51
|
Skwierawska AM, Nowacka D, Nowicka P, Rosa S, Kozłowska-Tylingo K. Structural Adaptive, Self-Separating Material for Removing Ibuprofen from Waters and Sewage. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7697. [PMID: 34947291 PMCID: PMC8709425 DOI: 10.3390/ma14247697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
β-Cyclodextrin nanosponge (β-CD-M) was used for the adsorption of ibuprofen (IBU) from water and sewage. The obtained material was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), Harkins and Jura t-Plot, zeta potential, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elementary analysis (EA). Batch adsorption experiments were employed to investigate the effects of the adsorbent dose, initial IBU concentration, contact time, electrolyte ions and humic acids, and sewage over adsorption efficiency. The experimental isotherms were show off using Langmuir, Freundlich, Hill, Halsey and Sips isotherm models and thermodynamic analysis. The fits of the results were estimated according to the Sips isotherm, with a maximum adsorption capacity of 86.21 mg g-1. The experimental kinetics were studied by pseudo-first-order, pseudo-second-order, Elovich, modified Freundlich, Weber Morris, Bangham's pore diffusion, and liquid film diffusion models. The performed experiments revealed that the adsorption process fits perfectly to the pseudo-second-order model. The Elovich and Freundlich models indicate chemisorption, and the kinetic adsorption model itself is complex. The data obtained throughout the study prove that this nanosponge (NS) is extremely stable, self-separating, and adjusting to the guest structure. It also represents a potential biodegradable adsorbent for the removal IBU from wastewaters.
Collapse
Affiliation(s)
- Anna Maria Skwierawska
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Dominika Nowacka
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Paulina Nowicka
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Sandra Rosa
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Katarzyna Kozłowska-Tylingo
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
52
|
|
53
|
Wang Y, Zhang L. Designed new magnetic functional three-dimensional hierarchical flowerlike micro-nano structure of N-Co@C/NiCo-layered double oxides for highly efficient co-adsorption of multiple environmental pollutants. J Colloid Interface Sci 2021; 602:469-479. [PMID: 34139540 DOI: 10.1016/j.jcis.2021.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023]
Abstract
In order to eliminate multiple coexisting pollutants in environmental wastewater, a magnetic three-dimensional hierarchical porous flower-like N, Co-doped graphitic carbon nano-polyhedra decorated NiCo-layered double oxides (N-Co@C/NiCo-LDOs) adsorption material was synthesized, which consisted of two-dimensional LDOs nanosheets with functionalized surfaces (N, Co-doped graphitic carbon loaded on both sides of NiCo-LDOs nanosheets). The adsorption properties of N-Co@C/NiCo-LDOs for five types of typical pollutants (cationic dyes: rhodamine b, methylene blue; pesticides: ethofenprox, bifenthrin; anionic dyes: methyl orange, congo red; inorganic cations: Cr2+, Cd2+, Pb2+, Zn2+, inorganic anions: Cr2O72-, AsO33-) were investigated systematically in single and coexisting systems. Combined with the results of FTIR and zeta potential, the adsorption mechanism was discussed. By virtue of its hierarchical porous architecture and the combined effect of functionalized surfaces and LODs supporter, the as-prepared N-Co@C/NiCo-LDOs demonstrates excellent adsorption performance towards five types of typical pollutants with fast adsorption rate, high adsorption capacity and good co-adsorption performance. More importantly, the N-Co@C/NiCo-LDOs showed satisfactory removal efficiency, stability and reusability in model wastewater. The broad-spectrum, rapid, easily separable, and reusable adsorption properties make N-Co@C/NiCo-LDOs promising for highly efficient wastewater treatments. This work also provides a feasible way for the preparation of adsorption materials for the treatment of complex wastewater systems.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
54
|
Chen W, Chen P, Zhang G, Xing G, Feng Y, Yang YW, Chen L. Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chem Soc Rev 2021; 50:11684-11714. [PMID: 34491253 DOI: 10.1039/d1cs00545f] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Porous organic polymers (POPs), as a new category of advanced porous materials, have received broad research interests owing to the advantages of light-weight, robust scaffolds, high specific surface areas and good functional tailorability. According to the long-range ordering of polymer skeletons, POPs can be either crystalline or amorphous. Macrocycles with inherent cavities can serve as receptors for recognizing or capturing specific guest molecules through host-guest interactions. Incorporating macrocycles in POP skeletons affords win-win merits, e.g. hierarchical porosity and novel physicochemical properties. In this review, we focus on the recent progress associated with new architectures of macrocycle-based POPs. Herein, these macrocycles are divided into two subclasses: non-planar (crown ether, calixarene, pillararene, cyclodextrin, cyclotricatechylene, etc.) and planar (arylene-ethynylene macrocycles). We summarize the synthetic methods of each macrocyclic POP in terms of the functions of versatile building blocks. Subsequently, we discuss the performance of macrocyclic POPs in environmental remediation, gas adsorption, heterogeneous catalysis, fluorescence sensing and ionic conduction. Although considerable examples are reported, the development of macrocyclic POPs is still in its infancy. Finally, we propose the underlying challenges and opportunities of macrocycle-based POPs.
