51
|
Katsuyama Y, Kudo A, Kobayashi H, Han J, Chen M, Honma I, Kaner RB. A 3D-Printed, Freestanding Carbon Lattice for Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202277. [PMID: 35726082 DOI: 10.1002/smll.202202277] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D-printing and pyrolysis, offers enormous potential for high-mass-loading electrodes. In this work, sodium-ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record-high areal capacity of 21.3 mAh cm-2 at a loading of 98 mg cm-2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm-2 at 92 mg cm-2 ). Furthermore, binder-free, pure-carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X-ray diffraction measurements. These results will advance the development of high-performance and low-cost anodes for sodium-ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D-printed carbon architectures in both applications and fundamental studies.
Collapse
Affiliation(s)
- Yuto Katsuyama
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Akira Kudo
- Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Hiroaki Kobayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Jiuhui Han
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Mingwei Chen
- Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itaru Honma
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Richard B Kaner
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1569, USA
| |
Collapse
|
52
|
Cao Y, Sun W, Guo C, Zheng L, Yao M, Wang Y. Rational Construction of Yolk-Shell Bimetal-Modified Quinonyl-Rich Covalent Organic Polymers with Ultralong Lithium-Storage Mechanism. ACS NANO 2022; 16:9830-9842. [PMID: 35658409 DOI: 10.1021/acsnano.2c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Covalent organic polymers are attracting more and more attention for energy storage devices due to their lightweight, molecular viable design, stable structure, and environmental benignity. However, low charge-carrier mobility of pristine covalent organic materials is the main drawback for their application in lithium-ion batteries. Herein, a yolk-shell bimetal-modified quinonyl-rich covalent organic material, Co@2AQ-MnO2, has been designed and synthesized by in situ loading of petal-like nanosized MnO2 and coordinating with Co centers, with the aim to improve the charge conductivity of the covalent organic polymer and activate its Li-storage sites. As investigated by in situ FT-IR, ex situ XPS, and electrochemical probing, the quinonyl-rich structure provides abundant redox sites (carbonyl groups and π electrons from the benzene ring) for lithium reaction, and the introduction of two types of metallic species promotes the charge transfer and facilitates more efficient usage of active energy-storage sites in Co@2AQ-MnO2. Thus, the Co@2AQ-MnO2 electrode exhibits good cycling performance with large reversible capacity and excellent rate performance (1534.4 mA h g-1 after 200 cycles at 100 mA g-1 and 596.0 mA h g-1 after 1000 cycles at 1000 mA g-1).
Collapse
Affiliation(s)
- Yingnan Cao
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| | - Weiwei Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| | - Chaofei Guo
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| | - Lu Zheng
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| | - Mengyao Yao
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, 99 Shangda Road, Shanghai, People's Republic of China, 200444
| |
Collapse
|
53
|
Zhang X, Li G, Wang J, Chu J, Wang F, Hu Z, Song Z. Revisiting the Structure and Electrochemical Performance of Poly( o-phenylenediamine) as an Organic Cathode Material. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27968-27978. [PMID: 35675710 DOI: 10.1021/acsami.2c06208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(o-phenylenediamine) (PoPDA) has been recognized as a low-cost electroactive organic material and studied as a cathode for aqueous zinc batteries or as an anode for nonaqueous lithium batteries. However, there remains a lot of confusion about its synthesis, structure, and electrochemical application. Especially, the previously studied PoPDA samples were mostly synthesized at room temperature, which were proved by us to be just a dimer, that is, 2,3-diaminophenazine (DAPZ). By various characterization methods including elemental analysis and mass spectrometry, we verified that the product synthesized at high temperature, PoPDA-H, was a polymer based on DAPZ as the structural repeat unit and with some imperfect substitutes (OH and NH3+CH3COO-). Based on the reversible redox reaction of phenazine units and the stable polymer structure within 1.3-3.8 V vs Li+/Li, PoPDA-H was more appropriate to be applied as a cathode rather than as an anode for lithium batteries. It achieved a high energy density of 490 Wh kg-1 (2.12 V × 231 mAh g-1) at 50 mA g-1 and a high cycling stability (79%@1000th cycle) at 500 mA g-1, both of which were comparable to previously reported expensive pyrazine- and carbonyl-based polymers. This work clarifies many misunderstandings of PoPDA, which is important to its further development toward practical application in energy-storage devices.
Collapse
Affiliation(s)
- Xi Zhang
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Gaofeng Li
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junxiao Wang
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Chu
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Wang
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zijun Hu
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiping Song
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
54
|
Néron S, Morency M, Chen L, Maris T, Rochefort D, Iftimie R, Wuest JD. Diphenoquinones Redux. J Org Chem 2022; 87:7673-7695. [PMID: 35667025 DOI: 10.1021/acs.joc.2c00260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzoquinones can undergo reversible reductions and are attractive candidates for use as active materials in green carbon-based batteries. Related compounds of potential utility include 4,4'-diphenoquinones, which have extended quinonoid structures with two carbonyl groups in different rings. Diphenoquinones are a poorly explored class of compounds, but a wide variety can be synthesized, isolated, crystallized, and fully characterized. Experimental and computational approaches have established that typical 4,4'-diphenoquinones have nearly planar cores in which two cyclohexadienone rings are joined by an unusually long interannular C═C bond. Derivatives unsubstituted at the 3,3',5,5'-positions react readily by hydration, dimerization, and other processes. Association of diphenoquinones in the solid state normally produces chains or sheets held together by multiple C-H···O interactions, giving structures that differ markedly from those of the corresponding 4,4'-dihydroxybiphenyls. Electrochemical studies in solution and in the solid state show that diphenoquinones are reduced rapidly and reversibly at potentials higher than those of analogous benzoquinones. Together, these results help bring diphenoquinones into the mainstream of modern chemistry and provide a foundation for developing redox-active derivatives for use in carbon-based electrochemical devices.
Collapse
Affiliation(s)
- Sébastien Néron
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Mathieu Morency
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Liguo Chen
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Thierry Maris
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Dominic Rochefort
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Radu Iftimie
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - James D Wuest
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
55
|
Lu Y, Cai Y, Zhang Q, Chen J. Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104150. [PMID: 34617334 DOI: 10.1002/adma.202104150] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Organic carbonyl electrode materials have shown great prospects for rechargeable batteries in view of their high capacity, flexible designability, and sustainable production. However, organic carbonyl electrode materials still suffer from unsatisfactory electrochemical performance, which is highly relevant to their redox processes. Herein, an in-depth understanding on redox processes and the correlated electrochemical performance of organic carbonyl electrode materials is provided. The redox processes discussed mainly involve molecular structure evolution (intermediates), crystal structure evolution (phase transition), and charge storage mechanisms. The properties of intermediates can affect voltage, cycling stability, reversible capacity, and rate performance of batteries. Moreover, the reversible capacity/cycling stability and rate performance would be also influenced by phase transition and charge storage mechanisms (diffusion- or surface-controlled), respectively. To accelerate the practical applications of organic carbonyl electrode materials, future work should focus on developing more in situ or operando characterization techniques and further understanding the intrinsic relationships between redox processes and performance. It is hoped that the work discussed herein will stimulate more attention to the detailed redox processes and their correlations with the performance of organic carbonyl electrode materials in rechargeable batteries.
