51
|
Farahani M, Shafiee A. Wound Healing: From Passive to Smart Dressings. Adv Healthc Mater 2021; 10:e2100477. [PMID: 34174163 DOI: 10.1002/adhm.202100477] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The universal increase in the number of patients with nonhealing skin wounds imposes a huge social and economic burden on the patients and healthcare systems. Although, the application of traditional wound dressings contributes to an effective wound healing outcome, yet, the complexity of the healing process remains a major health challenge. Recent advances in materials and fabrication technologies have led to the fabrication of dressings that provide proper conditions for effective wound healing. The 3D-printed wound dressings, biomolecule-loaded dressings, as well as smart and flexible bandages are among the recent alternatives that have been developed to accelerate wound healing. Additionally, the new generation of wound dressings contains a variety of microelectronic sensors for real-time monitoring of the wound environment and is able to apply required actions to support the healing progress. Moreover, advances in manufacturing flexible microelectronic sensors enable the development of the next generation of wound dressing substrates, known as electronic skin, for real-time monitoring of the whole physiochemical markers in the wound environment in a single platform. The current study reviews the importance of smart wound dressings as an emerging strategy for wound care management and highlights different types of smart dressings for promoting the wound healing process.
Collapse
Affiliation(s)
- Mojtaba Farahani
- Department of Biomedical Engineering Amirkabir University of Technology Tehran 1591634311 Iran
| | - Abbas Shafiee
- UQ Diamantina Institute Translational Research Institute The University of Queensland Brisbane QLD 4102 Australia
| |
Collapse
|
52
|
Liu M, Wang X, Li H, Xia C, Liu Z, Liu J, Yin A, Lou X, Wang H, Mo X, Wu J. Magnesium oxide-incorporated electrospun membranes inhibit bacterial infections and promote the healing process of infected wounds. J Mater Chem B 2021; 9:3727-3744. [PMID: 33904568 DOI: 10.1039/d1tb00217a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial infections cause severe secondary damage to wounds and hinder wound healing processes. We prepared magnesium oxide (MgO) nanoparticle-incorporated nanofibrous membranes by electrospinning and investigated their potential for wound dressing and fighting bacterial infection. MgO-Incorporated membranes possessed good elasticity and flexibility similar to native skin tissue and were hydrophilic, ensuring comfortable contact with wound beds. The cytocompatibility of membranes was dependent on the amounts of incorporated MgO nanoparticles: lower amounts promoted while higher amounts suppressed the proliferation of fibroblasts, endothelial cells, and macrophages. The antibacterial capacity of membranes was proportional to the amounts of incorporated MgO nanoparticles and they inhibited more than 98% E. coli, 90% S. aureus, and 94% S. epidermidis. MgO nanoparticle-incorporated membranes effectively suppressed bacterial infection and significantly promoted the healing processes of infected full-thickness wounds in a rat model. Subcutaneous implantation demonstrated that the incorporation of MgO nanoparticles into electrospun membranes elevated their bioactivity as evidenced by considerable cell infiltration into their dense nanofiber configuration and enhanced the remodeling of implanted membranes. This study highlights the potential of MgO-incorporated electrospun membranes in preventing bacterial infections of wounds.