Collapse
Affiliation(s)
- Weiben Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Pei Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Guolong Xing
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Yu Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China. .,College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
55
|
Li H, Qi S, Li X, Qian Z, Chen W, Qin S. Tetrafluoroterephthalonitrile-crosslinked β-cyclodextrin polymer as a binding agent of diffusive gradients in thin-films for sampling endocrine disrupting chemicals in water. CHEMOSPHERE 2021; 280:130774. [PMID: 33971412 DOI: 10.1016/j.chemosphere.2021.130774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
β-Cyclodextrin (β-CD) is an inexpensive and reproducible material derived from corn starch. It is possible that tetrafluoroterephthalonitrile-crosslinked β-cyclodextrin polymer (TFN-CD), a cheap but efficient adsorbent, could be a suitable binding agent for use in the passive sampling technique, diffusive gradients in thin-films (DGT). Herein, the TFN-CD binding gel was prepared and then evaluated as the binding phase of DGT to sample six endocrine disrupting chemicals (EDCs) in water. The TFN-CD dispersed uniformly in the binding gel due to its hydrophilicity. The quantitative recoveries (99.3%-106%) of EDCs from the TFN-CD binding gel could be conveniently achieved by ultrasonic extraction using 5 mL methanol for 10 min. Compared with the excellent HLB (hydrophilic-lipophilic-balanced resin) binding gel, the TFN-CD binding gel had comparable or even faster adsorption kinetics, although the equilibrium adsorption capacity was slightly lower. The effective adsorption capacities of TFN-CD-based DGT (TFN-CD-DGT) were roughly estimated to enable a 7-days deployment in EDC solution of 25.7-30.0 μg L-1. Studies of influencing factors showed that the ionic strength (0-0.5 M), pH (3.73-9.13), dissolved organic matter (0-20 mg L-1) and long-term storage (204 days) had negligible influence on the performance of TFN-CD-DGT. Finally, the TFN-CD-DGT was successfully used to record sudden increases in bulk concentrations during simulated discharge events in pond water. These results demonstrate that TFN-CD is a suitable binding agent for sampling of EDCs, and the low cost of TFN-CD could be conducive to the application of DGT in large-scale sampling.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoshui Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Zhe Qian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shibin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
56
|
Tang YF, Ai SJ, Lin TP, Li YQ, Zhou R. Quaternary Ammonium Functionalized Lignosulfonate for Simultaneous Adsorption of Anionic/Cationic Dyes and Desinfection. ChemistrySelect 2021. [DOI: 10.1002/slct.202100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yu F. Tang
- School of Chemical Engineering Xiangtan University Xiangtan 411105 China
| | - Shi J. Ai
- School of Chemical Engineering Xiangtan University Xiangtan 411105 China
| | - Tian P. Lin
- School of Chemical Engineering Xiangtan University Xiangtan 411105 China
| | - Yu Q. Li
- School of Chemical Engineering Xiangtan University Xiangtan 411105 China
| | - Rong Zhou
- School of Chemical Engineering Xiangtan University Xiangtan 411105 China
| |
Collapse
|
57
|
Song X, Mensah NN, Wen Y, Zhu J, Zhang Z, Tan WS, Chen X, Li J. β-Cyclodextrin-Polyacrylamide Hydrogel for Removal of Organic Micropollutants from Water. Molecules 2021; 26:molecules26165031. [PMID: 34443616 PMCID: PMC8402003 DOI: 10.3390/molecules26165031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Water pollution by various toxic substances remains a serious environmental problem, especially the occurrence of organic micropollutants including endocrine disruptors, pharmaceutical pollutants and naphthol pollutants. Adsorption process has been an effective method for pollutant removal in wastewater treatment. However, the thermal regeneration process for the most widely used activated carbon is costly and energy-consuming. Therefore, there has been an increasing need to develop alternative low-cost and effective adsorption materials for pollutant removal. Herein, β-cyclodextrin (β-CD), a cheap and versatile material, was modified with methacrylate groups by reacting with methacryloyl chloride, giving an average degree of substitution of 3 per β-CD molecule. β-CD-methacrylate, which could function as a crosslinker, was then copolymerized with acrylamide monomer via free-radical copolymerization to form β-CD-polyacrylamide (β-CD-PAAm) hydrogel. Interestingly, in the structure of the β-CD-PAAm hydrogel, β-CD is not only a functional unit binding pollutant molecules through inclusion complexation, but also a structural unit crosslinking PAAm leading to the formation of the hydrogel 3D networks. Morphological studies showed that β-CD-PAAm gel had larger pore size than the control PAAm gel, which was synthesized using conventional crosslinker instead of β-CD-methacrylate. This was consistent with the higher