51
|
Effects of Diatomite Contents on Microstructure, Microhardness, Bioactivity and Biocompatibility of Gradient Bioceramic Coating Prepared by Laser Cladding. METALS 2022. [DOI: 10.3390/met12060931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biometallic materials are widely used in medicine because of excellent mechanical properties. However, biometallic materials are limited in the application of biomaterials due to their lack of bioactivity. To solve this problem, a gradient bioceramic coating doped with diatomite (DE) was successfully fabricated on the surface of Ti6Al4V alloy by using the broadband-laser cladding process to improve the bioactivity of metal materials. As well as the DE contents on the microstructure, microhardness, bioactivity and biocompatibility were investigated. The experimental results demonstrate that the addition of moderate amounts of DE is effective in reducing the number of cracks. The X-ray diffraction (XRD) results reveal that the bioceramic coating doped with DE mainly consists of CaTiO3, hydroxyapatite (HA), tricalcium phosphate (TCP) and silicate, and that the amount of HA and TCP in the coating reached maximum when the bioceramic coating was doped with 10wt% DE. The bioceramic coating doped with 10wt% DE has favorable ability to deposit bone-like apatite. These results indicate that the addition of DE can improve cracking sensibility, bioactivity and biocompatibility of the coating.
Collapse
|
52
|
Tian Y, Wu D, Wu D, Cui Y, Ren G, Wang Y, Wang J, Peng C. Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Front Bioeng Biotechnol 2022; 10:899760. [PMID: 35600891 PMCID: PMC9114740 DOI: 10.3389/fbioe.2022.899760] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The treatment of infected bone defects includes infection control and repair of the bone defect. The development of biomaterials with anti-infection and osteogenic ability provides a promising strategy for the repair of infected bone defects. Owing to its antibacterial properties, chitosan (an emerging natural polymer) has been widely studied in bone tissue engineering. Moreover, it has been shown that chitosan promotes the adhesion and proliferation of osteoblast-related cells, and can serve as an ideal carrier for bone-promoting substances. In this review, the specific molecular mechanisms underlying the antibacterial effects of chitosan and its ability to promote bone repair are discussed. Furthermore, the properties of several kinds of functionalized chitosan are analyzed and compared with those of pure chitosan. The latest research on the combination of chitosan with different types of functionalized materials and biomolecules for the treatment of infected bone defects is also summarized. Finally, the current shortcomings of chitosan-based biomaterials for the treatment of infected bone defects and future research directions are discussed. This review provides a theoretical basis and advanced design strategies for the use of chitosan-based biomaterials in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Yuhang Tian
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Danhua Wu
- The People’s Hospital of Chaoyang District, Changchun, China
| | - Dankai Wu
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yutao Cui
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Guangkai Ren
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yanbing Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Chuangang Peng,
| |
Collapse
|
53
|
Ma S, Gu S, Zhang J, Qi W, Lin Z, Zhai W, Zhan J, Li Q, Cai Y, Lu Y. Robust drug bioavailability and safety for rheumatoid arthritis therapy using D-amino acids-based supramolecular hydrogels. Mater Today Bio 2022; 15:100296. [PMID: 35665233 PMCID: PMC9157599 DOI: 10.1016/j.mtbio.2022.100296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Shaodan Ma
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases, Guangzhou, 510280, China
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Shunan Gu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jinwei Zhang
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Weizhong Qi
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhaowei Lin
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Weicheng Zhai
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases, Guangzhou, 510280, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qi Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Corresponding author.
| | - Yanbin Cai
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases, Guangzhou, 510280, China
- Corresponding author.
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou, 510010, China
- Corresponding author. Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
54
|
Zheng Z, Hu L, Ge Y, Qi J, Sun Q, Li Z, Lin L, Tang B. Surface Modification of Poly(ether ether ketone) by Simple Chemical Grafting of Strontium Chondroitin Sulfate to Improve its Anti-Inflammation, Angiogenesis, Osteogenic Properties. Adv Healthc Mater 2022; 11:e2200398. [PMID: 35481900 DOI: 10.1002/adhm.202200398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Indexed: 12/19/2022]
Abstract
Besides inducing osteogenic differentiation, the surface modification of poly(ether ether ketone) (PEEK) is highly expected to improve its angiogenic activity and reduce the inflammatory response in the surrounding tissue. Herein, strontium chondroitin sulfate is first attempted to be introduced into the surface of sulfonated PEEK (SPEEK-CS@Sr) based on the Schiff base reaction between PEEK and ethylenediamine (EDA) and the amidation reaction between EDA and chondroitin sulfate (CS). The surface characteristics of SPEEK-CS@Sr implant are systematically investigated, and its biological properties in vitro and in vivo are also evaluated. The results show that the surface of SPEEK-CS@Sr implant exhibits a 3D microporous structure and good hydrophilicity, and can steadily release Sr ions. Importantly, the SPEEK-CS@Sr not only displays excellent biocompatibility, but also can remarkably promote cell adhesion and spread, improve osteogenic activity and angiogenic activity, and reduce the inflammatory response compared to the original PEEK. Therefore, this study presents the surface modification of PEEK material by simple chemical grafting of strontium chondroitin sulfate to improve its angiogenesis, anti-inflammation, and osteogenic properties, and the as-fabricated SPEEK-CS@Sr has the potential to serve as a promising orthopedic implant in bone tissue engineering.
Collapse
Affiliation(s)
- Zhe Zheng
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Liqiu Hu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Yongmei Ge
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Harbin Institute of Technology Harbin Heilongjiang P. R. China
| | - Jianchao Qi
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Department of Joint and Orthopedics Zhujiang Hospital Southern Medical University Guangzhou Guangdong P. R. China
- Department of Emergency surgery Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital Fuzhou P. R. China
| | - Qili Sun
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Zhenjian Li
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Lijun Lin
- Department of Joint and Orthopedics Zhujiang Hospital Southern Medical University Guangzhou Guangdong P. R. China
| | - Bin Tang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research Shenzhen Guangdong P. R. China
- Shenzhen Key Laboratory of Cell Microenvironment Shenzhen Guangdong P. R. China
| |
Collapse
|
55
|
Pryjmaková J, Hryhoruk M, Veselý M, Slepička P, Švorčík V, Siegel J. Engineered Cu-PEN Composites at the Nanoscale: Preparation and Characterisation. NANOMATERIALS 2022; 12:nano12071220. [PMID: 35407337 PMCID: PMC9000622 DOI: 10.3390/nano12071220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
As polymeric materials are already used in many industries, the range of their applications is constantly expanding. Therefore, their preparation procedures and the resulting properties require considerable attention. In this work, we designed the surface of polyethylene naphthalate (PEN) introducing copper nanowires. The surface of PEN was transformed into coherent ripple patterns by treatment with a KrF excimer laser. Then, Cu deposition onto nanostructured surfaces by a vacuum evaporation technique was accomplished, giving rise to nanowires. The morphology of the prepared structures was investigated by atomic force microscopy and scanning electron microscopy. Energy dispersive spectroscopy and X-ray photoelectron spectroscopy revealed the distribution of Cu in the nanowires and their gradual oxidation. The optical properties of the Cu nanowires were measured by UV-Vis spectroscopy. The sessile drop method revealed the hydrophobic character of the Cu/PEN surface, which is important for further studies of biological responses. Our study suggests that a combination of laser surface texturing and vacuum evaporation can be an effective and simple method for the preparation of a Cu/polymer nanocomposite with potential exploitation in bioapplications; however, it should be borne in mind that significant post-deposition oxidation of the Cu nanowire occurs, which may open up new strategies for further biological applications.
Collapse
Affiliation(s)
- Jana Pryjmaková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (M.H.); (P.S.); (V.Š.)
- Correspondence: (J.P.); (J.S.); Tel.: +420-220-445-149 (J.P. & J.S.)
| | - Mariia Hryhoruk
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (M.H.); (P.S.); (V.Š.)
| | - Martin Veselý
- Department of Organic Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (M.H.); (P.S.); (V.Š.)
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (M.H.); (P.S.); (V.Š.)
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (M.H.); (P.S.); (V.Š.)