Collapse
Affiliation(s)
- Mingyue Liu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Xiaoyu Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Haiyan Li
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, P. R. China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, P. R. China
| | - Anlin Yin
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Xiangxin Lou
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Hongsheng Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China. and Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
53
|
Preman NK, E S SP, Prabhu A, Shaikh SB, C V, Barki RR, Bhandary YP, Rekha PD, Johnson RP. Bioresponsive supramolecular hydrogels for hemostasis, infection control and accelerated dermal wound healing. J Mater Chem B 2021; 8:8585-8598. [PMID: 32820296 DOI: 10.1039/d0tb01468k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injectable, drug-releasing hydrogel scaffolds with multifunctional properties including hemostasis and anti-bacterial activity are essential for successful wound healing; however, designing ideal materials is still challenging. Herein, we demonstrate the fabrication of a biodegradable, temperature-pH dual responsive supramolecular hydrogel (SHG) scaffold based on sodium alginate/poly(N-vinyl caprolactam) (AG/PVCL) through free radical polymerization and the subsequent chemical and ionic cross-linking. A natural therapeutic molecule, tannic acid (TA)-incorporated SHG (AG/PVCL-TA), was also fabricated and its hemostatic and wound healing efficiency were studied. In the AG/PVCL-TA system, TA acts as a therapeutic molecule and also substitutes as an effective gelation binder. Notably, the polyphenol-arm structure and diverse bonding abilities of TA can hold polymer chains through multiple bonding and co-ordinate cross-linking, which were vital in the formation of the mechanically robust AG/PVCL-TA. The SHG formation was successfully balanced by varying the composition of SA, VCL, TA and cross-linkers. The AG/PVCL-TA scaffold was capable of releasing a therapeutic dose of TA in a sustained manner under physiological temperature-pH conditions. AG/PVCL-TA displayed excellent free radical scavenging, anti-inflammatory, anti-bacterial, and cell proliferation activity towards the 3T3 fibroblast cell line. The wound healing performance of AG/PVCL-TA was further confirmed in skin excision wound models, which demonstrated the potential application of AG/PVCL-TA for skin regeneration and rapid wound healing.
Collapse
Affiliation(s)
- Namitha K Preman
- Polymer Nanobiomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.
| | - Sindhu Priya E S
- Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Ashwini Prabhu
- Division of Cell and Molecular Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sadiya Bi Shaikh
- Division of Cell and Molecular Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Vipin C
- Division of Biotechnology, Microbiology and Infectious Diseases, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India and Relicus Bio Pvt. Ltd, Technology Business Incubator, Anna University, Chennai, 600025-Tamilnadu, India
| | - Rashmi R Barki
- Division of Cell and Molecular Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Yashodhar P Bhandary
- Division of Cell and Molecular Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - P D Rekha
- Division of Biotechnology, Microbiology and Infectious Diseases, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.
| |
Collapse
|
54
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
55
|
Rastin H, Ramezanpour M, Hassan K, Mazinani A, Tung TT, Vreugde S, Losic D. 3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite. Carbohydr Polym 2021; 264:117989. [PMID: 33910727 DOI: 10.1016/j.carbpol.2021.117989] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Bioink with inherent antibacterial activity is of particular interest for tissue engineering application due to the growing number of bacterial infections associated with impaired wound healing or bone implants. However, the development of cell-laden bioink with potent antibacterial activity while supporting tissue regeneration proved to be challenging. Here, we introduced a cell-laden antibacterial bioink based on Methylcellulose/Alginate (MC/Alg) hydrogel for skin tissue engineering via elimination of the risks associated with a bacterial infection. The key feature of the bioink is the use of gallium (Ga+3) in the design of bioink formulation with dual functions. First, Ga+3 stabilized the hydrogel bioink by the formation of ionic crosslinking with Alg chains. Second, the gallium-crosslinked bioink exhibited potent antibacterial activity toward both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria with a bactericidal rate of 99.99 %. In addition, it was found that the developed bioink supported encapsulated fibroblast cellular functions.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia, 5005, Australia; ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, South Australia, 5005, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia, 5005, Australia; ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, South Australia, 5005, Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia, 5005, Australia; ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, South Australia, 5005, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia, 5005, Australia; ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, South Australia, 5005, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia, 5005, Australia; ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
56
|
Zhang F, Han X, Guo C, Yang H, Wang J, Wu X. Fibrous aramid hydrogel supported antibacterial agents for accelerating bacterial-infected wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111833. [DOI: 10.1016/j.msec.2020.111833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 01/23/2023]
|
57
|
Abstract
Biocontamination of medical devices and implants is a growing issue that causes medical complications and increased expenses. In the fight against biocontamination, developing synthetic surfaces, which reduce the adhesion of microbes and provide biocidal activity or combinatory effects, has emerged as a major global strategy. Advances in nanotechnology and biological sciences have made it possible to design smart surfaces for decreasing infections. Nevertheless, the clinical performance of these surfaces is highly depending on the choice of material. This review focuses on the antimicrobial surfaces with functional material coatings, such as cationic polymers, metal coatings and antifouling micro-/nanostructures. One of the highlights of the review is providing insights into the virus-inactivating surface development, which might particularly be useful for controlling the currently confronted pandemic coronavirus disease 2019 (COVID-19). The nanotechnology-based strategies presented here might be beneficial to produce materials that reduce or prevent the transmission of airborne viral droplets, once applied to biomedical devices and protective equipment of medical workers. Overall, this review compiles existing studies in this broad field by focusing on the recent related developments, draws attention to the possible activity mechanisms, discusses the key challenges and provides future recommendations for developing new, efficient antimicrobial and antiviral surface coatings.