swelling ratio of β-CD-PAAm gel than that of PAAm gel (29.4 vs. 12.7). In the kinetic adsorption studies, phenolphthalein, a model dye, and bisphenol A, propranolol hydrochloride, and 2-naphthol were used as model pollutants from different classes. The adsorption data for β-CD-PAAm gel fitted well into the pseudo-second-order model. In addition, the thermodynamic studies revealed that β-CD-PAAm gel was able to effectively adsorb the different dye and pollutants at various concentrations, while the control PAAm gel had very low adsorption, confirming that the pollutant removal was due to the inclusion complexation between β-CD units and pollutant molecules. The adsorption isotherms of the different dye and pollutants by the β-CD-PAAm gel fitted well into the Langmuir model. Furthermore, the β-CD-PAAm gel could be easily recycled by soaking in methanol and reused without compromising its performance for five consecutive adsorption/desorption cycles. Therefore, the β-CD-PAAm gel, which combines the advantage of an easy-to-handle hydrogel platform and the effectiveness of adsorption by β-CD units, could be a promising pollutant removal system for wastewater treatment applications.
Collapse
Affiliation(s)
- Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
| | - Nana Nyarko Mensah
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore; (W.S.T.); (X.C.)
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
| | - Jingling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
| | - Zhongxing Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
| | - Wui Siew Tan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore; (W.S.T.); (X.C.)
| | - Xinwei Chen
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore; (W.S.T.); (X.C.)
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
- Correspondence: ; Tel.: +65-6516-7273
| |
Collapse
|
58
|
Wang T, Xue L, Zheng L, Bao S, Liu Y, Fang T, Xing B. Biomass-derived N/S dual-doped hierarchically porous carbon material as effective adsorbent for the removal of bisphenol F and bisphenol S. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126126. [PMID: 34492920 DOI: 10.1016/j.jhazmat.2021.126126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Biomass-derived heteroatom-doped porous carbon-based materials are emerging as low-cost adsorbents for removing common pollutants, although the adsorption performance is still unsatisfactory and the main adsorption mechanisms are still controversial. Herein, we report a facile and general method for fabricating biomass-derived N/S dual-doped hierarchically porous carbon adsorbent (MZ-NSPC). The MZ-NSPC material exhibits excellent adsorption capacity (295.8 mg/g for bisphenol F (BPF), 308.7 mg/g for bisphenol S (BPS)), short equilibrium time (30 min), and good reusability (the decline efficiency < 6.15% after five times). The remarkable adsorption performance originates from a large BET surface area, hierarchically porous structure, and N/S heteroatoms dual-doping. Combined with comparative experiments and density functional theory (DFT) calculations, we revealed that the doped N, S heteroatoms played a synergistic effect which promoted the adsorption performance and adsorption sites are mainly the oxidized-S and pyridinic-N. Importantly, for BPF, the proportion contribution of different mechanisms followed the order of hydrophobic interaction > π-π interaction > hydrogen bonding interaction. However, adsorption mechanism of BPS was mainly controlled by π-π interaction. This work not only promotes the development of low-cost and sustainable heteroatom-doped carbon-based materials, but also systematically studies adsorption mechanism of heteroatom-doped carbon-based materials for bisphenols.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Xue
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lewen Zheng
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
59
|
Fang L, Ding L, Ren W, Hu H, Huang Y, Shao P, Yang L, Shi H, Ren Z, Han K, Luo X. High exposure effect of the adsorption site significantly enhanced the adsorption capacity and removal rate: A case of adsorption of hexavalent chromium by quaternary ammonium polymers (QAPs). JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125829. [PMID: 34492790 DOI: 10.1016/j.jhazmat.2021.125829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
Enhancing the performance of adsorbents to the utmost extent is an objective but challenging in applying adsorption technology to wastewater treatment. In this work, novel quaternary ammonium polymers (QAPs) with high density adsorption site (i.e., quaternized N, confirmed by FT-IR results) were designed and prepared for rapid selective removal of Cr(VI) from water. The results of EDS analysis indicated the maximum exposure rate of N on the surface of QAPs was as high as 86.1%, which almost doubled comparing to that of Cr(VI) ions imprinted polymers (Cr(VI)-IIP) (46.2%). Interestingly, the maximum adsorption capacity (211.8 mg/g) and initial adsorption rate (h0, 66.6 mg/ (g·min)) of QAPs (i.e., 5:1(TRIM)) for Cr(VI) are about 3.6 times and 4.9 times those of Cr(VI)-IIP (63.0 mg/g and 13.5 mg/(g·min)), respectively. Impressively, flow-through adsorption experiments demonstrated 5:1(TRIM) can completely remove 5 mg/L of Cr(VI) within five seconds. Additionally, 5:1(TRIM) exhibited a remarkable selectivity for Cr(VI) adsorption, and high purity (100%) of chromium can be readily obtained. The proposed idea of high exposure effect of the adsorption site can provide a valuable guidance for designing rapid selective adsorbents to remove and reclaim Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Lili Fang