- Correspondence: (J.P.); (J.S.); Tel.: +420-220-445-149 (J.P. & J.S.)
| |
Collapse
|
56
|
Qi J, Zheng Z, Hu L, Wang H, Tang B, Lin L. Development and characterization of cannabidiol-loaded alginate copper hydrogel for repairing open bone defects in vitro. Colloids Surf B Biointerfaces 2022; 212:112339. [PMID: 35114435 DOI: 10.1016/j.colsurfb.2022.112339] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023]
Abstract
The clinical treatment of open bone defects caused by accidental bone trauma, bone tumors, bone diseases and bone infections is challenging. In this study, we designed and fabricated a multifunctional alginate-based hydrogel that contains cannabidiol (CBD), SA@Cu/CBD hydrogel, for repairing open bone defects. The results of physicochemical characterization showed that the SA@Cu/CBD hydrogel was successfully prepared and showed a suitable swelling ratio, high thermal stability, and stable mechanical properties. In vitro evaluation of antibacterial activity indicated that more than 90% of S. aureus and E. coli were inhibited compared to the control group. The ALP activity assay showed that the ALP expression level of MC3T3-E1cells in SA@Cu/CBD hydrogel was approximately 2-fold higher than that in the control group on day 7 and 14. Additionally, compared to the control group, the level of mineralized deposits in SA@Cu/CBD hydrogel was also improved by about 2 times on day 14. The PCR results indicated the mRNA expression levels of osteogenic markers (ALP, Col1α1, OCN, and RUNX2 genes) and angiogenic markers (EGFL6 and VEGF genes) in SA@Cu/CBD hydrogel were significantly upregulated compared to that in the control group, and the mRNA expression levels of critical inflammatory cytokines (TNF-α and IL-1β) in the SA@Cu/CBD hydrogel were significantly down-regulated compared to that in SA@Cu hydrogel. Taken together, these results demonstrated that the SA@Cu/CBD hydrogel showed significantly anti-bacterial, anti-inflammation, angiogenic and osteogenic activities in vitro studies. Thus, SA@Cu/CBD hydrogels may be a promising candidate in repairing open bone defects.
Collapse
Affiliation(s)
- Jianchao Qi
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Department of Emergency surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, PR China; Shenzhen Key Laboratory of Cell Microenvironment, PR China
| | - Zhe Zheng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Huizhen Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Shenzhen Key Laboratory of Cell Microenvironment, PR China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, PR China; Shenzhen Key Laboratory of Cell Microenvironment, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
57
|
Li S, Yang H, Duan Q, Bao H, Li A, Li W, Chen J, He Y. A comparative study of the effects of platelet-rich fibrin, concentrated growth factor and platelet-poor plasma on the healing of tooth extraction sockets in rabbits. BMC Oral Health 2022; 22:87. [PMID: 35321697 PMCID: PMC8944061 DOI: 10.1186/s12903-022-02126-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Autologous platelet concentrate has been widely used to encourage the regeneration of hard and soft tissues. Up to now, there are three generations of autologous platelet concentrates. Many studies have shown that the three autologous concentrates have different effects, but the specific diversities have not been studied. The purpose of this study was to explore and compare the effects of platelet-rich fibrin, concentrated growth factor and platelet-poor plasma on the healing of tooth extraction sockets in New Zealand rabbits. METHODS A total of 24 healthy male New Zealand white rabbits aged 8-12 weeks were selected. The experimental animals were randomly divided into four groups: three experimental groups were respectively implanted with PPP, CGF and PRF gel after bilateral mandibular anterior teeth were extracted, and the control group did not implant any material. The alveolar bone of the mandibular anterior region was taken at 2, 4 and 8 weeks after operation. The height and width of the extraction wound were detected by CBCT, the growth of the new bone was observed by HE and Masson staining, and the expression of osteogenic genes was detected by real-time PCR. Data were analyzed using IBM SPSS statistical package 22.0. RESULTS The radiological results showed that alveolar bone resorption in all groups gradually increased over time. However, the experimental groups showed lower amounts of bone resorption. The histological results showed that new bone formation was observed in all groups. Over time, the new bone trabeculae of the CGF group became closely aligned while those in the PPP and PRF groups remained scattered. PCR results showed that the expression of BMP-2 and ALP was higher in the experimental groups than the control group. CONCLUSION In conclusion, the application of PRF, CGF and PPP in tooth extraction sockets effectively promoted bone regeneration. CGF showed more effective bone induction and tissue regeneration ability in the long term.
Collapse
Affiliation(s)
- Siying Li
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
| | - Hongyi Yang
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
| | - Qinyu Duan
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
| | - Hongyu Bao
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Aodi Li
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
| | - Wei Li
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
| | - Junliang Chen
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yun He
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
58
|
Yang Y, Li M, Luo H, Zhang D. Surface-Decorated Graphene Oxide Sheets with Copper Nanoderivatives for Bone Regeneration: An In Vitro and In Vivo Study Regarding Molecular Mechanisms, Osteogenesis, and Anti-infection Potential. ACS Infect Dis 2022; 8:499-515. [PMID: 35188739 DOI: 10.1021/acsinfecdis.1c00496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been previously reported that graphene oxide/copper nanoderivative (GO/Cu)-incorporated chitosan/hyaluronic acid scaffolds might be promising wound dressings for the management of infected wound healing. The aim of the present research is to deeply explore the potential antimicrobial mechanisms and synergistic osteogenic activity, as well as the in vivo anti-infective behavior of GO/Cu nanocomposites, making them possible candidates for establishing implantable biomaterials for the repair of infected bone defects. The antibacterial mechanisms of the nanocomposites were explored through the examination of membrane integrity, oxidative stress, and metabolic enzyme activities. Then, the cytocompatibility with bone mesenchymal stem cells (rBMSCs) and osteogenic potential were confirmed, and a subcutaneous bacterial infection model in rats was also established to verify the in vivo anti-infective property and biosafety of the nanocomposites. It was found that leakage of adenosine triphosphate, proteins, and reducing sugars from the bacterial cells, indicative of damaged permeability of bacterial membranes, and promoted production of reactive oxygen species and disordered metabolic enzyme activities in response to oxidative stress were possible molecular mechanisms responsible for the synergistic antibacterial effects of the GO/Cu nanocomposites. Additionally, good cytocompatibility with rBMSCs and promoted osteogenic differentiation were found in GO/Cu nanocomposites (mass ratio = 2:1), which also demonstrated satisfactory in vivo anti-infective performance, reduced inflammation, and acceptable biosafety. Based on our results, damaged bacterial membranes, increased ROS production, and disorders of crucial enzyme metabolism were the main antibacterial mechanisms involved in the bacterium-killing events caused by the GO/Cu nanocomposites, which also showed enhanced osteogenic activity, in vivo anti-infective capability, and acceptable cytocompatibility and biosafety. Therefore, GO/Cu (2:1) nanocomposites are a potential strategy for improving the biological performance of current bone substitutes used for combating bacterial-contaminated bone defects.
Collapse
Affiliation(s)
- Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Min Li
- Department of Oncology, Changsha Central Hospital, University of South China, Changsha 410006, China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
59
|
Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Top Curr Chem (Cham) 2022; 380:13. [PMID: 35149879 DOI: 10.1007/s41061-022-00364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidain
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
60
|
Development and Characterization of Copper Cross-Linked Freeze-Dried Bioscaffolds for Potential Wound Healing Activity. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Xu L, Ye Q, Xie J, Yang J, Jiang W, Yuan H, Li J. An injectable gellan gum-based hydrogel that inhibits Staphylococcus aureus for infected bone defect repair. J Mater Chem B 2022; 10:282-292. [PMID: 34908091 DOI: 10.1039/d1tb02230j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The treatment of infected bone defects in complex anatomical structures, such as oral and maxillofacial structures, remains an intractable clinical challenge. Therefore, advanced biomaterials that have excellent anti-infection activity and allow convenient delivery are needed. We fabricated an innovative injectable gellan gum (GG)-based hydrogel loaded with nanohydroxyapatite particles and chlorhexidine (nHA/CHX). The hydrogel has a porous morphology, suitable swelling ratio, and good biocompatibility. It exerts strong antibacterial activity against Staphylococcus aureus growth and biofilm formation in vitro. We successfully established an infected calvarial defect rat model. Bacterial colony numbers were significantly lower in tissues surrounding the bone in rats of the GG/nHA/CHX group after debride surgery and hydrogel implantation in the defect regions than in rats of the blank group. Rats in the GG/nHA/CHX group exhibited significantly increased new bone formation compared to those in the blank group at 4 and 8 weeks. These findings indicate that gellan gum-based hydrogel with nHA/CHX can accelerate the repair of infected bone defects.
Collapse
Affiliation(s)
- Laijun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
| | - Qing Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jing Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Wentao Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, 510060, China
| | - He Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
62
|
Ni Z, Hu J, Zhu H, Shang Y, Chen D, Chen Y, Liu H. In situ formation of a near-infrared controlled dual-antibacterial platform. NEW J CHEM 2022. [DOI: 10.1039/d1nj05028a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An in situ formed antibacterial platform was designed for near-infrared controlled pharmacotherapy and photothermal therapy of drug-resistant bacteria.