Collapse
Affiliation(s)
- Yong Lu
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yichao Cai
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiu Zhang
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
56
|
Zhang HX, Guo RL, Zhang XL, Wang MY, Zhao BY, Gao YR, Jia Q, Wang YQ. Synthesis of Acyl Hydrazides via a Radical Chemistry of Azocarboxylic tert-Butyl Esters. J Org Chem 2022; 87:6573-6587. [PMID: 35522737 DOI: 10.1021/acs.joc.2c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new chemistry of azo compounds, that is, addition of free radicals generated in situ to access various acyl hydrazides, has been developed. The protocol provides a novel strategy for the synthesis of valuable acyl hydrazides. The transformation features mild reaction conditions, good tolerance of functional groups, and a broad substrate scope. In view of the importance of acyl hydrazides in functional materials and medicinal chemistry, this approach would find broad applications.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Ya-Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
57
|
Lee JB, Kim GH, Jeon JH, Jeong SY, Lee S, Park J, Lee D, Kwon Y, Seo JK, Chun JH, Kang SJ, Choe W, Rohde JU, Hong SY. Rapid access to polycyclic N-heteroarenes from unactivated, simple azines via a base-promoted Minisci-type annulation. Nat Commun 2022; 13:2421. [PMID: 35504905 PMCID: PMC9065069 DOI: 10.1038/s41467-022-30086-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Conventional synthetic methods to yield polycyclic heteroarenes have largely relied on metal-mediated arylation reactions requiring pre-functionalised substrates. However, the functionalisation of unactivated azines has been restricted because of their intrinsic low reactivity. Herein, we report a transition-metal-free, radical relay π-extension approach to produce N-doped polycyclic aromatic compounds directly from simple azines and cyclic iodonium salts. Mechanistic and electron paramagnetic resonance studies provide evidence for the in situ generation of organic electron donors, while chemical trapping and electrochemical experiments implicate an iodanyl radical intermediate serving as a formal biaryl radical equivalent. This intermediate, formed by one-electron reduction of the cyclic iodonium salt, acts as the key intermediate driving the Minisci-type arylation reaction. The synthetic utility of this radical-based annulative π-extension method is highlighted by the preparation of an N-doped heptacyclic nanographene fragment through fourfold C–H arylation. The functionalisation of unactivated azines has been restricted because of their intrinsic low reactivity. Here the authors show a transition-metal-free, radical relay π-extension approach to produce N-doped polycyclic aromatic compounds directly from simple azines and cyclic iodonium salts.
Collapse
Affiliation(s)
- Jae Bin Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Gun Ha Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Ji Hwan Jeon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seo Yeong Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Soochan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jaehyun Park
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Doyoung Lee
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seok Ju Kang
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jan-Uwe Rohde
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Sung You Hong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
58
|
Deng Y, Teng C, Wu Y, Zhang K, Yan L. Polypeptide Radical Cathode for Aqueous Zn-Ion Battery with Two-Electron Storage and Faster Charging Rate. CHEMSUSCHEM 2022; 15:e202102710. [PMID: 35191200 DOI: 10.1002/cssc.202102710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The rapidly growing demand for batteries has led to a lack of global mineral resources and rechargeable organic batteries are paid extensive attention, owing to the abundance resources, light weight, and high flexibility of organic electrodes. However, most organic electrodes that use aliphatic backbones are nondegradable, leading to unsustainability when active sites fail. In this study, a poly(aspartic acid) polypeptide (PASP) with amide links in the backbone and nitroxide radical pendant groups in the side chains is synthesized by modifying the polypeptides with 4-amino-2,2,6,6-tetramethylpiperidine. In combination with a Zn anode, the PASP-TEMPO composite electrode exhibits rapid charge-discharge and superior cycling stability with reversible two-electron redox reaction in aqueous electrolyte. The Zn/PASP-TEMPO organic radical battery delivers a discharge capacity of around 80 mAh g-1 by two-electron reaction and charge-discharge rates of up to 18 A g-1 . Because the redox reaction process of the nitroxyl radical turning into oxoammonium follows a p-type mechanism that interacts with an anion, three electrolytes with different anions are tested in the Zn/PASP-TEMPO organic radical battery. Experimental results indicate that discharge plateau voltage is tunable by choosing different zinc salts as electrolytes. Capacity retention of up to 97.4 % after 500 cycles is realized in 1 m ZnClO4 electrolyte, which can be attributed to the adjacent reaction potentials of the two-step one-electron reaction.
Collapse
Affiliation(s)
- Yongqi Deng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Changchang Teng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yihan Wu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kefu Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lifeng Yan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
59
|
Katsuyama Y, Kobayashi H, Iwase K, Gambe Y, Honma I. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200187. [PMID: 35266645 PMCID: PMC9036039 DOI: 10.1002/advs.202200187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Indexed: 05/29/2023]
Abstract
While organic batteries have attracted great attention due to their high theoretical capacities, high-voltage organic active materials (> 4 V vs Li/Li+ ) remain unexplored. Here, density functional theory calculations are combined with cyclic voltammetry measurements to investigate the electrochemistry of croconic acid (CA) for use as a lithium-ion battery cathode material in both dimethyl sulfoxide and γ-butyrolactone (GBL) electrolytes. DFT calculations demonstrate that CA dilitium salt (CA-Li2 ) has two enolate groups that undergo redox reactions above 4.0 V and a material-level theoretical energy density of 1949 Wh kg-1 for storing four lithium ions in GBL-exceeding the value of both conventional inorganic and known organic cathode materials. Cyclic-voltammetry measurements reveal a highly reversible redox reaction by the enolate group at ≈4 V in both electrolytes. Battery-performance tests of CA as lithium-ion battery cathode in GBL show two discharge voltage plateaus at 3.9 and 3.1 V, and a discharge capacity of 102.2 mAh g-1 with no capacity loss after five cycles. With the higher discharge voltages compared to the known, state-of-the-art organic small molecules, CA promises to be a prime cathode-material candidate for future high-energy-density lithium-ion organic batteries.
Collapse
Affiliation(s)
- Yuto Katsuyama
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980–8577Japan
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Hiroaki Kobayashi
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980–8577Japan
| | - Kazuyuki Iwase
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980–8577Japan
| | - Yoshiyuki Gambe
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980–8577Japan
| | - Itaru Honma
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980–8577Japan
| |
Collapse
|
60
|
Katsuyama Y, Takehi T, Sokabe S, Tanaka M, Ishizawa M, Abe H, Watanabe M, Honma I, Nakayasu Y. Series module of quinone-based organic supercapacitor (> 6 V) with practical cell structure. Sci Rep 2022; 12:3915. [PMID: 35273235 PMCID: PMC8913612 DOI: 10.1038/s41598-022-07853-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Inexpensive, high-performing, and environmentally friendly energy storage devices are required for smart grids that efficiently utilize renewable energy. Energy storage devices consisting of organic active materials are promising because organic materials, especially quinones, are ubiquitous and usually do not require harsh conditions for synthesis, releasing less CO2 during mass production. Although fundamental research-scale aqueous quinone-based organic supercapacitors have shown excellent energy storage performance, no practical research has been conducted. In this study, we aimed to develop a practical-scale aqueous-quinone-based organic supercapacitor. By connecting 12 cells of size 10 cm × 10 cm × 0.5 cm each in series, we fabricated a high-voltage (> 6 V) aqueous organic supercapacitor that can charge a smartphone at a 1 C rate. This is the first step in commercializing aqueous organic supercapacitors that could solve environmental problems, such as high CO2 emissions, air pollution by toxic metals, and limited electricity generation by renewable resources.
Collapse
Affiliation(s)
- Yuto Katsuyama
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, 90095, USA
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-8578, Japan
| | - Takayuki Takehi
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-8578, Japan
- Division of General Education, National Institute of Technology Nagaoka College, Niigata, 940-0817, Japan
| | - Shu Sokabe
- Research Center of Supercritical Fluid Technology, Tohoku University, Sendai, 980-8579, Japan
| | - Mai Tanaka
- School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Mizuki Ishizawa
- School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Hiroya Abe
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-8578, Japan
| | - Masaru Watanabe
- Research Center of Supercritical Fluid Technology, Tohoku University, Sendai, 980-8579, Japan
| | - Itaru Honma
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
| | - Yuta Nakayasu
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-8578, Japan.