- College of Chemistry, Nanchang University, Nanchang 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huiqin Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yong Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhong Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Keke Han
- College of Chemistry, Nanchang University, Nanchang 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- College of Chemistry, Nanchang University, Nanchang 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
60
|
Waheed A, Baig N, Ullah N, Falath W. Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112360. [PMID: 33752053 DOI: 10.1016/j.jenvman.2021.112360] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/14/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Water quality plays a central role in the well-being of all the living organisms on planet Earth. The ever-increasing human population and consequently increasing industrialization, urbanization, and chemically boosted cultivation are rapidly contaminating already stressed water resources. The availability of clean drinking water has become scarce for masses across the globe, and this situation is becoming alarming in developing countries. Therefore, the immediate need for cost-effective, easily accessible, eco-friendly, portable, thermally efficient, and chemically stable technologies and materials is desperately felt to meet the high global demand for clean water. To search for effective materials for wastewater treatment, the hyper-cross-linked porous polymers (HCPs) have emerged as an excellent class of porous materials for wastewater treatment due to their unique features of high surface area, tunability, biodegradability, and chemical versatility. This review describes the advances in fabrication strategies and the efficient utilization of hyper-cross-linked porous polymers for wastewater treatment. Moreover, this review specifically discusses the hyper-cross-linked porous polymers effectiveness for the separation of the dyes, nutrients, inorganic ions, organic contaminants, and toxic metals ions. Finally, the review provides insight into the challenges and prospects in the area of hyper-cross-linked porous polymers. Overall, the hyper-cross-linked porous polymers with empowering proper functionalization can provide an opportunity for the wastewater treatment not only to remove toxic contaminants but also to make contaminated water useful for various applications.
Collapse
Affiliation(s)
- Abdul Waheed
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security.
| | - Nadeem Baig
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security.
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Wail Falath
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
61
|
Li F, Wang M, Zhou J, Yang M, Wang T. Cyclodextrin-derivatized hybrid nanocomposites as novel magnetic solid-phase extraction adsorbent for preconcentration of trace fluoroquinolones from water samples coupled with HPLC-MS/MS determination. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
62
|
Guo YZ, Gao F, Wang Z, Liu YA, Hu WB, Yang H, Wen K. Highly Branched Pillar[5]arene-Derived Porous Aromatic Frameworks (PAFs) for Removal of Organic Pollutants from Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16507-16515. [PMID: 33784811 DOI: 10.1021/acsami.1c02583] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The adsorption process is widely used for the treatment of wastewater containing organic pollutants. We fabricated highly branched pillar[5]arene-based porous aromatic frameworks (PAFs), PAF-P5, for the adsorption and removal of organic pollutants (short-chain alkyl derivatives 1-3 and pesticide molecules 4-6) from water with high removal efficiency (RE). However, PAF-P5 was incapable of adsorbing aromatic organic dyes 7-9. Adsorption kinetic studies indicated that the adsorption is mainly driven by strong host-guest interactions between 1-3 and the pillar[5]arene units in PAF-P5, while 4-6 only weakly interacted with the pillar[5]arene units in PAF-P5. Moreover, chemically breaking down the pillar[5]arene rings in PAF-P5 caused changes in the pore size, the microenvironment inside of the pores, and the frame morphology, and the resultant frameworks, PAF-DeP5, exhibited poor adsorption toward 1-6 but adsorbed 7-9 possibly through physical adsorption as implied by fitting the experimental data into the adsorption kinetic models.