Collapse
|
58
|
Hao S, Shao C, Meng L, Cui C, Xu F, Yang J. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56509-56521. [PMID: 33270440 DOI: 10.1021/acsami.0c18250] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The application of conductive hydrogels in intelligent biomimetic electronics is a hot topic in recent years, but it is still a great challenge to develop the conductive hydrogels through a rapid fabrication process at ambient temperature. In this work, a versatile poly(acrylamide) @cellulose nanocrystal/tannic acid-silver nanocomposite (NC) hydrogel integrated with excellent stretchability, repeatable self-adhesion, high strain sensitivity, and antibacterial property, was synthesized via radical polymerization within 30 s at ambient temperature. Notably, this rapid polymerization was realized through a tannic acid-silver (TA-Ag) mediated dynamic catalysis system that was capable of activating ammonium persulfate and then initiated the free-radical polymerization of the acrylamide monomer. Benefiting from the incorporation of TA-Ag metal ion nanocomplexes and cellulose nanocrystals, which acted as dynamic connecting bridges by hydrogen bonds to efficiently dissipate energy, the obtained NC hydrogels exhibited prominent tensile strain (up to 4000%), flexibility, self-recovery, and antifatigue properties. In addition, the hydrogels showed repeatable adhesiveness to different substrates (e.g., glass, wood, bone, metal, and skin) and significant antibacterial properties, which were merits for the hydrogels to be assembled into a flexible epidermal sensor for long-term human-machine interfacial contact without concerns about the use of external adhesive tapes and bacterial breeding. Moreover, the remarkable conductivity (σ ∼ 5.6 ms cm-1) and strain sensitivity (gauge factor = 1.02) allowed the flexible epidermal sensors to monitor various human motions in real time, including huge movement of deformations (e.g., wrist, elbow, neck, shoulder) and subtle motions. It is envisioned that this work would provide a promising strategy for the rapid preparation of conductive hydrogels in the application of flexible electronic skin, biomedical devices, and soft robotics.
Collapse
Affiliation(s)
- Sanwei Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Changyou Shao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Lei Meng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Chen Cui
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
59
|
Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules 2020; 25:molecules25245795. [PMID: 33302592 PMCID: PMC7764781 DOI: 10.3390/molecules25245795] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels (HGs), as three-dimensional structures, are widely used in modern medicine, including regenerative medicine. The use of HGs in wound treatment and tissue engineering is a rapidly developing sector of medicine. The unique properties of HGs allow researchers to easily modify them to maximize their potential. Herein, we describe the physicochemical properties of HGs, which determine their subsequent applications in regenerative medicine and tissue engineering. Examples of chemical modifications of HGs and their applications are described based on the latest scientific reports.