- Research Center of Supercritical Fluid Technology, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
61
|
Luo XX, Li WH, Liang HJ, Zhang HX, Du KD, Wang XT, Liu XF, Zhang JP, Wu XL. Covalent Organic Framework with Highly Accessible Carbonyls and π-Cation Effect for Advanced Potassium-Ion Batteries. Angew Chem Int Ed Engl 2022; 61:e202117661. [PMID: 35034424 DOI: 10.1002/anie.202117661] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 12/11/2022]
Abstract
Covalent organic frameworks (COF) possess a robust and porous crystalline structure, making them an appealing candidate for energy storage. Herein, we report an exfoliated polyimide COF composite (P-COF@SWCNT) prepared by an in situ condensation of anhydride and amine on the single-walled carbon nanotubes as advanced anode for potassium-ion batteries (PIBs). Numerous active sites exposed on the exfoliated frameworks and the various open pathways promote the highly efficient ion diffusion in the P-COF@SWCNT while preventing irreversible dissolution in the electrolyte. During the charging/discharging process, K+ is engaged in the carbonyls of imide group and naphthalene rings through the enolization and π-K+ effect, which is demonstrated by the DFT calculation and XPS, ex-situ FTIR, Raman. As a result, the prepared P-COF@SWCNT anode enables an incredibly high reversible specific capacity of 438 mA h g-1 at 0.05 A g-1 and extended stability. The structural advantage of P-COF@SWCNT enables more insights into the design and versatility of COF as an electrode.
Collapse
Affiliation(s)
- Xiao-Xi Luo
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wen-Hao Li
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hao-Jie Liang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Xia Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Kai-Di Du
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiao-Tong Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xin-Fang Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jing-Ping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xing-Long Wu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.,MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
62
|
Wang H, Zhao L, Tang X, Lv L, Sun W, Wang Y. Functionalized Graphene Quantum Dots Modified Dioxin‐Linked Covalent Organic Frameworks for Superior Lithium Storage. Chemistry 2022; 28:e202103901. [DOI: 10.1002/chem.202103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Han Wang
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Lu Zhao
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Xuxu Tang
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Li‐Ping Lv
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering Ministry of Education Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Weiwei Sun
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering Ministry of Education Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Yong Wang
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering Ministry of Education Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| |
Collapse
|
63
|
Sha D, Lu C, He W, Ding J, Zhang H, Bao Z, Cao X, Fan J, Dou Y, Pan L, Sun Z. Surface Selenization Strategy for V 2CT x MXene toward Superior Zn-Ion Storage. ACS NANO 2022; 16:2711-2720. [PMID: 35113510 DOI: 10.1021/acsnano.1c09639] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MXenes are promising cathode materials for aqueous zinc-ion batteries (AZIBs) owing to their layered structure, metallic conductivity, and hydrophilicity. However, they suffer from low capacities unless they are subjected to electrochemically induced second phase formation, which is tedious, time-consuming, and uncontrollable. Here we propose a facile one-step surface selenization strategy for realizing advanced MXene-based nanohybrids. Through the selenization process, the surface metal atoms of MXenes are converted to transition metal selenides (TMSes) exhibiting high capacity and excellent structural stability, whereas the inner layers of MXenes are purposely retained. This strategy is applicable to various MXenes, as demonstrated by the successful construction of VSe2@V2CTx, TiSe2@Ti3C2Tx, and NbSe2@Nb2CTx. Typically, VSe2@V2CTx delivers high-rate capability (132.7 mA h g-1 at 2.0 A g-1), long-term cyclability (93.1% capacity retention after 600 cycles at 2.0 A g-1), and high capacitive contribution (85.7% at 2.0 mV s-1). Detailed experimental and simulation results reveal that the superior Zn-ion storage is attributed to the engaging integration of V2CTx and VSe2, which not only significantly improves the Zn-ion diffusion coefficient from 4.3 × 10-15 to 3.7 × 10-13 cm2 s-1 but also provides sufficient structural stability for long-term cycling. This study offers a facile approach for the development of high-performance MXene-based materials for advanced aqueous metal-ion batteries.
Collapse
Affiliation(s)
- Dawei Sha
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chengjie Lu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wei He
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jianxiang Ding
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Heng Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Zhuoheng Bao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xin Cao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jingchen Fan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yan Dou
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
64
|
Schröter E, Stolze C, Saal A, Schreyer K, Hager MD, Schubert US. All-Organic Redox Targeting with a Single Redox Moiety: Combining Organic Radical Batteries and Organic Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6638-6648. [PMID: 35084188 DOI: 10.1021/acsami.1c21122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The volumetric capacities and the lifetime of organic redox flow batteries (RFBs) are strongly dependent on the concentrations of the redox-active molecules in the electrolyte. Single-molecule redox targeting represents an efficient approach toward realizing viable organic RFBs with low to moderate electrolyte concentrations. For the first time, an all-organic Nernstian potential-driven redox targeting system is investigated that directly combines a single-electrode material from organic radical batteries (ORBs) with a single redox couple of an aqueous, organic RFB, which are based on the same redox moiety. Namely, poly(TEMPO-methacrylate) (PTMA) is utilized as the redox target ("solid booster") and N,N,N-2,2,6,6-heptamethylpiperidinyloxy-4-ammonium chloride (TMATEMPO) is applied as the sole redox mediator to demonstrate the redox targeting mechanisms between the storage materials of both battery types. The formal potentials of both molecules are investigated, and the targeting mechanism is verified by cyclic voltammetry and state-of-charge measurements. Finally, battery cycling experiments demonstrate that 78-90% of the theoretical capacity of the ORB electrode material can be addressed when this material is present as the redox target in the electrolyte tank of an operating, aqueous organic RFB.
Collapse
Affiliation(s)
- Erik Schröter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Christian Stolze
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Adrian Saal
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Kristin Schreyer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
65
|
Wang Y, Chen D. Application of Advanced Vibrational Spectroscopy in Revealing Critical Chemical Processes and Phenomena of Electrochemical Energy Storage and Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23033-23055. [PMID: 35130433 DOI: 10.1021/acsami.1c20893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The future of the energy industry and green transportation critically relies on exploration of high-performance, reliable, low-cost, and environmentally friendly energy storage and conversion materials. Understanding the chemical processes and phenomena involved in electrochemical energy storage and conversion is the premise of a revolutionary materials discovery. In this article, we review the recent advancements of application of state-of-the-art vibrational spectroscopic techniques in unraveling the nature of electrochemical energy, including bulk energy storage, dynamics of liquid electrolytes, interfacial processes, etc. Technique-wise, the review covers a wide range of spectroscopic methods, including classic vibrational spectroscopy (direct infrared absorption and Raman scattering), external field enhanced spectroscopy (surface enhanced Raman and IR, tip enhanced Raman, and near-field IR), and two-photon techniques (2D infrared absorption, stimulated Raman, and vibrational sum frequency generation). Finally, we provide perspectives on future directions in refining vibrational spectroscopy to contribute to the research frontier of electrochemical energy storage and conversion.