Collapse
Affiliation(s)
- Yun-Zhe Guo
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Gao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Zhuo Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yahu A Liu
- Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, California 92127, United States
| | - Wei-Bo Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Wen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
63
|
Skorjanc T, Shetty D, Trabolsi A. Pollutant removal with organic macrocycle-based covalent organic polymers and frameworks. Chem 2021. [DOI: 10.1016/j.chempr.2021.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
64
|
Wang T, Cheng Z, Liu Y, Tang W, Fang T, Xing B. Mechanistic understanding of highly selective adsorption of bisphenols on microporous-dominated nitrogen-doped framework carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143115. [PMID: 33127136 DOI: 10.1016/j.scitotenv.2020.143115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Producing a desirable adsorbent for removing endocrine disrupting compounds (EDCs) from aqueous solutions remains a major challenge. In this work, microporous-dominated nitrogen-doped framework carbons (MNFCs, s means the calcination temperature) with high specific surface area, ultra-microporous structure, and high nitrogen-doping can be obtained by a direct calcination of ethylene diamine tetraacetic acid tetrasodium (EDTA-4Na) without aid of any catalyst and nitrogen source. MNFCs were applied adsorbents to remove bisphenols from aqueous solution. Batch experiments showed MNFC-750 had a large adsorption capacity for bisphenols from aqueous solutions (409 mg/g for bisphenol A, 364 mg/g for bisphenol F, and 521 mg/g for bisphenol S) along with short equilibrium time (30 min), and good stability and reusability. Using multiple characterizations and comparative experiments along with theoretical calculations, we discovered that: (1) nitrogen-doping can significantly boost the adsorption capacity; (2) adsorption sites are mainly the pyridinic-N instead of pyrrolic-N and graphitic-N; and (3) the adsorption mechanisms were mainly driven by Lewis acid-base interaction, hydrophobic interaction, π-π interaction and hydrogen bond interaction. These findings indicate that MNFCs present a promising potential for practical applications and shed light on the rational design of nitrogen doped carbon-based adsorbents for efficient pollutant removal.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Cheng
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
65
|
Sun Y, Yu Y, Zheng X, Chen A, Zheng H. Magnetic flocculation of Cu(II) wastewater by chitosan-based magnetic composite flocculants with recyclable properties. Carbohydr Polym 2021; 261:117891. [PMID: 33766376 DOI: 10.1016/j.carbpol.2021.117891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
In this study, three magnetic flocculants, namely, MC, MC-g-PAM, and MC-g-PAA, were prepared. The structure characteristics, flocculation performance, and floc characteristics of the three magnetic flocculants were systematically studied and compared. SEM, FT-IR, XPS, XRD, TG-DSC, and VSM characterization results show that MC, MC-g-PAM, and MC-g-PAA are successfully prepared and exhibit good magnetic induction. The removal rates of copper ions by MC, MC-g-PAM, and MC-g-PAA under the optimal coagulation conditions are 93.39 %, 88.64 %, and 61.41 %, respectively. Kinetic fitting shows that the flocculation reaction process of MC and MC-g-PAM conforms to pseudo first-order kinetics, while the flocculation reaction process of MC-g-PAA conforms to pseudo second-order kinetics. The flocs produced by MC-g-PAA have larger particle size and fractal dimension than those by MC and MC-g-PAM. At 80 mg/L dosage and pH 6, the floc size and floc fractal dimension obtained by MC-g-PAA reach the maximum values of 48.28 um and 1.468, respectively. Zeta potential studies show that the flocculation functions of the three flocculants are mainly adsorption bridging, adsorption electric neutralization, and chelating precipitation. Recycling experiments show that MC-g-PAA has good recyclability, and the recovery rate after the fifth use is 77.24 % with the Cu(II) removal rate of 67.53 %.
Collapse
Affiliation(s)
- Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China.
| | - Yuanyuan Yu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China
| | - Xing Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Aowen Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China
| | - Huaili Zheng
- College of Environemnt and Ecology, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
66
|
Saifi A, Joseph JP, Singh AP, Pal A, Kumar K. Complexation of an Azo Dye by Cyclodextrins: A Potential Strategy for Water Purification. ACS OMEGA 2021; 6:4776-4782. [PMID: 33644585 PMCID: PMC7905815 DOI: 10.1021/acsomega.0c05684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The chemistry of the host-guest complex formation has received much attention as a highly efficient approach for use to develop economical adsorbents for water purification. In the present study, the synthesis of three β-cyclodextrin (β-CD) inclusion complexes with the oil orange SS (OOSS) azo dye as a guest molecule and their potential applications in water purification are described. The complexes were synthesized by the coprecipitation method and characterized by Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). FTIR and thermal analyses confirmed the encapsulation of OOSS dye within the hydrophobic cavity of β-CD. The encapsulation of hydrophobic dye inside the β-CD cavity was mainly due to the hydrophobic-hydrophobic interaction. The results showed that the stability of the OOSS dye had been improved after the complexation. The effect of three different compositions of the host-guest complexes was analyzed. The present study demonstrated that the hydrophobic dye could be removed from aqueous solution via inclusion complex formation. Thus, it can play a significant role in removing the highly toxic OOSS dye from the industrial effluent.