Collapse
Affiliation(s)
- Zhuoyao Ni
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajie Hu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Zhu
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Daijie Chen
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | | | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
63
|
Godoy-Gallardo M, Eckhard U, Delgado LM, de Roo Puente YJ, Hoyos-Nogués M, Gil FJ, Perez RA. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact Mater 2021; 6:4470-4490. [PMID: 34027235 PMCID: PMC8131399 DOI: 10.1016/j.bioactmat.2021.04.033] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection of implanted scaffolds may have fatal consequences and, in combination with the emergence of multidrug bacterial resistance, the development of advanced antibacterial biomaterials and constructs is of great interest. Since decades ago, metals and their ions had been used to minimize bacterial infection risk and, more recently, metal-based nanomaterials, with improved antimicrobial properties, have been advocated as a novel and tunable alternative. A comprehensive review is provided on how metal ions and ion nanoparticles have the potential to decrease or eliminate unwanted bacteria. Antibacterial mechanisms such as oxidative stress induction, ion release and disruption of biomolecules are currently well accepted. However, the exact antimicrobial mechanisms of the discussed metal compounds remain poorly understood. The combination of different metal ions and surface decorations of nanoparticles will lead to synergistic effects and improved microbial killing, and allow to mitigate potential side effects to the host. Starting with a general overview of antibacterial mechanisms, we subsequently focus on specific metal ions such as silver, zinc, copper, iron and gold, and outline their distinct modes of action. Finally, we discuss the use of these metal ions and nanoparticles in tissue engineering to prevent implant failure.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Ulrich Eckhard
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Yolanda J.D. de Roo Puente
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Mireia Hoyos-Nogués
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - F. Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| |
Collapse
|
64
|
Hu J, Wang Z, Miszuk JM, Zhu M, Lansakara TI, Tivanski AV, Banas JA, Sun H. Vanillin-bioglass cross-linked 3D porous chitosan scaffolds with strong osteopromotive and antibacterial abilities for bone tissue engineering. Carbohydr Polym 2021; 271:118440. [PMID: 34364578 PMCID: PMC8353169 DOI: 10.1016/j.carbpol.2021.118440] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Chitosan scaffolds crosslinked by current methods insufficiently meet the demands of bone tissue engineering applications. We developed a novel effective crosslinking technique by using the natural and safe vanillin together with bioglass microparticles to generate an antibacterial, osteoconductive, and mechanically robust 3D porous chitosan-vanillin-bioglass (CVB) scaffold. In addition to the significantly improved mechanical properties, the CVB scaffolds had high porosity (>90%) and interconnected macroporous structures. Our data suggested that the crosslinking mainly resulted from the Schiff base reactions between the aldehydes of vanillin and amines of chitosan, together with the hydrogen and ionic bonds formed within them. Importantly, the CVB scaffolds not only showed good biocompatibility, bioactivity, and strong antibacterial ability but also significantly promoted osteoblastic differentiation, mineralization in vitro, and ectopic bone formation in vivo. Thus, the CVB scaffolds hold great promise for bone tissue engineering applications based on their robust mechanical properties, osteoconductivity, and antibacterial abilities.
Collapse
Affiliation(s)
- Jue Hu
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA; Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Zhuozhi Wang
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA; Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Jacob M Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA; Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Min Zhu
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | | | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey A Banas
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA; Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.
| |
Collapse
|
65
|
Wang H, Fu X, Shi J, Li L, Sun J, Zhang X, Han Q, Deng Y, Gan X. Nutrient Element Decorated Polyetheretherketone Implants Steer Mitochondrial Dynamics for Boosted Diabetic Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101778. [PMID: 34396715 PMCID: PMC8529468 DOI: 10.1002/advs.202101778] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Indexed: 02/05/2023]
Abstract
As a chronic metabolic disease, diabetes mellitus (DM) creates a hyperglycemic micromilieu around implants, resulting inthe high complication and failure rate of implantation because of mitochondrial dysfunction in hyperglycemia. To address the daunting issue, the authors innovatively devised and developed mitochondria-targeted orthopedic implants consisted of nutrient element coatings and polyetheretherketone (PEEK). Dual nutrient elements, in the modality of ZnO and Sr(OH)2 , are assembled onto the sulfonated PEEK surface (Zn&Sr-SPEEK). The results indicate the synergistic liberation of Zn2+ and Sr2+ from coating massacres pathogenic bacteria and dramatically facilitates cyto-activity of osteoblasts upon the hyperglycemic niche. Intriguingly, Zn&Sr-SPEEK implants are demonstrated to have a robust ability to recuperate hyperglycemia-induced mitochondrial dynamic disequilibrium and dysfunction by means of Dynamin-related protein 1 (Drp1) gene down-regulation, mitochondrial membrane potential (MMP) resurgence, and reactive oxygen species (ROS) elimination, ultimately enhancing osteogenicity of osteoblasts. In vivo evaluations utilizing diabetic rat femoral/tibia defect model at 4 and 8 weeks further confirm that nutrient element coatings substantially augment bone remodeling and osseointegration. Altogether, this study not only reveals the importance of Zn2+ and Sr2+ modulation on mitochondrial dynamics that contributes to bone formation and osseointegration, but also provides a novel orthopedic implant for diabetic patients with mitochondrial modulation capability.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xinliang Fu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jiacheng Shi
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Limei Li
- Science and Technology Achievement Incubation CenterKunming Medical UniversityKunming650500China
| | - Jiyu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xidan Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Qiuyang Han
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yi Deng
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SARChina
| | - Xueqi Gan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
66
|
Wan C, Pan Y, Chen Z, Hu J, Zhang Z, Sun Y, Ma W. The action of enhanced reactive oxygen species production through the dopant of Al2O3/GO in piezoelectric ZnO. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
67
|
Wang M, Huang H, Ma X, Huang C, Peng X. Copper metal-organic framework embedded carboxymethyl chitosan-g-glutathione/polyacrylamide hydrogels for killing bacteria and promoting wound healing. Int J Biol Macromol 2021; 187:699-709. [PMID: 34331983 DOI: 10.1016/j.ijbiomac.2021.07.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
Bacterial infection and its induced oxidative stress as major clinical challenge during wound healing call for an urgent response for the development of medical dressings with multi-functions, such as antioxidant and antibacterial. To meet this demand, copper metal organic framework nanoparticles (HKUST NPs) and carboxymethyl chitosan-g-glutathione (CMCs-GSH) were synthesized and characterized. By embedding HKUST NPs into PAM/CMCs-GSH hydrogel (AOH), we developed a novel hydrogel dressing (HKUST-Hs) with dual effects of antibacterial and antioxidant. The morphology, swelling behavior, oxidation resistance and antibacterial properties of HKUST-Hs were investigated as well as the slow-release behavior of copper ions. Full-thickness cutaneous wound model of rats was created to assess the promoting effect of HKUST-Hs on wound healing. We found that HKUST NPs could be well dispersed in HKUST-Hs by shielding the positive charge of copper ions, and thus copper ions released were uniformly distributed and chelated with CMCs-GSH to promote the swelling stability of HKUST-Hs. Also, HKUST-Hs exhibited good free radical scavenging ability in vitro antioxidant assay. Meanwhile, a gradient sustained-release system of copper ions was formed in HKUST-Hs owing to the inhibition of HKUST NPs to copper release and the chelation of CMCs-GSH, which effectively inhibited the explosive release of copper ions and prolonged the release period, thereby reducing cytotoxicity. In vitro antibacterial test demonstrated there was synergistic antibacterial effect between the slow-released copper ions and CMCs-GSH, which improved the antibacterial activity and antibacterial persistence of HKUST-Hs. Finally, HKUST-Hs accelerated wound healing in vivo by continuously killing bacteria and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Meng Wang
- Institute of Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510275, PR China
| | - Huihua Huang
- Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Xiaofeng Ma
- Institute of Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510275, PR China
| | - Chaokang Huang
- Institute of Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510275, PR China
| | - Xiaohong Peng
- Institute of Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510275, PR China.
| |
Collapse
|
68
|
Yao Q, Liu Y, Pan Y, Li Y, Xu L, Zhong Y, Wang W, Zuo J, Yu H, Lv Z, Chen H, Zhang L, Wang B, Yao H, Meng Y. Long-term induction of endogenous BMPs growth factor from antibacterial dual network hydrogels for fast large bone defect repair. J Colloid Interface Sci 2021; 607:1500-1515. [PMID: 34583048 DOI: 10.1016/j.jcis.2021.09.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Osteoinductive, osteoconductive, and antibacterial properties of bone repair materials play important roles in regulating the successful bone regeneration. In the present work, we developed pH-sensitive gelatin methacryloyl (GelMA)-oxidized sodium alginate (OSA) hydrogels for dual-release of gentamicin sulfate (GS) and phenamil (Phe) to enhance the antibacterial activity and to promote large bone defect repair. Controlled release of GS was achieved through physical blending with GelMA-OSA solution before photo-polymeriaztion, while Phe was encapsulated into mesoporous silicate nanoparticles (MSN) within the hydrogels. In vitro antibacterial studies against Staphylococcus aureus and Escherichia coli indicated the broad-spectrum antibacterial property. Moreover, in vitro cell tests verified the synergistically enhanced osteogenic differentiation ability. Furthermore, in vivo studies revealed that the hydrogels significantly increased new bone formation in a critical-sized mouse cranial bone defect model. In summary, the novel dual-network hydrogels with both antibacterial and osteoinductive properties showed promising potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Qingqing Yao
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yu Liu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yining Pan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yijia Li
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Liming Xu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yiming Zhong
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China; Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China
| | - Wei Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Jiayi Zuo
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Hao Yu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Ziru Lv
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Lishu Zhang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China; Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China.