Collapse
Affiliation(s)
- You Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Dongchang Chen
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
66
|
2, 6-Diaminopyridine decorated reduced graphene oxide as integrated electrode with excellent electrochemical properties for aqueous supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
67
|
Luo X, Li W, Liang H, Zhang H, Du K, Wang X, Liu X, Zhang J, Wu X. Covalent Organic Framework with Highly Accessible Carbonyls and π‐Cation Effect for Advanced Potassium‐Ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao‐Xi Luo
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Wen‐Hao Li
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun 130024 P. R. China
| | - Hao‐Jie Liang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun 130024 P. R. China
| | - Hong‐Xia Zhang
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Kai‐Di Du
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xiao‐Tong Wang
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xin‐Fang Liu
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Jing‐Ping Zhang
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xing‐Long Wu
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
68
|
Wei C, Tan L, Zhang Y, Xi B, Xiong S, Feng J. MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2979-2988. [PMID: 34995069 DOI: 10.1021/acsami.1c22787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic electrode materials have shown potential for rechargeable batteries because they are environmentally friendly, earth-abundant sources, recyclable, high sustainable, designable, flexible, and lightweight. However, low electrical conductivity and dissolution in organic liquid electrolytes hinder their further development. Herein, MXene/organics heterostructures are designed to address the problems of organic electrodes via a scalable and simple electrostatic self-assembly strategy. Under the effect of the electrostatic interaction, organic cathode material, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), is tightly attached to MXene nanosheets. Owing to the high electronic conductivity and special two-dimensional (2D) structure of MXene nanosheets, the issues of PTCDA cathode are effectively relieved. When applied in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), the MXene@PTCDA heterostructure exhibits significantly enhanced rate capability and cycling performance than bare PTCDA. The heterostructures proposed here can be applied to other (K, Zn, Al, Mg, Ca, etc.) battery systems. In addition to energy storage and conversion, the heterostructures can be also extended to many fields such as catalysis, sensors, electronics, optics, membranes, semiconductors, biomedicines, etc.
Collapse
Affiliation(s)
- Chuanliang Wei
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Liwen Tan
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Yuchan Zhang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|
69
|
Guruprasadagowda Y, Harish M, Tripathy D, Sampath S. Tetrakis Coumarin as Efficient Electrode Material for Rechargeable Lithium Ion Battery. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
70
|
Desai AV, Rainer DN, Pramanik A, Cabañero JM, Morris RE, Armstrong AR. Rapid Microwave-Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodium-Ion Batteries. SMALL METHODS 2021; 5:e2101016. [PMID: 34928021 DOI: 10.1002/smtd.202101016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Sodium-ion batteries are commanding increasing attention owing to their promising electrochemical performance and sustainability. Organic electrode materials (OEMs) complement such technologies as they can be sourced from biomass and recycling them is environmentally friendly. Organic anodes based on sodium carboxylates have exhibited immense potential, except the limitation of current synthesis methods concerning upscaling and energy costs. In this work, a rapid and energy efficient microwave-assisted synthesis for organic anodes is presented using sodium naphthalene-2,6-dicarboxylate as a model compound. Optimizing the synthesis and electrode composition enables the compound to deliver a reversible initial capacity of ≈250 mAh g-1 at a current density of 25 mA g-1 with a high initial Coulombic efficiency (≈78%). The capacity is stable over 400 cycles and the compound also exhibits good rate performance. The successful demonstration of this rapid synthesis may facilitate the transition to preparing organic battery materials by scalable, efficient methods.
Collapse
Affiliation(s)
- Aamod V Desai
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| | - Daniel N Rainer
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Atin Pramanik
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Joel M Cabañero
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| | - Russell E Morris
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 128 43, Czech Republic
| | - Anthony Robert Armstrong
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| |
Collapse
|
71
|
Kong D, Fan H, Ding X, Hu H, Zhou L, Li B, Chi C, Wang X, Wang Y, Wang X, wang D, Shen Y, Qiu Z, Cai T, Cui Y, Ren Y, Li X, Xing W. Realizing a long lifespan aluminum-ion battery through the anchoring effect between Polythiophene and carboxyl modified carbon nanotube. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
72
|
Hou S, Zhang X, Zhou P, Chen S, Lin H, Zhou J, Zhuo S, Liu Y. Three-dimensional thiophene-diketopyrrolopyrrole-based molecules/graphene aerogel as high-performance anode material for lithium-ion batteries. RSC Adv 2021; 11:35020-35027. [PMID: 35494733 PMCID: PMC9043015 DOI: 10.1039/d1ra06528a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, 3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) and di-tert-butyl 2,2'-(1,4-dioxo-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-2,5(1H,4H)-diyl)diacetate (TDPPA) were synthesized, which were then loaded in graphene aerogels. The as-prepared thiophene-diketopyrrolopyrrole-based molecules/reduced graphene oxide composites for lithium-ion battery (LIB) anode composites consist of DPPs nanorods on a graphene network. In relation to the DPPs part, embedding DPPs nanorods into graphene aerogels can effectively reduce the dissolution of DPPs in the electrolyte. It can serve to prevent electrode rupture and improve electron transport and lithium-ion diffusion rate, by partially connecting DPPs nanorods through graphene. The composite not only has a high reversible capacity, but also shows excellent cycling stability and performance, due to the densely distributed graphene nanosheets forming a three-dimensional conductive network. The TDPP60 electrode exhibits high reversible capacity and excellent performance, showing an initial discharge capacity of 835 mA h g-1 at a current density of 100 mA g-1. Even at a current density of 1000 mA g-1, after 500 cycles, it still demonstrates a discharge capacity of 303 mA h g-1 with a capacity retention of 80.7%.
Collapse
Affiliation(s)
- Shengxian Hou
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 China
| | - Xinyao Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 China
| | - Pengfei Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 China
| | - Shuhai Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 China
| | - Hongtao Lin
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 China
| | - Yuying Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 China
| |
Collapse
|
73
|
Chen Z, Sun P, Bai P, Su H, Yang J, Liu Y, Xu Y, Geng Y. A poorly soluble organic electrode material for high energy density lithium primary batteries based on a multi-electron reduction. Chem Commun (Camb) 2021; 57:10791-10794. [PMID: 34590106 DOI: 10.1039/d1cc03938e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report an organic cathode material with poor solubility for lithium primary batteries, i.e. indeno[3,2-b]fluorene-6,12-dione. Each carbonyl group experiences a four-electron reduction to a methylene group, resulting in a high energy density of 1392 W h kg-1, which is among the best results for organic electrode materials.
Collapse
Affiliation(s)
- Zifeng Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China.
| | - Pengfei Sun
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China.
| | - Panxing Bai
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China.
| | - Hai Su
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China.
| | - Jixing Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China.
| | - Yang Liu
- National Institutes for Food and Drug Control, Beijing 102625, P. R. China.
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China.
| | - Yanhou Geng
- School of Materials Science and Engineering, Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tinajin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
74
|
Weng J, Xi Q, Zeng X, Lin ZQ, Zhao J, Zhang L, Huang W. Recent Progress of Hexaazatriphenylene-based Electrode Materials for Rechargeable Batteries. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
75
|
Ma Q, Zheng J, Kang H, Zhang L, Zhang Q, Li H, Wang R, Zhou T, Chen Q, Liu A, Li H, Zhang C. Conjugated Porous Polydiaminophenylsulfone-Triazine Polymer-A High-Performance Anode for Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43002-43010. [PMID: 34488343 DOI: 10.1021/acsami.1c14973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic compounds are promising electrode materials because of their resource sustainability, environmental friendliness, and highly tailorable properties. The porous conjugated polymer shows great potential as an electrode material for its tunable redox nature, conjugated skeleton, and porous structure. Herein, a novel conjugated porous polymer, polydiaminophenylsulfone-triazine, was synthesized by a simple nucleophilic substitution reaction. The conjugated structure and triazine ring can improve the conductivity, charge-transfer efficiency, and physicochemical stability. Also, the porous polymeric framework shows a large specific surface area and high porosity, providing a large contact area with electrolytes and reducing diffusion distance. The polymer demonstrates highly stable cycling performance and good rate capability as an anode for lithium-ion batteries, suggesting a promising strategy to design a competitive electrode material.