Collapse
Affiliation(s)
- Anas Saifi
- CSIR-Central
Scientific Instruments Organisation, Sector 30, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jojo P. Joseph
- Institute
of Nano Science and Technology, Sector 64, Mohali 160062, Punjab, India
| | - Atul Pratap Singh
- Department
of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Asish Pal
- Institute
of Nano Science and Technology, Sector 64, Mohali 160062, Punjab, India
| | - Kamlesh Kumar
- CSIR-Central
Scientific Instruments Organisation, Sector 30, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
67
|
Wang X, Xie L, Lin K, Ma W, Zhao T, Ji X, Alyami M, Khashab NM, Wang H, Sessler JL. Calix[4]pyrrole‐Crosslinked Porous Polymeric Networks for the Removal of Micropollutants from Water. Angew Chem Int Ed Engl 2021; 60:7188-7196. [DOI: 10.1002/anie.202016364] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaohua Wang
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
| | - Linhuang Xie
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
| | - Kunhua Lin
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
| | - Weibin Ma
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
| | - Tian Zhao
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Mram Alyami
- Smart Hybrid Materials Laboratory Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Hongyu Wang
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
| | - Jonathan L. Sessler
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| |
Collapse
|
68
|
Wang X, Xie L, Lin K, Ma W, Zhao T, Ji X, Alyami M, Khashab NM, Wang H, Sessler JL. Calix[4]pyrrole‐Crosslinked Porous Polymeric Networks for the Removal of Micropollutants from Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaohua Wang
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
| | - Linhuang Xie
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
| | - Kunhua Lin
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
| | - Weibin Ma
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
| | - Tian Zhao
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Mram Alyami
- Smart Hybrid Materials Laboratory Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Hongyu Wang
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
| | - Jonathan L. Sessler
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University 99 Shangda Road Shanghai 200444 China
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| |
Collapse
|
69
|
Zhang W, Sun P, Liu D, Zhao Q, Zou B, Zhou L, Ye Z. Method to fabricate porous multifunction β-cyclodextrin modified resin for ultrafast and efficient removal of Cu(II) and bisphenol A. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
70
|
Sher F, Hanif K, Rafey A, Khalid U, Zafar A, Ameen M, Lima EC. Removal of micropollutants from municipal wastewater using different types of activated carbons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111302. [PMID: 33152547 DOI: 10.1016/j.jenvman.2020.111302] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The water reservoirs are getting polluted due to increasing amounts of micropollutants such as pharmaceuticals, organic polymers and suspended solids. Powdered activated carbon (PAC) has been proved to be a promising solution for the purification of water without having harmful impacts on the environment. Parameters such as PAC dosing, wastewater hardness, the effect of coagulant and flocculant were evaluated in a batch scale study. These parameters were further applied on a pilot plant scale for the performance evaluation of PAC based removal of micropollutants concerning the contact time and PAC dosing with main focus on recirculation of PAC sludge. The obtained optimum dose was 10-20 mg/L providing 84.40-91.30% removal efficiency of suspended solid micropollutants (MPs) and this efficiency increased to 88.90-93.00% along with coagulant which further raised by the addition of polymer and recirculation process at batch scale. On pilot plant scale, the concentration in contact reactor and PAC removal effectiveness of dissolved air flotation, lamella separator and sedimentation tank were compared. Constant optimisation resulted in a concentration ranging from 2.70 to 3.40 g/L at dosing of PAC 10 mg/L, coagulant 2.00 mg/L and polymer 0.50 mg/L. PAC doses of 10-20 mg/L with 15-30 min contact time proved best for above 70-80% elimination. The recirculation system has also proved an efficient technique because the PAC's adsorption capacity was practically completely used. Small PAC dosages yielded high micropollutants elimination.