| | - Hongyan Yao
- Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China.
| | - Yongchun Meng
- Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China; Central Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Yantai, Shandong 264100, China.
| |
Collapse
|
69
|
Li Z, Li B, Li X, Lin Z, Chen L, Chen H, Jin Y, Zhang T, Xia H, Lu Y, Zhang Y. Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair. Carbohydr Polym 2021; 267:118155. [PMID: 34119129 DOI: 10.1016/j.carbpol.2021.118155] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
A series of halloysite nanotube (HNT)-doped chitosan (CS)/oxidized dextran (ODEX) adhesive hydrogels were developed through a Schiff base reaction. The resultant CS/ODEX/HNT hydrogels could not only form in situ on wounds within only 1 s when injected, but could also adapt to wounds of different shapes and depths after injection. We established four rat and rabbit hemorrhage models and demonstrated that the hydrogels are better than the clinically used gelatin sponge for reducing hemostatic time and blood loss, particularly in arterial and deep noncompressible bleeding wounds. Moreover, the natural antibacterial features of CS and ODEX provided the hydrogels with strong bacteria-killing effects. Consequently, they significantly promoted methicillin-resistant Staphylococcus aureus -infected-wound repair compared to commercial gelatin sponge and silver-alginate antibacterial wound dressing. Hence, our multifunctional hydrogels with facile preparation process and utilization procedure could potentially be used as first-aid biomaterials for rapid hemostasis and infected-wound repair in emergency injury events.
Collapse
Affiliation(s)
- Zhan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Binglin Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Xinrong Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hu Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yan Jin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hong Xia
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yao Lu
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China; Department of Joint and Orthopedics, Orthopedic Center, Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Ying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China.
| |
Collapse
|
70
|
Xu H, Liu X, George MN, Lee Miller A, Park S, Xu H, Terzic A, Lu L. Black phosphorus incorporation modulates nanocomposite hydrogel properties and subsequent MC3T3 cell attachment, proliferation, and differentiation. J Biomed Mater Res A 2021; 109:1633-1645. [PMID: 33650768 PMCID: PMC8890905 DOI: 10.1002/jbm.a.37159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
A promising strategy that emerged in tissue engineering is to incorporate two-dimensional (2D) materials into polymer scaffolds, producing materials with desirable mechanical properties and surface chemistries, which also display broad biocompatibility. Black phosphorus (BP) is a 2D material that has sparked recent scientific interest due to its unique structure and electrochemical characteristics. In this study, BP nanosheets (BPNSs) were incorporated into a cross-linkable oligo[poly(ethylene glycol) fumarate] (OPF) hydrogel to produce a new nanocomposite for bone regeneration. BPNSs exhibited a controllable degradation rate coupled with the release of phosphate in vitro. MTS assay results together with live/dead images confirmed that the introduction of BPNSs into OPF hydrogels enhanced MC3T3-E1 cell proliferation. Moreover, the morphology parameters indicated better attachments of cells in the BPNSs containing group. Immunofluorescence images as well as intercellular ALP and OCN activities showed that adding a certain amount of BPNSs to OPF hydrogel could greatly improve differentiation of pre-osteoblasts on the hydrogel. Additionally, embedding black phosphorous into a neutral polymer network helped to control its cytotoxicity, with optimal cell growth observed at BP concentrations as high as 500 ppm. These results reinforced that the supplementation of OPF with BPNSs can increase the osteogenic capacity of polymer scaffolds for use in bone tissue engineering.
Collapse
Affiliation(s)
- Haocheng Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N. George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Hao Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
71
|
Sun A, Lin X, Xue Z, Huang J, Bai X, Huang L, Lin X, Weng S, Chen M. Facile surface functional polyetheretherketone with antibacterial and immunoregulatory activities for enhanced regeneration toward bacterium-infected bone destruction. Drug Deliv 2021; 28:1649-1663. [PMID: 34338560 PMCID: PMC8330770 DOI: 10.1080/10717544.2021.1960924] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Existing biologically inert or unmodified implants to treat infectious bone defects or osteomyelitis still cannot effectively solve bacterial infection and osseointegration. In this work, a simple co-deposition strategy was developed to modify porous polyetheretherketone (PEEK) with improved antibacterial activity and controllable immunoregulatory ability. After PEEK was treated by H2SO4 to obtain porous PEEK (SPEEK), the self-polymerization of dopamine was operated on SPEEK in the solution of dopamine and gentamicin sulfate (GS) to prepare polydopamine (pDA) and GS layer-modified SPEEK (labeled as SPEEK–pDA–GS). The morphology, surface property, and molecular structure of SPEEK–pDA–GS were investigated. Besides the antibacterial property of SPEEK–pDA–GS ascribed to the successful immobilization of GS, SPEEK–pDA–GS exhibited promoted osseointegration through the results of mineralization, alkaline phosphatase (ALP) levels and osteogenic gene expression. Furthermore, the evaluation of the cell proliferation suggested that SPEEK–pDA–GS possessed the biocompatibility and the immunoregulatory ability that induced macrophages to anti-inflammatory M2 phenotype. Using rat as model, in vivo results containing X-ray, μ-CT, immunohistochemistry, and pathological analysis showed the excellent healing effect of SPEEK–pDA–GS on bone defect with infection with biological safety. This work illustrates a new insight into the simple and effective modification of PEEK and other implants with antibacterial, immunoregulatory, and osseointegration abilities for clinical requirement.
Collapse
Affiliation(s)
- An'an Sun
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xi Lin
- Department of Emergency Surgery, Center for Trauma Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhiqiang Xue
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiyue Huang
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xinxin Bai
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lingling Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Min Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
72
|
Optimization and characterization of poly(ℇ-caprolactone) nanofiber mats doped with bioactive glass and copper metal nanoparticles. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01777-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
73
|
Verma NK, Kar AK, Singh A, Jagdale P, Satija NK, Ghosh D, Patnaik S. Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG- g-NOCC/Collagen Composite Scaffold toward Guided Bone Regeneration in a Critical-Sized Calvarial Defect. Biomacromolecules 2021; 22:3069-3083. [PMID: 34152738 DOI: 10.1021/acs.biomac.1c00513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regeneration of critical-sized bone defects with biomimetic scaffolds remains clinically challenging due to avascular necrosis, chronic inflammation, and altered osteogenic activity. Two confounding mechanisms, efficacy manipulation, and temporal regulation dictate the scaffold's bone regenerative ability. Equally critical is the priming of the mesenchymal stromal cells (MSCs) toward lineage-specific differentiation into bone-forming osteoblast, which particularly depends on varied mechanochemical and biological cues during bone tissue regeneration. This study sought to design and develop an optimized osteogenic scaffold, adenosine/epigallocatechin gallate-N,O-carboxymethyl chitosan/collagen type I (AD/EGCG-g-NOCC@clgn I), having osteoinductive components toward swift bone regeneration in a calvarial defect BALB/c mice model. The ex vivo findings distinctly establish the pro-osteogenic potential of adenosine and EGCG, stimulating MSCs toward osteoblast differentiation with significantly increased expression of alkaline phosphatase, calcium deposits, and enhanced osteocalcin expression. Moreover, the 3D matrix recapitulates extracellular matrix (ECM) properties, provides a favorable microenvironment, structural support against mechanical stress, and acts as a reservoir for sustained release of osteoinductive molecules for cell differentiation, proliferation, and migration during matrix osteointegration observed. Evidence from in vivo experiments, micro-CT analyses, histology, and histomorphometry signify accelerated osteogenesis both qualitatively and quantitatively: effectual bone union with enhanced bone formation and new ossified tissue in 4 mm sized defects. Our results suggest that the optimized scaffold serves as an adjuvant to guide bone tissue regeneration in critical-sized calvarial defects with promising therapeutic efficacy.
Collapse
Affiliation(s)
- Neeraj K Verma
- College of Dental Sciences, BBD University, Faizabad Road, Lucknow, Uttar Pradesh 226028, India
| | - Aditya K Kar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrita Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Neeraj K Satija
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
74
|
Xu C, Cao L, Bilal M, Cao C, Zhao P, Zhang H, Huang Q. Multifunctional manganese-based carboxymethyl chitosan hydrogels for pH-triggered pesticide release and enhanced fungicidal activity. Carbohydr Polym 2021; 262:117933. [DOI: 10.1016/j.carbpol.2021.117933] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
|
75
|
Leudjo Taka A, Fosso-Kankeu E, Naidoo EB, Yangkou Mbianda X. Recent development in antimicrobial activity of biopolymer-inorganic nanoparticle composites with water disinfection potential: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26252-26268. [PMID: 33788086 DOI: 10.1007/s11356-021-13373-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Nowadays, water-borne diseases including hepatitis remain the critical health challenge due to the inadequate supply of potable and safe water for human activities. The major cause is that the pathogenic microorganisms causing diseases have developed resistance against common techniques used by sewage water treatment plants for water disinfection. Therefore, there is a need to improve these conventional water treatment techniques by taking into consideration the application of nanotechnology for wastewater purification. The main aim of this paper is to provide a review on the synthesis of biopolymer-inorganic nanoparticle composites (BINCs), their used as antimicrobial compounds for water disinfection, as well as to elaborate on their antimicrobial mechanism of action. The microbial properties affecting the activity of antimicrobial compounds are also evaluated.