Collapse
Affiliation(s)
- Quanwei Ma
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material, Leibniz Research Center of Materials Science, Anhui University, Hefei 230039, China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material, Leibniz Research Center of Materials Science, Anhui University, Hefei 230039, China
| | - Hongwei Kang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| | - Longhai Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material, Leibniz Research Center of Materials Science, Anhui University, Hefei 230039, China
| | - Qianyu Zhang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hao Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material, Leibniz Research Center of Materials Science, Anhui University, Hefei 230039, China
| | - Rui Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material, Leibniz Research Center of Materials Science, Anhui University, Hefei 230039, China
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material, Leibniz Research Center of Materials Science, Anhui University, Hefei 230039, China
| | - Qi Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material, Leibniz Research Center of Materials Science, Anhui University, Hefei 230039, China
| | - Axue Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material, Leibniz Research Center of Materials Science, Anhui University, Hefei 230039, China
| | - Hongbao Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material, Leibniz Research Center of Materials Science, Anhui University, Hefei 230039, China
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material, Leibniz Research Center of Materials Science, Anhui University, Hefei 230039, China
| |
Collapse
|
76
|
Xu YS, Guo SJ, Tao XS, Sun YG, Ma J, Liu C, Cao AM. High-Performance Cathode Materials for Potassium-Ion Batteries: Structural Design and Electrochemical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100409. [PMID: 34270806 DOI: 10.1002/adma.202100409] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/05/2021] [Indexed: 06/13/2023]
Abstract
Due to the obvious advantage in potassium reserves, potassium-ion batteries (PIBs) are now receiving increasing research attention as an alternative energy storage system for lithium-ion batteries (LIBs). Unfortunately, the large size of K+ makes it a challenging task to identify suitable electrode materials, particularly cathode ones that determine the energy density of PIBs, capable of tolerating the serious structural deformation during the continuous intercalation/deintercalation of K+ . It is therefore of paramount importance that proper design principles of cathode materials be followed to ensure stable electrochemical performance if a practical application of PIBs is expected. Herein, the current knowledge on the structural engineering of cathode materials acquired during the battle against its performance degradation is summarized. The K+ storage behavior of different types of cathodes is discussed in detail and the structure-performance relationship of materials sensitive to their different lattice frameworks is highlighted. The key issues facing the future development of different categories of cathode materials are also highlighted and perspectives for potential approaches and strategies to promote the further development of PIBs are provided.
Collapse
Affiliation(s)
- Yan-Song Xu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Si-Jie Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xian-Sen Tao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Yong-Gang Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - An-Min Cao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
77
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
78
|
Wang Y, Tian W, Zhang H, Wang Y. Nb 2N monolayer as a promising anode material for Li/Na/K/Ca-ion batteries: a DFT calculation. Phys Chem Chem Phys 2021; 23:12288-12295. [PMID: 34018511 DOI: 10.1039/d1cp00993a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Developing ranking anode materials with sufficient electrical conductivity, ultrafast ion diffusion ability and considerable storage capacity is of great importance for rechargeable ion batteries but still challenging. Herein, using first-principles calculations, the potential of monolayer Nb2N as an anode material for alkali metal (e.g., Li, Na, K and Ca) ion batteries (LIBs, SIBs, PIBs and CIBs) has been explored. The calculated results indicate that the Nb2N monolayer is dynamically and thermally stable with excellent electronic conductivity. To be specific, the Li, Na, K and Ca atoms can be steadily adsorbed on the Nb2N monolayer with a low adsorption energy of -0.996, -1.263, -1.568, and -1.401 eV, respectively. Impressively, the calculated low diffusion barriers for Li, Na, K and Ca on the Nb2N monolayer are 0.047, 0.029, 0.015 and 0.051 eV, respectively, implying its high performance for the ultrafast charge and discharge processes. More importantly, the maximum storage capacities are 536 mA h g-1 for LIBs and 1072 mA h g-1 for CIBs, which are much larger than those of common anode materials. This work not only demonstrates that the Nb2N monolayer can be used as a promising anode material but also inspires the future rational design of other nitride MXenes in energy conversion and storage devices.
Collapse
Affiliation(s)
- Yanwei Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
| | - Wu Tian
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China. and The School of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, P. R. China
| |
Collapse
|
79
|
Abstract
ConspectusMacrocycles have had a profound influence on the establishment of supramolecular chemistry because of their abundant molecular recognition and self-assembly characteristics. The design of new macrocyclic receptors that can be tailored by synthesis to display new and exotic properties is an important research objective for chemists and materials scientists. Rigid macrocycles with π-conjugated aromatic units, in contrast with flexible ones, tend to possess large interior and exterior π-surfaces in addition to persistent shapes. These features not only endow these macrocycles with a wide range of host-guest properties but also render them ideal building blocks for constructing a diverse variety of supramolecular architectures. The incorporation of π-conjugated units into macrocycles also imbues them with a wealth of optical, electronic, and magnetic properties, resulting in their broad application in materials science and molecular nanotechnology.Recently, we have designed and synthesized a new class of macrocycles, namely, molecular triangles, which have rigid structures with triangular geometries. They consist of three chiral trans-1,2-cyclohexano apexes and three aromatic tetracarboxylic diimide linkers, such as pyromellitic diimide, naphthalene diimide, and perylene diimide. Benefiting from the availability of facile synthetic protocols, the geometries and properties of these rigid molecular triangles can be altered at will. By combining these tetracarboxylic diimide linkers, we have been able to synthesize both molecular equilateral and isosceles triangles. During the past few years, we have conducted research in a systematic manner on the structural features and self-assembly characteristics of these molecular triangles. The following points are worthy of note regarding these molecular triangles: (i) They possess shape-persistent inner cavities of a highly electron-deficient nature. These features endow them with the ability to complex with anions and electron-rich molecules, forming supramolecular nanotubes and two-dimensional tilings. (ii) Those with intrinsic chirality are able to self-assemble into solid-state nonhelical or single-handed helical superstructures, inducing selective chirality transfer from the macrocycles to their crystalline supramolecular assemblies. (iii) The triangular arrangement of aromatic tetracarboxylic diimide linkers contributes to through-space electron delocalization encompassing the entire macrocycle, conferring exotic electronic and spin properties. To date, the family of molecular triangles has exhibited a range of physicochemical properties, such as anion recognition, chiral assembly, supramolecular gelation, energy storage, solid-state luminescence, and nonlinear optical response.In this Account, we summarize our recent progress in research into these molecular triangles. We present an overview of their design and synthesis, as well as a general summary of their structural features. Thereafter, we discuss state-of-the-art developments in relation to their molecular recognition properties and their assembly characteristics. In addition, we highlight the potential applications of these molecular triangles and their complexes with a range of solvents and electron-rich molecules. Finally, we speculate on further structural modifications and application-oriented explorations based on this class of molecular triangles.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
80
|
Schanze KS. Year 2020: Science and Engineering Research Continues. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14799-14801. [PMID: 33827153 DOI: 10.1021/acsami.1c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
81
|
Qin K, Holguin K, Mohammadiroudbari M, Luo C. A conjugated tetracarboxylate anode for stable and sustainable Na-ion batteries. Chem Commun (Camb) 2021; 57:2360-2363. [PMID: 33533778 DOI: 10.1039/d0cc08273b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A conjugated tetracarboxylate, 1,2,4,5-benzenetetracarboxylate sodium salt (Na4C10H2O8), was designed and synthesized as an anode material in Na-ion batteries (NIBs). This organic compound shows low redox potentials (∼0.65 V), long cycle life (1000 cycles), and fast charging capability (up to 2 A g-1), demonstrating a promising organic anode for stable and sustainable NIBs.