Collapse
Affiliation(s)
- Farooq Sher
- School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry CV1 5FB, UK.
| | - Kashif Hanif
- School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry CV1 5FB, UK
| | - Abdul Rafey
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Ushna Khalid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ayesha Zafar
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mariam Ameen
- HiCoE, Center for Biofuels and Biochemical Research (CBBR), Institute of Sustainable Buildings (ISB), Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31620, Tronoh, Perak, Malaysia
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, P.O. Box 15003, ZIP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
71
|
Tian B, Hua S, Tian Y, Liu J. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1317-1340. [PMID: 33079345 DOI: 10.1007/s11356-020-11168-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Water is a vital substance that constitutes biological structures and sustains life. However, water pollution is currently among the major environmental challenges and has attracted increasing study attention. How to handle contaminated water now mainly focuses on removing or reducing the pollutants from the wastewater. Cyclodextrin derivatives, possessing external hydrophilic and internal hydrophobic properties, have been recognized as new-generation adsorbents to exert positive effects on water pollution treatment. This article outlines recent contributions of cyclodextrin-based adsorbents on wastewater treatment, highlighting different adsorption mechanisms of cyclodextrin-based adsorbents under different influencing factors. The crosslinked and immobilized cyclodextrin-based adsorbents all displayed outstanding adsorption capacities. Particularly, according to specific pollutants including metal ions, organic chemicals, pesticides, and drugs in wastewater, this article has classified and organized various cyclodextrin-based adsorbents into tables, which could pave an intuitive shortcut for designing and developing efficient cyclodextrin-based adsorbents for targeted wastewater pollutants. Besides, this article specially discusses cost-effectiveness and regeneration performance of current cyclodextrin-based adsorbents. Finally, the challenges and future directions of cyclodextrin-based adsorbents are prospected in this article, which may shed substantial light on practical industrial applications of cyclodextrin-based adsorbents.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi, 830046, China.
| | - Shiyao Hua
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu Tian
- School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Jiayue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
72
|
Sun W, Zhou S, Sun Y, Xu Y. Synthesis and evaluation of cationic flocculant P(DAC-PAPTAC-AM) for flocculation of coal chemical wastewater. J Environ Sci (China) 2021; 99:239-248. [PMID: 33183701 DOI: 10.1016/j.jes.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
In this study, a high-efficiency cationic flocculant, P(DAC-MAPTAC-AM), was successfully prepared using UV-induced polymerization technology. The monomer Acrylamide (AM): Acryloxyethyl Trimethyl ammonium chloride (DAC): methacrylamido propyl trimethyl ammonium chloride (MAPTAC) ratio, monomer concentration, photoinitiator concentration, urea content, and cationic monomer DAC:MAPTAC ratio, light time, and power of high-pressure mercury lamp were studied. The characteristic groups, characteristic diffraction peaks, and characteristic proton peaks of P(DAC-MAPTAC-AM) were confirmed by fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), 1H nuclear magnetic resonance spectrometer (1H NMR), and scanning electron microscopy (SEM). The effects of dosage, pH value, and velocity gradient (G) value on the removal efficiencies of turbidity, COD, ammonia nitrogen, and total phenol by poly aluminum ferric chloride (PAFC), P(DAC-MAPTAC-AM), and PAFC/P(DAC-MAPTAC-AM) in the flocculation treatment of coal chemical wastewater were investigated. Results showed that the optimal conditions for the flocculation of coal chemical wastewater using P(DAC-MAPTAC-AM) alone are as follows: dosage of 8-12 mg/L, G value of 100-250 s - 1, and pH value of 4-8. The optimal dosage of PAFC is 90-150 mg/L with a pH of 2-12. The optimal dosage for PAFC/P(DAC-MAPTAC-AM) is as follows: PAFC dosage of 90-150 mg/L, P(DAC-MAPTAC-AM) dosage of 8-12 mg/L, and pH range of 2-6. When P(DAC-MAPTAC-AM) was used alone, the optimal removal efficiencies of turbidity, COD, ammonia nitrogen, and total phenol were 81.0%, 35.0%, 75.0%, and 80.3%, respectively. PAFC has good tolerance to wastewater pH and good pH buffering. Thus, the flocculation treatment of coal chemical wastewater using the PAFC/P(DAC-MAPTAC-AM) compound also exhibits excellent resistance and buffering capacity.