Collapse
Affiliation(s)
- Anny Leudjo Taka
- Institute of Chemical & Biotechnology, Vaal University of Technology, Southern Gauteng Science and Technology Park, Sebokeng Campus, Vanderbijlpark, 1983, South Africa
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark, South Africa
| | - Elvis Fosso-Kankeu
- School of Chemical and Minerals Engineering, Faculty of Engineering, North West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Eliazer Bobby Naidoo
- Institute of Chemical & Biotechnology, Vaal University of Technology, Southern Gauteng Science and Technology Park, Sebokeng Campus, Vanderbijlpark, 1983, South Africa.
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark, South Africa.
| | - Xavier Yangkou Mbianda
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa.
| |
Collapse
|
76
|
Wang Q, Huang Z, Huang X, Zhang T, Wang W. Reparative effect of super active platelet combined with allogeneic bone for large bone defects. Artif Organs 2021; 45:1219-1228. [PMID: 34037261 DOI: 10.1111/aor.14002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
In clinical practice, autologous bone transplantation is usually used to treat large-scale bone defects. However, autologous bone can cause complications such as secondary injury to patients, the scarcity of autografts. In this study, the study of using super active platelet lysate (sPL) and allogeneic bone to treat the 15 mm long bone defect in right radius of rabbits, and provide an experimental basis for the next step of clinical bone defect treatment. The critical-size defect of New Zealand white rabbits was made and divided into three groups: autologous bone group, allogeneic bone group, and sPL group. They were euthanized 1, 2, and 3 months after the operation, perform imaging and histological observation on the repair of bone defect area. The results showed that there were varying degrees of new bone in the bone defect. CT data showed that the bone defect repair rate and new bone mass in each group increased month by month (P <.05). Bone tissue (BV) and bone tissue to the total volume (BV/TV, %) in the sPL group > allogeneic bone group, autologous bone group > allogeneic bone group, with statistical significance (P < .05). Compared with the allogeneic bone group, the sPL group can significantly promote the healing of bone defects, enhance the bone density after fracture healing. The repair effect after 3 months was similar to that of the autogenous bone group. The use of allogeneic bone and sPL therapy may become part of a comprehensive strategy for tissue engineering to treat bone defects.
Collapse
Affiliation(s)
- Qinglong Wang
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhipeng Huang
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xi Huang
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbo Wang
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
77
|
Liu Z, Ye J, Rauf A, Zhang S, Wang G, Shi S, Ning G. A flexible fibrous membrane based on copper(II) metal-organic framework/poly(lactic acid) composites with superior antibacterial performance. Biomater Sci 2021; 9:3851-3859. [PMID: 33890581 DOI: 10.1039/d1bm00164g] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A flexible antibacterial fibrous membrane employing high antibacterial efficiency has great potential in healthcare applications. Herein, a three-dimensional copper(ii) metal-organic framework [Cu2(CA)(H2O)2, Cu-MOF-1] and poly(lactic acid) (PLA) composite fibrous membrane was prepared through a facile electrospinning method. The sphere-like Cu-MOF-1 was rapidly synthesized by a microwave-assisted hydrothermal reaction of Cu(ii) salts with citric acid (H4CA) in the presence of polyvinyl pyrrolidone (PVP). The surface morphology, thermal stability, mechanical properties and hydrophilicity test of the as-prepared Cu-MOF-1/PLA fibrous membrane were studied systematically. Compared with commercial copper nanoparticles (Cu-NPs), citric acid and copper citrate, Cu-MOF-1 showed higher antibacterial properties with the bacteriostatic rates of 97.9% and 99.3% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, when the used dose was 250 μg mL-1. The Cu-MOF-1/PLA fibrous membrane also exhibited outstanding bactericidal activities against E. coli and S. aureus with the antibacterial rates up to 99.3% and 99.8%, respectively. Mechanism investigation indicated that the slowly released Cu2+ ions could destroy the microenvironment of bacteria cells and destroy the integrity and permeability of the cell membrane, leading to enzyme inactivation. Therefore, the as-prepared flexible fibrous membrane will advance progress toward developing a broad spectrum antibacterial textile for healthcare protection related applications.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China. and Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology, CII, Johar Town, Lahore, 54770, Pakistan
| | - Siqi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Suqi Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China. and Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
78
|
Wang Y, Zhang W, Yao Q. Copper-based biomaterials for bone and cartilage tissue engineering. J Orthop Translat 2021; 29:60-71. [PMID: 34094859 PMCID: PMC8164005 DOI: 10.1016/j.jot.2021.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Backgroud Tissue engineering using cells, scaffolds, and bioactive molecules can promote the repair and regeneration of injured tissues. Copper is an essential element for the human body that is involved in many physiological activities and in recent years, copper has been used increasingly in tissue engineering. Methods The current advances of copper-based biomaterial for bone and cartilage tissue engineering were searched on PubMed and Web of Science. Results Various forms of copper-based biomaterials, including pure copper, copper ions, copper nanoparticles, copper oxides, and copper alloy are introduced. The incorporation of copper into base materials provides unique properties, resulting in tuneable porosity, mechanical strength, degradation, and crosslinking of scaffolds. Copper also shows promising biological performance in cell migration, cell adhesion, osteogenesis, chondrogenesis, angiogenesis, and antibacterial activities. In vivo applications of copper for bone and cartilage tissue engineering are discussed. Conclusion This review focuses on copper’s physiochemical and biological effects, and its applications in bone and cartilage tissue engineering. The potential limitations and future perspectives are also discussed. Translational potential of this article This review introduces the recent advances in copper-based biomaterial for bone and cartilage tissue engineering. This revie could guide researchers to apply copper in biomaterials, improving the generation of bone and cartilages, decrease the possibility of infection and shorten the recovery time so as to decrease medical costs.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.,School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
79
|
Xu H, Wang C, Liu C, Peng Z, Li J, Jin Y, Wang Y, Guo J, Zhu L. Cotransplantation of mesenchymal stem cells and endothelial progenitor cells for treating steroid-induced osteonecrosis of the femoral head. Stem Cells Transl Med 2021; 10:781-796. [PMID: 33438370 PMCID: PMC8046137 DOI: 10.1002/sctm.20-0346] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 11/20/2022] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (ONFH) is characterized by decreased osteogenesis, angiogenesis, and increased adipogenesis. While bone tissue engineering has been widely investigated to treat ONFH, its therapeutic effects remain unsatisfactory. Therefore, further studies are required to determine optimal osteogenesis, angiogenesis and adipogenesis in the necrotic area of the femoral head. In our study, we developed a carboxymethyl chitosan/alginate/bone marrow mesenchymal stem cell/endothelial progenitor cell (CMC/ALG/BMSC/EPC) composite implant, and evaluated its ability to repair steroid-induced ONFH. Our in vitro studies showed that BMSC and EPC coculture displayed enhanced osteogenic and angiogenic differentiation. When compared with single BMSC cultures, adipogenic differentiation in coculture systems was reduced. We also fabricated a three-dimensional (3D) CMC/ALG scaffold for loading cells, using a lyophilization approach, and confirmed its good cell compatibility characteristics, that is, high porosity, low cytotoxicity and favorable cell adhesion. 3D coculture of BMSCs and EPCs also promoted secretion of osteogenic and angiogenic factors. Then, we established an rabbit model of steroid-induced ONFH. The CMC/ALG/BMSC/EPC composite implant was transplanted into the bone tunnel of the rabbit femoral head after core decompression (CD) surgery. Twelve weeks later, radiographical and histological analyses revealed CMC/ALG/BMSC/EPC composite implants had facilitated the repair of steroid-induced ONFH, by promoting osteogenesis and angiogenesis, and reducing adipogenesis when compared with CD, CMC/ALG, CMC/ALG/BMSC and CMC/ALG/EPC groups. Thus, our data show that cotransplantation of BMSCs and EPCs in 3D scaffolds is beneficial in treating steroid-induced ONFH.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Yanglei Jin
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Jiasong Guo
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
- Department of Histology and EmbryologySouthern Medical UniversityGuangzhouPeople's Republic of China
- Key Laboratory of Tissue Construction and Detection of Guangdong ProvinceGuangzhouPeople's Republic of China
- Institute of Bone BiologyAcademy of Orthopaedics, Guangdong ProvinceGuangzhouPeople's Republic of China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
80
|
|
81
|
Zhao D, Wang X, Tie C, Cheng B, Yang S, Sun Z, Yin M, Li X, Yin M. Bio-functional strontium-containing photocrosslinked alginate hydrogels for promoting the osteogenic behaviors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112130. [PMID: 34082947 DOI: 10.1016/j.msec.2021.112130] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/05/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022]
Abstract
In recent years, photocrosslinked alginate hydrogel has been widely studied in bone tissue engineering, owing to its numerous advantages. However, there are still some shortcomings like insufficient mechanical strength and lack of bone induction. To compensate for these deficiencies, in this work, a novel doped strontium (Sr) photocrosslinked methacrylated alginate (Sr-PMA) hydrogel was developed. Photocrosslinked alginate hydrogel fabricated via crosslinking methacrylate-modified alginate under ultraviolet (UV) light was placed into strontium solutions to prepare Sr-PMA gel by chelating reaction. The chemical structures, swelling behaviors, degradation profiles, elastic moduli, Sr2+ ion release and surface morphology of the Sr-PMA hydrogel were characterized, and we found that physical properties of the gels can be tailored by varying concentration of Sr2+ ions. And MC3T3-E1 cell viability, proliferation and mineralization outside the hydrogel were also investigated. Further research on cell survival, multiplication, osteogenic differentiation of the cells encapsulated in Sr-PMA hydrogels were explored. In vitro studies of biological properties revealed that incorporation of Sr2+ into photocrosslinked alginate gels significantly improved osteogenic differentiation capabilities and mineralization via stimulating expression of osteogenesis related genes and proteins of the cells compared to strontium-free photocrosslinked alginate gels. The research demonstrates that the innovative Sr-PMA hydrogels possessing adjustable physical performances, excellent biocompatibility and osteogenic differentiation capabilities could be potentially applied to bone tissue engineering and regenerative medicine. Meanwhile, it also provides a reference for the modification of biological properties of biomaterials.