Collapse
Affiliation(s)
- Kaiqiang Qin
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, USA.
| | | | | | | |
Collapse
|
82
|
Ito H, Murata T, Fujisaki M, Tsuji R, Morita Y. High Capacity and Energy Density Organic Lithium-Ion Battery Based on Buckypaper with Stable π-Radical. CHEMSUSCHEM 2021; 14:1377-1387. [PMID: 33403780 DOI: 10.1002/cssc.202002851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Owing to an increasing demand on high performance and rare-metal free energy storage systems, organic rechargeable battery has attracted much attention. To increase the capacity of the whole battery, we have fabricated coin-type buckypaper cells composed of a trioxotriangulene neutral radical derivative (H3 TOT) and single-walled carbon nanotubes as a cathode and lithium metal plate as an anode without current collector. The cells exhibited a stable charge-discharge behavior even at a 90 wt % H3 TOT content with a high-rate performance of 10 C originating from high electrical conductivity of H3 TOT. Furthermore, based on the four-stage redox ability of H3 TOT, the H3 TOT 90 wt % cathode showed a high capacity of approximately 260 mAh g-1 and a high energy density of 546 Wh g-1 . In view of the simple fabrication of the cathode and excellent performance, TOT-based buckypaper will open a new strategy for the flexible cells for next-generation energy storages.
Collapse
Affiliation(s)
- Hiroshi Ito
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Megumi Fujisaki
- Material Solutions New Research Engine, KANEKA Corporation, Techno-Alliance Building, Osaka University, Yamadaoka 2-8, Suita, Osaka, Japan
| | - Ryotaro Tsuji
- Material Solutions New Research Engine, KANEKA Corporation, Techno-Alliance Building, Osaka University, Yamadaoka 2-8, Suita, Osaka, Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| |
Collapse
|
83
|
Desmaizieres G, Speer ME, Thiede I, Gaiser P, Perner V, Kolek M, Bieker P, Winter M, Esser B. Dibenzo[a,e]Cyclooctatetraene-Functionalized Polymers as Potential Battery Electrode Materials. Macromol Rapid Commun 2021; 42:e2000725. [PMID: 33660343 DOI: 10.1002/marc.202000725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Organic redox polymers are attractive electrode materials for more sustainable rechargeable batteries. To obtain full-organic cells with high operating voltages, redox polymers with low potentials (<2 V versus Li|Li+ ) are required for the negative electrode. Dibenzo[a,e]cyclooctatetraene (DBCOT) is a promising redox-active group in this respect, since it can be reversibly reduced in a two-electron process at potentials below 1 V versus Li|Li+ . Upon reduction, its conformation changes from tub-shaped to planar, rendering DBCOT-based polymers also of interest to molecular actuators. Here, the syntheses of three aliphatic DBCOT-polymers and their electrochemical properties are presented. For this, a viable three-step synthetic route to 2-bromo-functionalized DBCOT as polymer precursor is developed. Cyclic voltammetry (CV) measurements in solution and of thin films of the DBCOT-polymers demonstrate their potential as battery electrode materials. Half-cell measurements in batteries show pseudo capacitive behavior with Faradaic contributions, which demonstrate that electrode composition and fabrication will play an important role in the future to release the full redox activity of the DBCOT polymers.
Collapse
Affiliation(s)
- Gauthier Desmaizieres
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, Freiburg, 79104, Germany
| | - Martin E Speer
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, Freiburg, 79104, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
| | - Inna Thiede
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, Bonn, 53121, Germany
| | - Philipp Gaiser
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, Freiburg, 79104, Germany
| | - Verena Perner
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstraße 46, Münster, 48149, Germany
| | - Martin Kolek
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstraße 46, Münster, 48149, Germany
| | - Peter Bieker
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstraße 46, Münster, 48149, Germany.,Helmholtz Institute Münster (HI MS), IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, Münster, 48149, Germany
| | - Martin Winter
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstraße 46, Münster, 48149, Germany.,Helmholtz Institute Münster (HI MS), IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, Münster, 48149, Germany
| | - Birgit Esser
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, Freiburg, 79104, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| |
Collapse
|
84
|
Feng X, Chen X, Ren B, Wu X, Huang X, Ding R, Sun X, Tan S, Liu E, Gao P. Stabilization of Organic Cathodes by a Temperature-Induced Effect Enabling Higher Energy and Excellent Cyclability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7178-7187. [PMID: 33538571 DOI: 10.1021/acsami.0c20525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To face the challenge of all-climate application, organic rechargeable batteries must hold the capability of efficiently operating both at high temperatures (>50 °C) and low temperatures (-20 °C). However, the low electronic conductivity and high solubility of organic molecules significantly impede the development in electrochemical energy storage. This issue can be effectively diminished using functionalized porphyrin complex-based organic cathodes by the in-situ electropolymerization of electrodes at elevating temperatures during electrochemical cycling. [5,15-bis(ethynyl)-10,20-diphenylporphinato]copper(II) (CuDEPP)- and 5,15-bis(ethynyl)-10,20-diphenylporphinato (DEPP)-based cathodes are proposed as models, and it is proved that a largely improved electrochemical performance is observed in both cathodes at a high operating temperature. Reversible capacities of 249 and 105 mA h g-1 are obtained for the CuDEPP and DEPP cathodes after 1000 cycles at 50 °C, respectively. The result indicates that the temperature-induced in situ electropolymerization strategy responds to the enhanced electrochemical performance. This study would open new opportunities for developing highly stable organic cathodes for electrochemical energy storage even at high temperatures.
Collapse
Affiliation(s)
- Xin Feng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, 411105 Xiangtan, China
| | - Xi Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, 411105 Xiangtan, China
| | - Bo Ren
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, 411105 Xiangtan, China
| | - Xing Wu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, 411105 Xiangtan, China
| | - Xiuhui Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, 411105 Xiangtan, China
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, 411105 Xiangtan, China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, 411105 Xiangtan, China
| | - Songting Tan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, 411105 Xiangtan, China
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, 411105 Xiangtan, China
| | - Ping Gao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, 411105 Xiangtan, China
| |
Collapse
|
85
|
Shadike Z, Tan S, Wang QC, Lin R, Hu E, Qu D, Yang XQ. Review on organosulfur materials for rechargeable lithium batteries. MATERIALS HORIZONS 2021; 8:471-500. [PMID: 34821265 DOI: 10.1039/d0mh01364a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic electrode materials have been considered as promising candidates for the next generation rechargeable battery systems due to their high theoretical capacity, versatility, and environmentally friendly nature. Among them, organosulfur compounds have been receiving more attention in conjunction with the development of lithium-sulfur batteries. Usually, organosulfide electrodes can deliver a relatively high theoretical capacity based on reversible breakage and formation of disulfide (S-S) bonds. In this review, we provide an overview of organosulfur materials for rechargeable lithium batteries, including their molecular structural design, structure related electrochemical performance study and electrochemical performance optimization. In addition, recent progress of advanced characterization techniques for investigation of the structure and lithium storage mechanism of organosulfur electrodes are elaborated. To further understand the perspective application, the additive effect of organosulfur compounds for lithium metal anodes, sulfur cathodes and high voltage inorganic cathode materials are reviewed with typical examples. Finally, some remaining challenges and perspectives of the organosulfur compounds as lithium battery components are also discussed. This review is intended to serve as general guidance for researchers to facilitate the development of organosulfur compounds.
