51
|
Fricke C, Deckers K, Schoenebeck F. Orthogonal Stability and Reactivity of Aryl Germanes Enables Rapid and Selective (Multi)Halogenations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Christoph Fricke
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Kristina Deckers
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
52
|
Fricke C, Reid WB, Schoenebeck F. A Review on Oxidative Gold‐Catalyzed C‐H Arylation of Arenes – Challenges and Opportunities. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christoph Fricke
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - William B. Reid
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
53
|
Rocchigiani L, Bochmann M. Recent Advances in Gold(III) Chemistry: Structure, Bonding, Reactivity, and Role in Homogeneous Catalysis. Chem Rev 2020; 121:8364-8451. [DOI: 10.1021/acs.chemrev.0c00552] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Luca Rocchigiani
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR47TJ, United Kingdom
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR47TJ, United Kingdom
| |
Collapse
|
54
|
Jiang W, Xu M, Yang S, Xie X, Xiao B. Alkylation‐Terminated Catellani Reactions Using Alkyl Carbagermatranes. Angew Chem Int Ed Engl 2020; 59:20450-20454. [DOI: 10.1002/anie.202008482] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Wei‐Tao Jiang
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Meng‐Yu Xu
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Shuo Yang
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Xiu‐Ying Xie
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Bin Xiao
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
55
|
Sherborne GJ, Gevondian AG, Funes‐Ardoiz I, Dahiya A, Fricke C, Schoenebeck F. Modular and Selective Arylation of Aryl Germanes (C−GeEt
3
) over C−Bpin, C−SiR
3
and Halogens Enabled by Light‐Activated Gold Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Grant J. Sherborne
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Avetik G. Gevondian
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Amit Dahiya
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christoph Fricke
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
56
|
Sherborne GJ, Gevondian AG, Funes‐Ardoiz I, Dahiya A, Fricke C, Schoenebeck F. Modular and Selective Arylation of Aryl Germanes (C-GeEt 3 ) over C-Bpin, C-SiR 3 and Halogens Enabled by Light-Activated Gold Catalysis. Angew Chem Int Ed Engl 2020; 59:15543-15548. [PMID: 32392397 PMCID: PMC7496160 DOI: 10.1002/anie.202005066] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 01/31/2023]
Abstract
Selective Csp 2 -Csp 2 couplings are powerful strategies for the rapid and programmable construction of bi- or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd-catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0 /PdII catalysis) in the presence of the valuable functionalities C-BPin, C-SiMe3 , C-I, C-Br, C-Cl, which in turn offer versatile opportunities for diversification. The protocol makes use of visible light activation combined with gold catalysis, which facilitates the selective coupling of C-Ge with aryl diazonium salts. Contrary to previous light-/gold-catalyzed couplings of Ar-N2 + , which were specialized in Ar-N2 + scope, we present conditions to efficiently couple electron-rich, electron-poor, heterocyclic and sterically hindered aryl diazonium salts. Our computational data suggest that while electron-poor Ar-N2 + salts are readily activated by gold under blue-light irradiation, there is a competing dissociative deactivation pathway for excited electron-rich Ar-N2 + , which requires an alternative photo-redox approach to enable productive couplings.
Collapse
Affiliation(s)
- Grant J. Sherborne
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Avetik G. Gevondian
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Amit Dahiya
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Christoph Fricke
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
57
|
Ball LT, Corrie TJA, Cresswell AJ, Lloyd-Jones GC. Kinetic Analysis of Domino Catalysis: A Case Study on Gold-Catalyzed Arylation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Liam T. Ball
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Tom J. A. Corrie
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Alexander J. Cresswell
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
58
|
Huang B, Hu M, Toste FD. Homogeneous Gold Redox Chemistry: Organometallics, Catalysis, and Beyond. TRENDS IN CHEMISTRY 2020; 2:707-720. [PMID: 34341775 PMCID: PMC8321390 DOI: 10.1016/j.trechm.2020.04.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gold redox chemistry holds the promise of unique reactivities and selectivities that are different to other transition metals. Recent studies have utilized strain release, ligand design, and photochemistry to promote the otherwise sluggish oxidative addition to Au(I) complexes. More details on the reductive elimination from Au(III) complexes have also been revealed. These discoveries have facilitated the development of gold redox catalysis and will continue to offer mechanistic insight and inspiration for other transition metals. This review highlights how research in organometallic chemistry has led to gold redox catalysis, as well as applications in materials science, bioconjugation, and radiochemical synthesis.
