and aSIRPα) through pH-sensitive linkers. After systemic administration, the nano-bioconjugates can actively target tumors through the specific recognition between aCD47 and CD47 on the tumor cell surface. In the acidic tumor microenvironment, the benzoic-imine bonds of the nano-bioconjugates are cleaved to release aSIRPα and aCD47 that can, respectively, block SIRPα on macrophages and CD47, leading to abolished "don't eat me" signaling and improved phagocytosis of macrophages. Meanwhile, the native M1 exosomes effectively reprogram the macrophages from pro-tumoral M2 to anti-tumoral M1.
Collapse
Affiliation(s)
- Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guanghao Wu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li-Li Huang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jingjing Ding
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Anqi Jiang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yahui Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|