Collapse
Affiliation(s)
- Zulipiya Shadike
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | | | | | | | | | | | |
Collapse
|
86
|
Khan R, Nishina Y. Covalent functionalization of carbon materials with redox-active organic molecules for energy storage. NANOSCALE 2021; 13:36-50. [PMID: 33336671 DOI: 10.1039/d0nr07500k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon-based materials (CBMs) have shown great versatility because they can be chemically combined with other materials for various applications. Chemical modification of CBMs can be achieved via covalent or non-covalent interactions. Non-covalent interactions are weak and fragile, causing structural change and molecule dissociation. Therefore, in this review, we summarize the covalent modification of CBMs via organic chemistry techniques, aiming at forming more robust and stable CBMs. Besides, their application as electrode materials in energy storage systems is also within the scope of this review. Covalent binding of redox-active organic molecules with CBMs improves the transfer rate of electrons and prevents the dissolution of redox-active molecules, resulting in good conductivity and cycle life. Numerous papers on the functionalization of CBMs have been published to date, but some of them lack scientific evidence and are unable to understand from chemistry viewpoint. Reliable articles with adequate evidence are summarized in this review from a synthetic chemistry viewpoint.
Collapse
Affiliation(s)
- Rizwan Khan
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | | |
Collapse
|
87
|
Tong Y, Wang X, Zhang Y, Huang W. Recent advances of covalent organic frameworks in lithium ion batteries. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01104e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review divides the active sites of COFs into four categories: carbonyl, phenyl, imine bonds and other groups, and introduces their applications in LIBs.
Collapse
Affiliation(s)
- Yifan Tong
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Xuehan Wang
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Yi Zhang
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Weiwei Huang
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| |
Collapse
|
88
|
Yang D, Zhou Y, Geng H, Liu C, Lu B, Rui X, Yan Q. Pathways towards high energy aqueous rechargeable batteries. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213521] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
Abstract
AbstractThe demands for high-performance and low-cost batteries make K-ion batteries (KIBs) considered as promising supplements or alternatives for Li-ion batteries (LIBs). Nevertheless, there are only a small amount of conventional inorganic electrode materials that can be used in KIBs, due to the large radius of K+ ions. Differently, organic electrode materials (OEMs) generally own sufficiently interstitial space and good structure flexibility, which can maintain superior performance in K-ion systems. Therefore, in recent years, more and more investigations have been focused on OEMs for KIBs. This review will comprehensively cover the researches on OEMs in KIBs in order to accelerate the research and development of KIBs. The reaction mechanism, electrochemical behavior, etc., of OEMs will all be summarized in detail and deeply. Emphasis is placed to overview the performance improvement strategies of OEMs and the characteristic superiority of OEMs in KIBs compared with LIBs and Na-ion batteries.
Collapse
|
90
|
Desai AV, Morris RE, Armstrong AR. Advances in Organic Anode Materials for Na-/K-Ion Rechargeable Batteries. CHEMSUSCHEM 2020; 13:4866-4884. [PMID: 32672396 PMCID: PMC7540706 DOI: 10.1002/cssc.202001334] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Indexed: 06/05/2023]
Abstract
Electrochemical energy storage (EES) devices are gaining ever greater prominence in the quest for global energy security. With increasing applications and widening scope, rechargeable battery technology is gradually finding avenues for more abundant and sustainable systems such as Na-ion (NIB) and K-ion batteries (KIB). Development of suitable electrode materials lies at the core of this transition. Organic redox-active molecules are attractive candidates as negative electrode materials owing to their low redox potentials and the fact that they can be obtained from biomass. Also, the rich structural diversity allows integration into several solid-state polymeric materials. Research in this domain is increasingly focused on deploying molecular engineering to address specific electrochemical limitations that hamper competition with rival materials. This Minireview aims to summarize the advances in both the electrochemical properties and the materials development of organic anode materials.
Collapse
Affiliation(s)
- Aamod V. Desai
- EastChem School of ChemistryUniversity of St. AndrewsNorth HaughSt. AndrewsKY16 9STUnited Kingdom
- The Faraday InstitutionQuad One Harwell Science and Innovation CampusDidcotOX11 0RAUnited Kingdom
| | - Russell E. Morris
- EastChem School of ChemistryUniversity of St. AndrewsNorth HaughSt. AndrewsKY16 9STUnited Kingdom
- The Faraday InstitutionQuad One Harwell Science and Innovation CampusDidcotOX11 0RAUnited Kingdom
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityHlavova 8128 43Prague 2Czech Republic
| | - A. Robert Armstrong
- EastChem School of ChemistryUniversity of St. AndrewsNorth HaughSt. AndrewsKY16 9STUnited Kingdom
- The Faraday InstitutionQuad One Harwell Science and Innovation CampusDidcotOX11 0RAUnited Kingdom
| |
Collapse
|
91
|
Wang Z, Jin W, Huang X, Lu G, Li Y. Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review. CHEM REC 2020; 20:1198-1219. [PMID: 32881320 DOI: 10.1002/tcr.202000074] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
As the world moves toward electromobility, our daily lives are flooded with variety of lithium ion batteries (LIBs), and the concerns of cost, safety and environmental friendliness of LIBs spring up in the minds of scientists. Although organic electrodes have been considered as promising alternatives to their inorganic counterparts, some intrinsic weaknesses still plague scientists, such as high solubility, low conductivity and sluggish ion diffusion. The emergence of covalent organic frameworks (COFs) attracts our attention because of their robust networks and open pores that could facilitate the infiltration of electrolyte ions when used as electrodes for metal-ion batteries (MIBs). In this review, we summarized the recent progress of COFs as electrode materials, and the strategies toward enhancing electrochemical performance of COF-based electrode in MIBs are discussed. Hopefully, this review will provide a fundamental guidance for future development of COF-based electrodes.
Collapse
Affiliation(s)
- Zhaolei Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Weize Jin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.,School of Physical Science & Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| |
Collapse
|
92
|
Affiliation(s)
- Xiudong Chen
- College of Chemistry and Environmental Engineering Jiujiang University Qianjin East Road 551 Jiujiang P. R. China 332005
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai P. R. China 200444
| | - Weiwei Sun
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai P. R. China 200444
| | - Yong Wang
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai P. R. China 200444
| |
Collapse
|
93
|
Huang J, Dong X, Guo Z, Wang Y. Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angew Chem Int Ed Engl 2020; 59:18322-18333. [PMID: 32329546 DOI: 10.1002/anie.202003198] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Aqueous batteries using inorganic compounds as electrode materials are considered a promising solution for grid-scale energy storage, while wide application is limited by the short life and/or high cost of electrodes. Organics with carbonyl groups are being investigated as the alternative to inorganic electrode materials because they offer the advantages of tunable structures, renewability, and they are environmentally benign. Furthermore, the wide internal space of such organic materials enables flexible storage of various charged ions (for example, H+ , Li+ , Na+ , K+ , Zn2+ , Mg2+ , and Ca2+ , and so on). We offer a comprehensive overview of the progress of organics containing carbonyls for energy storage and conversion in aqueous electrolytes, including applications in aqueous batteries as solid-state electrodes, in flow batteries as soluble redox species, and in water electrolysis as redox buffer electrodes. The advantages of organic electrodes are summarized, with a discussion of the challenges remaining for their practical application.