Collapse
|
60
|
Chen C, Zhou L, Xie B, Wang Y, Ren L, Chen X, Cen B, Lv H, Wang H. Novel fast-acting pyrazole/pyridine-functionalized N-heterocyclic carbene silver complexes assembled with nanoparticles show enhanced safety and efficacy as anticancer therapeutics. Dalton Trans 2020; 49:2505-2516. [PMID: 32022055 DOI: 10.1039/c9dt04751d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we designed and synthesized four novel multi-nuclear silver complexes (1-4) coordinated with pyrazole- or pyridine-functionalized N-heterocyclic carbene (NHC) ligands. The crystal structures of the silver-NHC complexes were confirmed by X-ray diffraction analysis. In vitro assays showed that the silver-NHC complexes effectively killed a broad range of cancer cells after short-term drug exposure, serving as fast-acting cytotoxic agents. Of note, in cisplatin-resistant A549 cancer cells, the silver complexes were not cross-resistant with the clinically used cisplatin agent. Detailed mechanistic studies revealed that complex 2 triggered caspase-independent cell necrosis associated with intracellular reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) depletion. By exploiting a facile nano-assembly process, silver-NHC complexes 1, 2 and 4 were successfully integrated into the hydrophobic cores of amphiphilic matrices (DSPE-PEG2K), enabling systemic injection. The silver complex-loaded nanotherapeutics (1-NPs, 2-NPs, and 4-NPs) showed high safety margins with reduced systemic drug toxicities relative to cisplatin in animals. Furthermore, in a xenograft model of human colorectal cancer, the administration of the nanotherapeutics resulted in a marked inhibition of tumor progression.
Collapse
Affiliation(s)
- Chao Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China. and College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Liqian Zhou
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Yuchen Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Lulu Ren
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Xiaona Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Beini Cen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - He Lv
- College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| |
Collapse
|
61
|
Huang TW, Lu HT, Ho YC, Lu KY, Wang P, Mi FL. A smart and active film with tunable drug release and color change abilities for detection and inhibition of bacterial growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111396. [PMID: 33255001 DOI: 10.1016/j.msec.2020.111396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/03/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance has become a global issue and thus the development of natural products/biomedical materials composites with antibacterial activities is urgently needed. When acute wounds develop into chronic wounds, the wound environments become alkaline. As long as infections occur, the wound pH further increases, making the wounds difficult to heal. Besides, bacterial growth in poultry, meat, fish and seafood products is usually reflected in a marked increase of pH values. Herein, smart, stimuli responsive self-assembled multilayer and complex film were constructed through the formation of hydrogen bonds and hydrophobic interactions between hydroxypropyl methylcellulose (HPMC) and epigallocatechin-3-gallate (EGCG), thereby greatly reducing the hydrophilicity of HPMC and offering enhanced mechanical strength, superior free radical scavenging capability, and improved water vapor and light barrier properties. The EGCG/HPMC complex film was able to control EGCG release by tuning pH or temperature of the release medium. Furthermore, incorporation of CuS nanoparticles into the film allowed it to triggers EGCG release in an on-demand fashion under near-infrared (NIR) exposure. Bacterial growth in glucose-free nutrient broth medium caused pH to rise (near pH 8.0), leading to transformation of EGCG from phenol type to phenolate ion and then quinone, allowing for spontaneous generation of H2O2 to kill bacteria. The complex films changed their color in response to bacterial growth because EGCG transformed from phenol type to quinone type under alkaline condition. The green synthesized EGCG/HPMC complex films can be used as a colorimetric pH indicator and an antibacterial material for wound dressing and food packaging applications.
Collapse
Affiliation(s)
- Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Hsien-Tsung Lu
- Department of orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 11031, Taiwan
| | - Yi-Cheng Ho
- Department of Bioagricultural Science, National Chiayi University, Chiayi 60004, Taiwan
| | - Kun-Ying Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pan Wang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei City 11031, Taiwan
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
62
|
Zhong Y, Xiao H, Seidi F, Jin Y. Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules 2020; 21:2983-3006. [PMID: 32672446 DOI: 10.1021/acs.biomac.0c00760] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wound healing is usually accompanied by bacterial infection. The excessive use of synthetic antibiotics leads to drug resistance, posing a significant threat to human health. Hydrogel-based wound dressings aimed at mitigating bacterial infections have emerged as an effective wound treatment. The review presented herein particularly focuses on the hydrogels originating from natural polymers. To further enhance the performance of wound dressings, various strategies and approaches have been developed to endow the hydrogels with excellent broad-spectrum antibacterial activity. Those that are summarized in the current review are the hydrogels with intrinsic or stimuli-triggered bactericidal properties and others that serve as vehicles for loading antibacterial agents without synthetic antibiotics. Specific attention is paid to antimicrobial mechanisms and the antibacterial performance of hydrogels. Practical antibacterial applications to accelerate the wound healing employing these antibiotic-free hydrogels are also introduced along with the discussion on the current challenges and perspectives leading to new technologies.