Collapse
Affiliation(s)
- Banruo Huang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mingyou Hu
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
59
|
Daley RA, Morrenzin AS, Neufeldt SR, Topczewski JJ. Gold Catalyzed Decarboxylative Cross-Coupling of Iodoarenes. J Am Chem Soc 2020; 142:13210-13218. [PMID: 32634305 DOI: 10.1021/jacs.0c06244] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This report details a decarboxylative cross-coupling of (hetero)aryl carboxylates with iodoarenes in the presence of a gold catalyst (>25 examples, up to 96% yield). This reaction is site specific, which overcomes prior limitations associated with gold catalyzed oxidative coupling reactions. The reactivity of the (hetero)aryl carboxylate correlates qualitatively to the field effect parameter (Fortho). Reactions with isolated gold complexes and DFT calculations support a mechanism proceeding through oxidative addition at a gold(I) cation with decarboxylation being viable at either a gold(I) or a silver(I) species.
Collapse
Affiliation(s)
- Ryan A Daley
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Aaron S Morrenzin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Joseph J Topczewski
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
60
|
Gold(I)/Gold(III) Catalysis that Merges Oxidative Addition and π‐Alkene Activation. Angew Chem Int Ed Engl 2020; 59:16625-16630. [DOI: 10.1002/anie.202006074] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Indexed: 01/12/2023]
|
61
|
Rigoulet M, Thillaye du Boullay O, Amgoune A, Bourissou D. Gold(I)/Gold(III) Catalysis that Merges Oxidative Addition and π‐Alkene Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mathilde Rigoulet
- CNRS/Université Toulouse III—Paul SabatierLaboratoire, Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Olivier Thillaye du Boullay
- CNRS/Université Toulouse III—Paul SabatierLaboratoire, Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Abderrahmane Amgoune
- CNRS/Université Toulouse III—Paul SabatierLaboratoire, Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Didier Bourissou
- CNRS/Université Toulouse III—Paul SabatierLaboratoire, Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| |
Collapse
|
62
|
Davey SG. Making germanes relevant in cross-coupling. Nat Rev Chem 2020; 4:333. [PMID: 37127951 DOI: 10.1038/s41570-020-0207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
63
|
Selmani A, Gevondian AG, Schoenebeck F. Germylation of Arenes via Pd(I) Dimer Enabled Sulfonium Salt Functionalization. Org Lett 2020; 22:4802-4805. [PMID: 32491868 DOI: 10.1021/acs.orglett.0c01609] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While aryl germanes have recently found usage as coupling partners in powerful catalytic applications, the synthetic access to this promising functionality is currently limited. This report details the straightforward synthesis of functionalized aryl triethylgermanes via formal C-H functionalization. Building on the concept of directing-group-free and site-selective C-H functionalization of arenes to thianthrenium salt intermediates, we showcase their efficient couplings with triethylgermane (Et3Ge-H) at room temperature, which was enabled by the air- and moisture-stable Pd(I) dimer, [Pd(μ-I)(PtBu3)]2. The method tolerates numerous functional groups, including valuable (pseudo)halides.