Collapse
Affiliation(s)
- Jianhang Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.,School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xiaoli Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Zhaowei Guo
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yonggang Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
94
|
Huang J, Dong X, Guo Z, Wang Y. Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003198] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianhang Huang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 China
| | - Xiaoli Dong
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Zhaowei Guo
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Yonggang Wang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| |
Collapse
|
95
|
Yang J, Shi Y, Li M, Sun P, Xu Y. Performance Enhancement of Polymer Electrode Materials for Lithium-Ion Batteries: From a Rigid Homopolymer to Soft Copolymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32666-32672. [PMID: 32584017 DOI: 10.1021/acsami.0c07292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthesizing redox-active units containing polymers is a promising route for improving the cycling stability of organic electrode materials. However, constructing uniform electrode architectures with good polymer dispersion is a big challenge in the case of polymer electrode materials. In this work, we design and synthesize two anthraquinone-containing copolymers and compare their electrochemical performance with that of the corresponding homopolymer. It is uncovered that the copolymers with soft units in the main chain display increased chain flexibility, thus leading to a slightly increased solubility. Because of this, the soft copolymers are less likely to precipitate during solvent volatilization of electrode preparation and thus can form more uniform electrode architectures. The cyclic voltammogram and electrochemical impedance spectroscopy measurements indicate that copolymer electrodes display decreased polarization and improved kinetics compared with the homopolymer electrode. The copolymers exhibit significantly enhanced cycling stability and improved rate performance. After 100 cycles, both copolymers reveal very high capacity retention of above 98%, while the homopolymer retains only 71% of its highest capacity. Moreover, the copolymer can discharge/charge at 1C for over 2000 cycles with almost no capacity fading, indicating excellent long-term cycling performance. This work further demonstrates the importance of molecular structure and electrode architecture in determining the electrochemical performance of polymer electrode materials.
Collapse
Affiliation(s)
- Jixing Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Yeqing Shi
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Mengjie Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Pengfei Sun
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
96
|
Fujihara Y, Kobayashi H, Takaishi S, Tomai T, Yamashita M, Honma I. Electrical Conductivity-Relay between Organic Charge-Transfer and Radical Salts toward Conductive Additive-Free Rechargeable Battery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25748-25755. [PMID: 32412238 DOI: 10.1021/acsami.0c03642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, organic electrode materials have been strongly considered for use in sustainable batteries. However, most organic electrode materials have low electrical conductivity and require a lot of conductive additives, which decrease the effective capacity based on the entire electrode weight/volume. In this study, we propose a novel electrical conductivity-relay system that imparts electrical conductivity to organic small molecular electrodes without any conductive additive throughout the charge/discharge cycles. It consists of the combination of the charge-transfer phenomenon in a pristine state and the formation of organic radical salts in redox states. Herein, we demonstrate this electrical conductivity-relay system using a simply mixed molecular crystal couple of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) as a cathode without any conductive additive and aqueous sodium bromide as an electrolyte. During charge/discharge, the electrical conductivity of the cathode is supported by charge-transfer at the TTF/TCNQ interface and (TTF)Brn (0.7 ≤ n ≤ 0.8) and NaTCNQ radical salts, and the cathode exhibits a specific capacity of 112 mAh g-1 and a retention rate of 80.7% at the 30th cycle. Furthermore, the molecular crystal couple electrode of TTF and TCNQ shows better charge/discharge performance than the pure charge-transfer complex electrode, indicating that this system expands candidates for organic electrode materials to various pairs and mixing ratios of small molecules that do not form charge-transfer complexes.
Collapse
Affiliation(s)
- Yui Fujihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan
| | - Hiroaki Kobayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan
| | - Takaaki Tomai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan
- WPI Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Itaru Honma
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
97
|
Eder S, Yoo DJ, Nogala W, Pletzer M, Santana Bonilla A, White AJP, Jelfs KE, Heeney M, Choi JW, Glöcklhofer F. Switching between Local and Global Aromaticity in a Conjugated Macrocycle for High-Performance Organic Sodium-Ion Battery Anodes. Angew Chem Int Ed Engl 2020; 59:12958-12964. [PMID: 32368821 PMCID: PMC7496320 DOI: 10.1002/anie.202003386] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Indexed: 11/06/2022]
Abstract
Aromatic organic compounds can be used as electrode materials in rechargeable batteries and are expected to advance the development of both anode and cathode materials for sodium-ion batteries (SIBs). However, most aromatic organic compounds assessed as anode materials in SIBs to date exhibit significant degradation issues under fast-charge/discharge conditions and unsatisfying long-term cycling performance. Now, a molecular design concept is presented for improving the stability of organic compounds for battery electrodes. The molecular design of the investigated compound, [2.2.2.2]paracyclophane-1,9,17,25-tetraene (PCT), can stabilize the neutral state by local aromaticity and the doubly reduced state by global aromaticity, resulting in an anode material with extraordinarily stable cycling performance and outstanding performance under fast-charge/discharge conditions, demonstrating an exciting new path for the development of electrode materials for SIBs and other types of batteries.
Collapse
Affiliation(s)
- Simon Eder
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Dong-Joo Yoo
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Matthias Pletzer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Alejandro Santana Bonilla
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Andrew J P White
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
98
|
Eder S, Yoo D, Nogala W, Pletzer M, Santana Bonilla A, White AJP, Jelfs KE, Heeney M, Choi JW, Glöcklhofer F. Switching between Local and Global Aromaticity in a Conjugated Macrocycle for High‐Performance Organic Sodium‐Ion Battery Anodes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Simon Eder
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Dong‐Joo Yoo
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Wojciech Nogala
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Matthias Pletzer
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Alejandro Santana Bonilla
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Andrew J. P. White
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Kim E. Jelfs
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| |
Collapse
|
99
|
Manzhos S. Aggregate-State Effects in the Atomistic Modeling of Organic Materials for Electrochemical Energy Conversion and Storage Devices: A Perspective. Molecules 2020; 25:molecules25092233. [PMID: 32397438 PMCID: PMC7249095 DOI: 10.3390/molecules25092233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
Development of new functional materials for novel energy conversion and storage technologies is often assisted by ab initio modeling. Specifically, for organic materials, such as electron and hole transport materials for perovskite solar cells, LED (light emitting diodes) emitters for organic LEDs (OLEDs), and active electrode materials for organic batteries, such modeling is often done at the molecular level. Modeling of aggregate-state effects is onerous, as packing may not be known or large simulation cells may be required for amorphous materials. Yet aggregate-state effects are essential to estimate charge transport rates, and they may also have substantial effects on redox potentials (voltages) and optical properties. This paper summarizes recent studies by the author's group of aggregation effects on the electronic properties of organic materials used in optoelectronic devices and in organic batteries. We show that in some cases it is possible to understand the mechanism and predict specific performance characteristics based on simple molecular models, while in other cases the inclusion of effects of aggregation is essential. For example, it is possible to understand the mechanism and predict the overall shape of the voltage-capacity curve for insertion-type organic battery materials, but not the absolute voltage. On the other hand, oligomeric models of p-type organic electrode materials can allow for relatively reliable estimates of voltages. Inclusion of aggregate state modeling is critically important for estimating charge transport rates in materials and interfaces used in optoelectronic devices or when intermolecular charge transfer bands are important. We highlight the use of the semi-empirical DFTB (density functional tight binding) method to simplify such calculations.
Collapse
Affiliation(s)
- Sergei Manzhos
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes QC J3X1S2, Canada
| |
Collapse
|
100
|
Wang J, Shen Z, Yi M. Facile preparation of MoS 2/maleic acid composite as high-performance anode for lithium ion batteries. NEW J CHEM 2020. [DOI: 10.1039/d0nj03195j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a facile one-step method to prepare a MoS2 composite anode with excellent electrochemical performance and potential for practical applications in lithium ion batteries.
Collapse
Affiliation(s)
- Jingshi Wang
- Beijing Key Laboratory for Powder Technology Research and Development & School of Aeronautic Science and Engineering
- Beihang University
- Beijing 100191
- China
| | - Zhigang Shen
- Beijing Key Laboratory for Powder Technology Research and Development & School of Aeronautic Science and Engineering
- Beihang University
- Beijing 100191
- China
| | - Min Yi
- State Key Lab of Mechanics and Control of Mechanical Structures & Key Lab for Intelligent Nano Materials and Devices of Ministry of Education & College of Aerospace Engineering
- Nanjing University of Aeronautics and Astronautics (NUAA)
- Nanjing 210016
- China
| |
Collapse
|