Collapse
Affiliation(s)
- Delu Zhao
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China; Department of Prosthodontics, Hefei Stomatological Clinic Hospital, Anhui Medical University, & Hefei Stomatological Hospital, Hefei 230001, Anhui Province, China
| | - Xin Wang
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chaorong Tie
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Bo Cheng
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Sisi Yang
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhen Sun
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Miaomiao Yin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Xiaobao Li
- Department of Stomatology, Affiliated Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei Province, China
| | - Miao Yin
- Hubei Tumor Biological Behavior Key Laboratory, Center of stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China.
| |
Collapse
|
82
|
Su W, Yin J, Wang R, Shi M, Liu P, Qin Z, Xing R, Jiao T. Self-assembled natural biomacromolecular fluorescent hydrogels with tunable red edge effects. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125993] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
83
|
Bosch-Rué E, Diez-Tercero L, Giordano-Kelhoffer B, Delgado LM, Bosch BM, Hoyos-Nogués M, Mateos-Timoneda MA, Tran PA, Gil FJ, Perez RA. Biological Roles and Delivery Strategies for Ions to Promote Osteogenic Induction. Front Cell Dev Biol 2021; 8:614545. [PMID: 33520992 PMCID: PMC7841204 DOI: 10.3389/fcell.2020.614545] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is the most studied tissue in the field of tissue regeneration. Even though it has intrinsic capability to regenerate upon injury, several pathologies and injuries could hamper the highly orchestrated bone formation and resorption process. Bone tissue engineering seeks to mimic the extracellular matrix of the tissue and the different biochemical pathways that lead to successful regeneration. For many years, the use of extrinsic factors (i.e., growth factors and drugs) to modulate these biological processes have been the preferred choice in the field. Even though it has been successful in some instances, this approach presents several drawbacks, such as safety-concerns, short release profile and half-time life of the compounds. On the other hand, the use of inorganic ions has attracted significant attention due to their therapeutic effects, stability and lower biological risks. Biomaterials play a key role in such strategies where they serve as a substrate for the incorporation and release of the ions. In this review, the methodologies used to incorporate ions in biomaterials is presented, highlighting the osteogenic properties of such ions and the roles of biomaterials in controlling their release.
Collapse
Affiliation(s)
- Elia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Leire Diez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mireia Hoyos-Nogués
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Phong A. Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Francisco Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
84
|
Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111741. [PMID: 33579436 DOI: 10.1016/j.msec.2020.111741] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Copper is one of the most used therapeutic metallic elements in biomedicine, ranging from antibacterial approaches to cancer theranostics. This element could be easily incorporated into different types of biomaterials; specifically, copper-doped bioactive glasses (BGs) provide great opportunities for biomedical engineers and clinicians as regards their excellent biocompatibility and regenerative potential. Although copper-incorporated BGs are mostly used in bone tissue engineering, accelerated soft tissue healing is achievable, too, with interesting potentials in wound treatment and skin repair. Copper can modulate the physico-chemical properties of BGs (e.g., reactivity with bio-fluids) and improve their therapeutic potential. Improving cell proliferation, promoting angiogenesis, reducing or even prohibiting bacterial growth are counted as prominent biological features of copper-doped BGs. Recent studies have also suggested the suitability of copper-doped BGs in cancer photothermal therapy (PTT). However, more research is needed to determine the extent to which copper-doped BGs are actually applicable for tissue engineering and regenerative medicine strategies in the clinic. Moreover, copper-doped BGs in combination with polymers may be considered in the future to produce relatively soft, pliable composites and printable inks for use in biofabrication.
Collapse
|
85
|
张 一, 张 宪, 胡 中, 任 兴, 王 茜, 王 志. [Research progress on antibacterial properties of porous medical implant materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1478-1485. [PMID: 33191710 PMCID: PMC8171714 DOI: 10.7507/1002-1892.202001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/05/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The antibacterial properties of porous medical implant materials were reviewed to provide guidance for further improvement of new medical implant materials. METHODS The literature related to the antibacterial properties of porous medical implant materials in recent years was consulted, and the classification, characteristics and applications, and antibacterial methods of porous medical implant materials were reviewed. RESULTS Porous medical implant materials can be classified according to surface pore size, preparation process, degree of degradation in vivo, and material source. It is widely used in the medical field due to its good biocompatibility and biomechanical properties. Nevertheless, the antibacterial properties of porous medical implant materials themselves are not obvious, and their antibacterial properties need to be improved through structural modification, overall modification, and coating modification. CONCLUSION At present, coating modification as the mainstream modification method for improving the antibacterial properties of porous medical materials is still a research hotspot. The introduction of new antibacterial substances provides a new perspective for the development of new coated porous medical implant materials, so that the porous medical implant materials have a more reliable antibacterial effect while taking into account biocompatibility.
Collapse
Affiliation(s)
- 一 张
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 宪高 张
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 中岭 胡
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 兴宇 任
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 茜 王
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 志强 王
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
- 华北理工大学临床医学院(河北唐山 063000)School of Clinical Medicine, North China University of Science and Technology, Tangshan Hebei, 063000, P.R.China
| |
Collapse
|
86
|
Chen Y, Miller PG, Ding X, Stowell CET, Kelly KM, Wang Y. Chelation Crosslinking of Biodegradable Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003761. [PMID: 32964586 DOI: 10.1002/adma.202003761] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Widely present in nature and in manufactured goods, elastomers are network polymers typically crosslinked by strong covalent bonds. Elastomers crosslinked by weak bonds usually exhibit more plastic deformation. Here, chelation as a mechanism to produce biodegradable elastomers is reported. Polycondensation of sebacic acid, 1,3-propanediol, and a Schiff-base (2-[[(2-hydroxyphenyl) methylene]amino]-1,3-propanediol) forms a block copolymer that binds several biologically relevant metal ions. Chelation offers a unique advantage unseen in conventional elastomer design because one ligand binds multiple metal ions, yielding bonds of different strengths. Therefore, one polymeric ligand coordinated with different metal ions produces elastomers with vastly different characteristics. Mixing different metal ions in one polymer offers another degree of control on material properties. The density of the ligands in the block copolymer further regulates the mechanical properties. Moreover, a murine model reveals that Fe3+ crosslinked foam displays higher compatibility with subcutaneous tissues than the widely used biomaterial-polycaprolactone. The implantation sites restore to their normal architecture with little fibrosis upon degradation of the implants. The versatility of chelation-based design has already shown promise in hydrogels and highly stretchy nondegradable polymers. The biodegradable elastomers reported here would enable new materials and new possibilities in biomedicine and beyond.