Collapse
Affiliation(s)
- Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
63
|
Ji H, Song X, Cheng H, Luo L, Huang J, He C, Yin J, Zhao W, Qiu L, Zhao C. Biocompatible In Situ Polymerization of Multipurpose Polyacrylamide-Based Hydrogels on Skin via Silver Ion Catalyzation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31079-31089. [PMID: 32571008 DOI: 10.1021/acsami.0c02495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Xin Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Huitong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Longbo Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jianbo Huang
- Department of Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, People’s Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jiarui Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Li Qiu
- Department of Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, People’s Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
64
|
Li H, Fan W, Zhu X. Three‐dimensional printing: The potential technology widely used in medical fields. J Biomed Mater Res A 2020; 108:2217-2229. [DOI: 10.1002/jbm.a.36979] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Hongjian Li
- Southern Marine Science and Engineering Guangdong Laboratory ZhanjiangMarine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Guangdong Medical University Zhanjiang China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of StomatologyHospital of Stomatology, Sun Yat‐sen University Guangzhou China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory ZhanjiangMarine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Guangdong Medical University Zhanjiang China
| |
Collapse
|
65
|
Lee KM, Oh Y, Yoon H, Chang M, Kim H. Multifunctional Role of MoS 2 in Preparation of Composite Hydrogels: Radical Initiation and Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8642-8649. [PMID: 31976647 DOI: 10.1021/acsami.9b19567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This paper describes the multifunctional effect of molybdenum disulfide (MoS2) that enables the rapid and accessible preparation of nanocomposite hydrogels via a bottom-up design. The MoS2 nanoplatelet forms radical species through a redox reaction with persulfate under aqueous conditions while initiating the polymerization of acrylic monomers and providing noncovalent cross-linking points without requiring external stimuli or extra cross-linkers, leading to the formation of hydrogels that are in situ embedded with inorganic flakes. Furthermore, the addition of MoS2 could induce more rigid and elastic networks compared to those in control hydrogels using a typical cross-linker at the same level; for example, 0.08 wt % MoS2 resulted in a composite hydrogel of which the elastic modulus was 2.5 times greater than that from a hydrogel using N,N'-methylenebis(acrylamide) as the showing phase transition during polymerization. The composite hydrogels are self-healable, taking advantage of reversible physical cross-links. Thus, two cut hydrogel strips could be readily rejoined by heating at 70 °C, and the resulting whole strip showed mechanical strength similar to that of the pristine sample before it was cut. This synthetic approach would give way to the modular design of MoS2-containing composite hydrogels.
Collapse
Affiliation(s)
- Kyoung Min Lee
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute , Chonnam National University , 77 Yongbong-ro , Buk-gu, Gwangju 61186 , Korea
- Department of Materials Science and Engineering, College of Engineering , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Korea
| | - Yuree Oh
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute , Chonnam National University , 77 Yongbong-ro , Buk-gu, Gwangju 61186 , Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute , Chonnam National University , 77 Yongbong-ro , Buk-gu, Gwangju 61186 , Korea
| | - Mincheol Chang
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute , Chonnam National University , 77 Yongbong-ro , Buk-gu, Gwangju 61186 , Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute , Chonnam National University , 77 Yongbong-ro , Buk-gu, Gwangju 61186 , Korea
| |
Collapse
|
66
|
Liu S, Li J, Zhang S, Zhang X, Ma J, Wang N, Wang S, Wang B, Chen S. Template-Assisted Magnetron Sputtering of Cotton Nonwovens for Wound Healing Application. ACS APPLIED BIO MATERIALS 2019; 3:848-858. [DOI: 10.1021/acsabm.9b00942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shangpeng Liu
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Shaohua Zhang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Xiying Zhang
- Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, P. R. China
| | - Jianwei Ma
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Na Wang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Shuang Wang
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Bin Wang
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Shaojuan Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|