Collapse
Affiliation(s)
- Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Avetik G Gevondian
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
64
|
Debrauwer V, Turlik A, Rummler L, Prescimone A, Blanchard N, Houk KN, Bizet V. Ligand-Controlled Regiodivergent Palladium-Catalyzed Hydrogermylation of Ynamides. J Am Chem Soc 2020; 142:11153-11164. [DOI: 10.1021/jacs.0c03556] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vincent Debrauwer
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Lénaic Rummler
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Alessandro Prescimone
- Chemistry Department, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Vincent Bizet
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| |
Collapse
|
65
|
Wollenburg M, Bajohr J, Marchese AD, Whyte A, Glorius F, Lautens M. Palladium-Catalyzed Disilylation and Digermanylation of Alkene Tethered Aryl Halides: Direct Access to Versatile Silylated and Germanylated Heterocycles. Org Lett 2020; 22:3679-3683. [DOI: 10.1021/acs.orglett.0c01169] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marco Wollenburg
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan Bajohr
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Austin D. Marchese
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Andrew Whyte
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Mark Lautens
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
66
|
Dahiya A, Fricke C, Schoenebeck F. Gold-Catalyzed Chemoselective Couplings of Polyfluoroarenes with Aryl Germanes and Downstream Diversification. J Am Chem Soc 2020; 142:7754-7759. [DOI: 10.1021/jacs.0c02860] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christoph Fricke
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
67
|
Xu M, Wang C, Jiang W, Xiao B. Synthesis and Application of Heterocyclic Germatranes via Rhodium‐Catalyzed Directed C−H Activation/Annulation with Alkynyl Germatranes and Palladium‐Catalyzed Cross‐Coupling. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meng‐Yu Xu
- Department of ChemistryUniversity of Science and Technology of China Hefei 230026 People's Republic of China
| | - Chao Wang
- Department of ChemistryUniversity of Science and Technology of China Hefei 230026 People's Republic of China
| | - Wei‐Tao Jiang
- Department of ChemistryUniversity of Science and Technology of China Hefei 230026 People's Republic of China
| | - Bin Xiao
- Department of ChemistryUniversity of Science and Technology of China Hefei 230026 People's Republic of China
| |
Collapse
|
68
|
Cadge JA, Sparkes HA, Bower JF, Russell CA. Oxidative Addition of Alkenyl and Alkynyl Iodides to a Au
I
Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jamie A. Cadge
- School of ChemistryUniversity of Bristol Cantock's Close BS8 1TS UK
| | - Hazel A. Sparkes
- School of ChemistryUniversity of Bristol Cantock's Close BS8 1TS UK
| | - John F. Bower
- School of ChemistryUniversity of Bristol Cantock's Close BS8 1TS UK
| | | |
Collapse
|
69
|
Cadge JA, Sparkes HA, Bower JF, Russell CA. Oxidative Addition of Alkenyl and Alkynyl Iodides to a Au I Complex. Angew Chem Int Ed Engl 2020; 59:6617-6621. [PMID: 31951062 DOI: 10.1002/anie.202000473] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 12/22/2022]
Abstract
The first isolated examples of intermolecular oxidative addition of alkenyl and alkynyl iodides to AuI are reported. Using a 5,5'-difluoro-2,2'-bipyridyl ligated complex, oxidative addition of geometrically defined alkenyl iodides occurs readily, reversibly and stereospecifically to give alkenyl-AuIII complexes. Conversely, reversible alkynyl iodide oxidative addition generates bimetallic complexes containing both AuIII and AuI centers. Stoichiometric studies show that both new initiation modes can form the basis for the development of C-C bond forming cross-couplings.
Collapse
Affiliation(s)
- Jamie A Cadge
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, UK
| | - Hazel A Sparkes
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, UK
| | - John F Bower
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, UK
| | | |
Collapse
|
70
|
Meera G, Rohit KR, Treesa GSS, Anilkumar G. Advances and Prospects in Gold‐Catalyzed C−H Activation. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gopinadh Meera
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills Kottayam, Kerala 686560 India
| | - K. R. Rohit
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills Kottayam, Kerala 686560 India
| | - G. S. Susan Treesa
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills Kottayam, Kerala 686560 India
| | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills Kottayam, Kerala 686560 India
| |
Collapse
|
71
|
Lee HW, So CM, Yuen OY, Wong WT, Kwong FY. Palladium-catalyzed cross-coupling of (hetero)aryl or alkenyl sulfonates with aryl titanium as the multi-functional reagent. Org Chem Front 2020. [DOI: 10.1039/c9qo01537j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first palladium-catalyzed cross-coupling reaction of aryl/heteroaryl and alkenyl mesylates and tosylates with aryl titanium as the multi-functional reagent is reported.
Collapse
Affiliation(s)
- Hang Wai Lee
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute (SZRI)
| | - Chau Ming So
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute (SZRI)
| | - On Ying Yuen
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
- Department of Chemistry
| | - Wing Tak Wong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute (SZRI)
| | - Fuk Yee Kwong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
- Department of Chemistry
| |
Collapse
|
72
|
Nijamudheen A, Datta A. Gold-Catalyzed Cross-Coupling Reactions: An Overview of Design Strategies, Mechanistic Studies, and Applications. Chemistry 2019; 26:1442-1487. [PMID: 31657487 DOI: 10.1002/chem.201903377] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI /AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.
Collapse
Affiliation(s)
- A Nijamudheen
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India.,Department of Chemical & Biomedical Engineering, Florida A&M University-Florida State University, Joint College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India
| |
Collapse
|