Collapse
Affiliation(s)
- Ying Chen
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY, 14853, USA
| | - Paula G Miller
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY, 14853, USA
| | - Xiaochu Ding
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY, 14853, USA
| | - Chelsea E T Stowell
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY, 14853, USA
| | - Katie M Kelly
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY, 14853, USA
| |
Collapse
|
87
|
Cui Y, Wu Q, He J, Li M, Zhang Z, Qiu Y. Porous nano-minerals substituted apatite/chitin/pectin nanocomposites scaffolds for bone tissue engineering. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
88
|
Zhou P, Xia D, Ni Z, Ou T, Wang Y, Zhang H, Mao L, Lin K, Xu S, Liu J. Calcium silicate bioactive ceramics induce osteogenesis through oncostatin M. Bioact Mater 2020; 6:810-822. [PMID: 33024901 PMCID: PMC7528055 DOI: 10.1016/j.bioactmat.2020.09.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Immune reactions are a key factor in determining the destiny of bone substitute materials after implantation. Macrophages, the most vital factor in the immune response affecting implants, are critical in bone formation, as well as bone biomaterial-mediated bone repair. Therefore, it is critical to design materials with osteoimmunomodulatory properties to reduce host-to-material inflammatory responses by inducing macrophage polarization. Our previous study showed that calcium silicate (CS) bioceramics could significantly promote osteogenesis. Herein, we further investigated the effects of CS on the behavior of macrophages and how macrophages regulated osteogenesis. Under CS extract stimulation, the macrophage phenotype was converted to the M2 extreme. Stimulation by a macrophage-conditioned medium that was pretreated by CS extracts resulted in a significant enhancement of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), indicating the important role of macrophage polarization in biomaterial-induced osteogenesis. Mechanistically, oncostatin M (OSM) in the macrophage-conditioned medium promoted osteogenic differentiation of BMSCs through the ERK1/2 and JAK3 pathways. This in vivo study further demonstrated that CS bioceramics could stimulate osteogenesis better than β-TCP implants by accelerating new bone formation at defective sites in the femur. These findings improve our understanding of immune modulation of CS bioactive ceramics and facilitate strategies to improve the in vitro osteogenesis capability of bone substitute materials. Calcium silicate (CS) bioceramics significantly promoted osteogenesis by the regulating of macrophage polarization. ERK1/2 and JAK3 pathways mediated the osteogenic differentiation stimulated by CS. CS played a promising osteoimmunomodulatory agent for bone induction.
Collapse
Affiliation(s)
- Panyu Zhou
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Demeng Xia
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhexin Ni
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianle Ou
- Department of Clinical Medicine, the Naval Medical University, Shanghai, China
| | - Yang Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongyue Zhang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Corresponding author.
| | - Shuogui Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
- Corresponding author.
| | - Jiaqiang Liu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Corresponding author.
| |
Collapse
|
89
|
Tao F, Ma S, Tao H, Jin L, Luo Y, Zheng J, Xiang W, Deng H. Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment - A review. Carbohydr Polym 2020; 251:117063. [PMID: 33142615 DOI: 10.1016/j.carbpol.2020.117063] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Osteomyelitis is a complex disease in orthopedics mainly caused by bacterial pathogens invading bone or bone marrow. The treatment of osteomyelitis is highly difficult and it is a major challenge in orthopedic surgery. The long-term systemic use of antibiotics may lead to antibiotic resistance and has limited effects on eradicating local biofilms. Localized antibiotic delivery after surgical debridement can overcome the problem of antibiotic resistance and reduce systemic toxicity. Chitosan, a special cationic polysaccharide, is a product extracted from the deacetylation of chitin. It has numerous advantages, such as nontoxicity, biocompatibility, and biodegradability. Recently, chitosan has attracted significant attention in bacterial inhibition and drug delivery. Because chitosan contains many functional bioactive groups conducive to chemical reaction and modification, some chitosan-based biomaterials have been applied as the local antibiotic delivery systems in the treatment of osteomyelitis. This review aims to introduce recent advances in the biomedical applications of chitosan-based drug delivery systems in osteomyelitis treatment and to highlight the perspectives for further studies.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Sijia Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yue Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jian Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
90
|
Zhang S, Ye J, Liu Z, Lu H, Shi S, Qi Y, Ning G. Superior antibacterial activity of Fe 3O 4@copper(ii) metal-organic framework core-shell magnetic microspheres. Dalton Trans 2020; 49:13044-13051. [PMID: 32915182 DOI: 10.1039/d0dt02417a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the rapid evolution of antibiotic resistant bacteria, it has become more and more difficult to treat bacterial infection with traditional antibiotics. Therefore, new strategies with high antibacterial efficiency are urgently needed to combat bacteria effectively. Herein, Fe3O4@copper(ii) metal-organic framework Cu3(BTC)2 (Cu-BTC) core-shell structured magnetic microspheres were prepared via a layer by layer growth process. The as-prepared Fe3O4@Cu-BTC possessed a unique broad-spectrum antibacterial potency against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The slowly released copper ions and enhanced reactive oxygen species (ROS) generation by facilitating the effective separation and transfer of photoexcited electron-hole pairs played a role in the antibacterial activity of Fe3O4@Cu-BTC. Copper ions released from Fe3O4@Cu-BTC adhered to the negatively charged bacterial cell, interacted with the bacterial membrane, destroyed the integrity of the membrane which resulted in leakage of bacterial content and then generated ROS to damage DNA, thus leading to cell death. Accordingly, this study provides a competitive strategy for preparing recyclable antibacterial materials that are endowed with targeted antibacterial therapy.
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China.
| | | | | | | | | | | | | |
Collapse
|
91
|
Wang M, Chen M, Niu W, Winston DD, Cheng W, Lei B. Injectable biodegradation-visual self-healing citrate hydrogel with high tissue penetration for microenvironment-responsive degradation and local tumor therapy. Biomaterials 2020; 261:120301. [PMID: 32871470 DOI: 10.1016/j.biomaterials.2020.120301] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Local tumor therapy through injectable biodegradable hydrogels with controlled drug release has attracted much attention recently, due to their easy operation, low side effect and efficiency. However, most of the reported therapeutic hydrogel system showed a lack of biodegradation tracking and tumor environment-responsive degradation/therapy. Herein, we developed a multifunctional injectable biodegradation-visual citric acid-based self-healing scaffolds with microenvironment-responsive degradation and drug release for safe and efficient skin tumor therapy (FPRC hydrogel). FPRC scaffolds possess multifunctional properties including thermosensitive, injectable, self-healing, photoluminescent and pH-responsive degradation/drug release. The FPRC scaffolds with strong red fluorescence which has good photostability, tissue penetration and biocompatibility can be tracked and monitored to evaluate the degradation of the scaffolds in vivo. Moreover, the FPRC scaffolds showed pH-responsive doxorubicin (DOX) release, efficiently killed the A375 cancer cell in vitro and suppressed the tumor growth in vivo. Compared to the free drug (DOX), the FPRC@DOX scaffolds displayed a significantly high therapeutic effect and less biotoxicity. This work provides an alternative strategy to design smart visual scaffolds for tumor therapy and regenerative medicine.
Collapse
Affiliation(s)
- Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Dagogo Dorothy Winston
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
92
|
The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00094-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
93
|
Wang P, Li A, Yu L, Chen Y, Xu D. Energy Conversion-Based Nanotherapy for Rheumatoid Arthritis Treatment. Front Bioeng Biotechnol 2020; 8:652. [PMID: 32754578 PMCID: PMC7366901 DOI: 10.3389/fbioe.2020.00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and cartilage/bone destruction, which results in a high disability rate on human health and a huge burden on social economy. At present, traditional therapies based on drug therapy still cannot cure RA, in accompany with the potential serious side effects. Based on the development of nanobiotechnology and nanomedicine, energy conversion-based nanotherapy has demonstrated distinctive potential and performance in RA treatment. This strategy employs specific nanoparticles with intrinsic physiochemical properties to target lesions with the following activation by diverse external stimuli, such as light, ultrasound, microwave, and radiation. These nanoagents subsequently produce therapeutic effects or release therapeutic factors to promote necrotic apoptosis of RA inflammatory cells, reduce the concentration of related inflammatory factors, relieve the symptoms of RA, which are expected to ultimately improve the life quality of RA patients. This review highlights and discusses the versatile biomedical applications of energy conversion-based nanotherapy in efficient RA treatment, in together with the deep clarification of the facing challenges and further prospects on the final clinical translations of these energy conversion-based nanotherapies against RA.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ao Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luodan Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Di Xu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
94
|
Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I. Biomaterials against Bone Infection. Adv Healthc Mater 2020; 9:e2000310. [PMID: 32449317 PMCID: PMC7116285 DOI: 10.1002/adhm.202000310] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic bone infection is considered as one of the most problematic biofilm-related infections. Its recurrent and resistant nature, high morbidity, prolonged hospitalization, and costly medical care expenses have driven the efforts of the scientific community to develop new therapies to improve the standards used today. There is great debate on the management of this kind of infection in order to establish consistent and agreed guidelines in national health systems. The scientific research is oriented toward the design of anti-infective biomaterials both for prevention and cure. The properties of these materials must be adapted to achieve better anti-infective performance and good compatibility, which allow a good integration of the implant with the surrounding tissue. The objective of this review is to study in-depth the antibacterial biomaterials and the strategies underlying them. In this sense, this manuscript focuses on antimicrobial coatings, including the new technological advances on surface modification; scaffolding design including multifunctional scaffolds with both antimicrobial and bone regeneration properties; and nanocarriers based on mesoporous silica nanoparticles with advanced properties (targeting and stimuli-response capabilities).