Collapse
Affiliation(s)
- Wenquan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
| | - Shengbao Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China.
| | - Yanhua Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
73
|
Kundu S, Korin Manor N, Radian A. Iron-Montmorillonite-Cyclodextrin Composites as Recyclable Sorbent Catalysts for the Adsorption and Surface Oxidation of Organic Pollutants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52873-52887. [PMID: 33169983 DOI: 10.1021/acsami.0c17510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Iron-clay-cyclodextrin composites were designed as sorbent catalysts to adsorb and oxidize pollutants from water. The clay-iron backbone served as a mechanical support and as a heterogeneous Fenton catalyst, and the cyclodextrin monomers or polymers cross-linked with polyfluorinated aromatic molecules were used to accommodate adsorption of the pollutants. The composite based on iron-clay-cyclodextrin-polymers (Fe-MMT-βCD-DFB) exhibited superior adsorption and degradation of the model pollutants, bisphenol A (BPA), carbamazepine (CBZ), and perfluorooctanoic acid (PFOA), compared to the monomer-based composite and the native iron clay. The variety of adsorption sites, such as the polyfluorinated aromatic cross-linker, cyclodextrin toroid, and iron-clay surface, resulted in high adsorption affinity toward all pollutants; BPA was primarily adsorbed to the cyclodextrin functional groups, CBZ showed high affinity toward the Fe-MMT surface and the Fe-MMT-βCD-DFB composite, whereas PFOA was adsorbed mainly to the βCD-DFB polymer. Degradation, using H2O2, was highly efficient, reaching over 90% degradation in 1 h for BPA and CBZ and ∼80% for PFOA. The composite also showed excellent degradation efficiency in a multicomponent system with all three model pollutants. Furthermore, the composite's activity remained steady for five consecutive cycles of adsorption and degradation. The ability to remediate a broad range of pollutants, and the high overall removal exhibited by this novel material, demonstrates the potential for future application in water remediation technologies.
Collapse
Affiliation(s)
- Samapti Kundu
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Naama Korin Manor
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
74
|
Sun H, Bao S, Zhao H, Chen Y, Wang Y, Jiang C, Li P, Jason Niu Q. Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
75
|
Ji X, Wang H, Wang H, Zhao T, Page ZA, Khashab NM, Sessler JL. Removal of Organic Micropollutants from Water by Macrocycle‐Containing Covalent Polymer Networks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaofan Ji
- School of Chemistry and Chemical Engineering Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Huazhong University of Science and Technology Wuhan 430074 P.R. China
| | - Hu Wang
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| | - Hongyu Wang
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University Shangda Road Shanghai 200444 P.R. China
| | - Tian Zhao
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| | - Zachariah A. Page
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) 4700 King Abdullah University of Science and Technology Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| |
Collapse
|
76
|
Ji X, Wang H, Wang H, Zhao T, Page ZA, Khashab NM, Sessler JL. Removal of Organic Micropollutants from Water by Macrocycle‐Containing Covalent Polymer Networks. Angew Chem Int Ed Engl 2020; 59:23402-23412. [DOI: 10.1002/anie.202009113] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaofan Ji
- School of Chemistry and Chemical Engineering Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Huazhong University of Science and Technology Wuhan 430074 P.R. China
| | - Hu Wang
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| | - Hongyu Wang
- Department of Chemistry College of Science, and Center for Supramolecular Chemistry & Catalysis Shanghai University Shangda Road Shanghai 200444 P.R. China
| | - Tian Zhao
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| | - Zachariah A. Page
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) 4700 King Abdullah University of Science and Technology Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712 USA
| |
Collapse
|
77
|
Wang J, Cheng G, Lu J, Chen H, Zhou Y. PDA-cross-linked beta-cyclodextrin: a novel adsorbent for the removal of BPA and cationic dyes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:2337-2350. [PMID: 32784278 DOI: 10.2166/wst.2020.286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, 4,4'-(hexafluoroisopropene) diphthalic acid (PDA)-CD polymers containing β-cyclodextrin (CD) were synthesized for the adsorption of endocrine disrupting chemicals (EDCs) and dyes. It features great adsorption of bisphenol A (BPA), methylene blue (MB) and neutral red (NR). The maximum adsorption capacities of MB, NR and BPA can reach 113.06, 106.8 and 51.74 mg/g, respectively. The tandem adsorption results revealed that adsorptions of dyes and BPA onto PDA-CD polymer were two independent processes: non-polar BPA entrapment by cyclodextrin cavities while dyes were captured by the carboxyl groups and π-π stacking interactions. The adsorption processes performed well in a wide range of pH (4.0-10.0) and were not affected by fulvic acid (FA) and inorganic ions.
Collapse
Affiliation(s)
- Jianyu Wang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China E-mail:
| | - Guang Cheng
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China E-mail:
| | - Jian Lu
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China E-mail:
| | - Huafeng Chen
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China E-mail:
| | - Yanbo Zhou
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China E-mail: ; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|