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| |
Collapse
|
95
|
Xie X, Wang W, Cheng J, Liang H, Lin Z, Zhang T, Lu Y, Li Q. Bilayer pifithrin-α loaded extracellular matrix/PLGA scaffolds for enhanced vascularized bone formation. Colloids Surf B Biointerfaces 2020; 190:110903. [PMID: 32120128 DOI: 10.1016/j.colsurfb.2020.110903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaobo Xie
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 510282, PR China
| | - Wanshun Wang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong, 510010, PR China
| | - Jing Cheng
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 510282, PR China
| | - Haifeng Liang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 510282, PR China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong, 510010, PR China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong, 510010, PR China
| | - Yao Lu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 510282, PR China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong, 510010, PR China; Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 510282, PR China.
| | - Qi Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 510282, PR China.
| |
Collapse
|
96
|
Li Y, Chi YQ, Yu CH, Xie Y, Xia MY, Zhang CL, Han X, Peng Q. Drug-free and non-crosslinked chitosan scaffolds with efficient antibacterial activity against both Gram-negative and Gram-positive bacteria. Carbohydr Polym 2020; 241:116386. [PMID: 32507188 DOI: 10.1016/j.carbpol.2020.116386] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 02/05/2023]
Abstract
Treatment of oral pathogens is important for both oral and systemic health. The antimicrobial activity of chitosan (CS)-based scaffolds either loading antibiotics or compositing with other agents are well documented. However, the intrinsic antibacterial activity of CS scaffolds alone has never been reported. Herein, we fabricated the non-crosslinked CS scaffold and investigated its antibacterial activity against typical oral pathogens, Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans. We found both pathogens were completely killed by 1 mg CS scaffolds at 6 h, due largely to the CS-induced time-dependent bacteria clustering. Interestingly, β-glycerophosphate crosslinked scaffolds showed no antibacterial activity. In conclusion, the bactericidal activity of CS scaffolds alone is reported for the first time. Together with the biodegradability, physical stability, biocompatibility and great antibacterial activity, the non-crosslinked CS scaffolds may have great potentials not only in treating oral diseases but also in wound healing and tissue engineering.
Collapse
Affiliation(s)
- Yuanhong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Qi Chi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meng-Ying Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chao-Liang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
97
|
Sharmila G, Muthukumaran C, Kirthika S, Keerthana S, Kumar NM, Jeyanthi J. Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering. Int J Biol Macromol 2020; 156:430-437. [PMID: 32294496 DOI: 10.1016/j.ijbiomac.2020.04.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023]
Abstract
In recent years, plant based scaffold due to its inherent properties such as mechanical stability, renewability, easy mass production, inexpensiveness, biocompatibility and biodegradability with low toxic effects have received much attention in the field of bone tissue engineering. Design of good tissue compatible plant based polymer scaffold plays a vital role in biomedicine, nanomedicine and in various tissue engineering applications. The present study focused on the fabrication of a novel herbal scaffold using the medicinal plants Spinacia oleracea (SO) and Cissus quadrangularis (CQ) extracts incorporated with Alginate (Alg), Carboxy Methyl Cellulose (CMC) by lyophilization method. The structural nature and the properties of prepared scaffold were analyzed by XRD, FE-SEM, FTIR, EDAX, TGA, swelling ratio, porosity, in-vitro degradation and cell viability studies. The biocompatible nature of the plant based polymer scaffold was assessed using MG-63 Human Osteosarcoma cell line. The investigation of biocompatibility study showed that Alg/CMC/SO scaffold expressed higher cell viability than Alg/CMC/SO-CQ scaffold, which possess better cellular biocompatibility. The results of the present study suggested that plant based Alg/CMC/SO scaffold serve as a potential biopolymer scaffold which could be further exploited for bone tissue applications.
Collapse
Affiliation(s)
- Govindasamy Sharmila
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India.
| | - Chandrasekaran Muthukumaran
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Shanmugam Kirthika
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Sundarapandian Keerthana
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Narasimhan Manoj Kumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Jeyadharmarajan Jeyanthi
- Department of Civil Engineering, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| |
Collapse
|
98
|
Jiang R, Liu C, Tan LT, Lin C. Formation of carboxymethylchitosan/gemini surfactant adsorption layers at the air/water interface: Effects of association in the bulk. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1462195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rong Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Chang Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Li Ting Tan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Cuiying Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
99
|
Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A. Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110195. [PMID: 31761207 DOI: 10.1016/j.msec.2019.110195] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
Injectable hydrogels have revealed the great potential for use as scaffolds in cartilage and bone tissue engineering. Here, thermosensitive and injectable hydrogels containing β-tricalcium phosphate, hyaluronic acid, and corn silk extract-nanosilver (CSE-Ag NPs) were synthesized for their potential use in bone tissue regeneration applications. Spherical nanoparticles of silver were biosynthesized through microwave-assisted green approach using CSE in organic solvent-free medium. Rheological experiments demonstrated that the thermosensitive hydrogels have gelification temperature (Tgel) close to body temperature. The samples containing Ag NPs showed antibacterial activity toward gram-positive (Bacillus Subtilis, Staphylococcus Aureus) and gram-negative (Pseudomonas Aeruginosa, Escherichia Coli) bacteria along without cytotoxicity after 24 h. Mesenchymal stem cells seeded in the nanocomposite exhibited high bone differentiation which indicate that thay could be a good candidate as a potential scaffold for bone tissue regeneration.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Ghareib W Ali
- National Research Centre, Inorganic Chemistry Division and Mineral Resources, Refractories and Ceramics Dept., Biomaterials Group, Tahir St, Dokki, Cairo, Egypt
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Wafa I Abdel-Fattah
- National Research Centre, Inorganic Chemistry Division and Mineral Resources, Refractories and Ceramics Dept., Biomaterials Group, Tahir St, Dokki, Cairo, Egypt
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| |
Collapse
|
100
|
Anh HTP, Huang CM, Huang CJ. Intelligent Metal-Phenolic Metallogels as Dressings for Infected Wounds. Sci Rep 2019; 9:11562. [PMID: 31399620 PMCID: PMC6688990 DOI: 10.1038/s41598-019-47978-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, we report a metallogel developed based on metal-phenolic coordination of natural low-cost polyphenolic molecule and metal ions. Gelation occurs by mixing tannic acid (TA) and group (IV) titanium ions (TiIV) to form TA-TiIV gel. The TA-TiIV gel exhibits good capability to incorporate diverse metal ions by in situ co-gelation. Herein, five antimicrobial metal ions, i.e. ferric (FeIII), copper (CuII), zinc (ZnII), cobalt (CoII) and nickel (NiII) ions, were employed to include in TA-TiIV gels for developing intelligent dressings for infected wounds. The chemical and coordinative structures of TA-TiIV metallogels were characterized by UV-Vis and Fourier-transform infrared (FT-IR) spectroscopies. Cytotoxicity of antimicrobial metallogels was explored by MTT assay with NIH 3T3 fibroblasts. The release of metal ions was evaluated by inductively coupled plasma mass spectrometry (ICP-MS), indicating the different releasing profiles upon the coordinative interactions of metal ions with TA. The formation and disassembly of metallogels are sensitive to the presence of acid and an oxidizer, H2O2, which are substances spontaneously generated in infected wounds due to the metabolic activity of bacteria and the intrinsic immune response. The CuII releasing rates of TA-TiIV-CuII metallogels at different pH values of 5.5, 7.4 and 8.5 have been studied. In addition, addition of H2O2 trigger fast release of CuII as a result of oxidation of galloyl groups in TA. Consequently, the antimicrobial potency of TA-TiIV-CuII metallogels can be simultaneously activated while the wounds are infected and healing. The antimicrobial property of metallogels against Gram-negative Escherichia coli, and Gram-positive Methicillin-Resistant Staphylococcus aureus (USA300) and Staphylococcus epidermidis has been investigated by agar diffusion test. In an animal model, the TA-TiIV-CuII metallogels were applied as dressings for infected wounds, indicating faster recovery in the wound area and extremely lower amount of bacteria around the wounds, compared to TA-TiIV gels and gauze. Accordingly, the intelligent nature derived metallogels is a promising and potential materials for medical applications.
Collapse
Affiliation(s)
- Ha Thi Phuong Anh
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan, 320, Taiwan
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan, 320, Taiwan
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan, 320, Taiwan. .,Department of Chemical and Materials Engineering, National Central University, Jhong-Li, Taoyuan, 320, Taiwan. .,R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li City, 32023, Taiwan.
| |
Collapse
|