51
|
Vyas V, Maurya P, Indra A. Metal-organic framework-derived CoN x nanoparticles on N-doped carbon for selective N-alkylation of aniline. Chem Sci 2023; 14:12339-12344. [PMID: 37969583 PMCID: PMC10631233 DOI: 10.1039/d3sc02515b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023] Open
Abstract
N-alkylation of anilines by alcohols can be used as an efficient strategy to synthesise a wide range of secondary amines. In this respect, a hydrogen borrowing methodology has been explored using precious metal-based catalysts. However, the utilisation of cheap and readily available transition metal based catalysts is required for large-scale applications. In this work, we have reported metal-organic framework-derived CoNx@NC catalysts for the selective N-alkylation of anilines with different types of alcohols. The Co-N coordination in CoNx@NC was found to be extremely important to improve the conversion efficiency and yield of the product. As a result, CoNx@NC produced 99% yield of the desired amines, which is far better than that of Co@C (yield = 65%). In addition, CoNx@NC showed remarkable recyclability for six cycles with a minimum drop in the yield of the desired product.
Collapse
Affiliation(s)
- Ved Vyas
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi UP-221005 India
| | - Priyanka Maurya
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi UP-221005 India
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi UP-221005 India
| |
Collapse
|
52
|
Babu R, Sukanya Padhy S, Kumar R, Balaraman E. Catalytic Amination of Alcohols Using Diazo Compounds under Manganese Catalysis Through Hydrogenative N-Alkylation Reaction. Chemistry 2023; 29:e202302007. [PMID: 37486329 DOI: 10.1002/chem.202302007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Sustainable chemical production requires fundamentally new types of catalysts and catalytic technologies. The development of coherent and robust catalytic systems based on earth-abundant transition metals is essential, but highly challenging. Herein, we systematically explored a general hydrogenative cleavage/N-alkylation tandem of cyclic and acyclic diazo (N=N) compounds to value-added amines under manganese catalysis. The reaction is catalyzed by a single-site molecular manganese complex and proceeds via tandem dehydrogenation, transfer hydrogenation, and borrowing hydrogenation strategies. Interestingly, the reaction involves abundantly available renewable feedstocks, such as alcohols, that can act as (transfer)hydrogenating and alkylating agents. The synthetic application of our approach in large-scale pharmaceutical synthesis and easy access to highly demanding N-CH3 /CD3 derivatives are also demonstrated. Kinetic studies show that the reaction rate depends on the concentration of alcohol and Mn-catalyst and follows fractional orders. Several selective bond activation/formation reactions occur sequentially via amine-amide metal-ligand cooperation.
Collapse
Affiliation(s)
- Reshma Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Subarna Sukanya Padhy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Rohit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| |
Collapse
|
53
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
54
|
Vijaya Sankar R, Mathew A, Pradhan S, Kuniyil R, Gunanathan C. Ruthenium-Catalyzed Selective α-Alkylation of β-Naphthols using Primary Alcohols: Elucidating the Influence of Base and Water. Chemistry 2023; 29:e202302102. [PMID: 37486957 DOI: 10.1002/chem.202302102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Functionalized arenes and arenols have diverse applications in chemical synthesis and material chemistry. Selective functionalization of arenols is a topic of prime interest. In particular, direct alkylation of arenols using alcohols is a challenging task. In this report, a ruthenium pincer catalyzed direct α-alkylation of β-naphthol using primary alcohols as alkylating reagents is reported. Notably, aryl and heteroaryl methanols and linear and branched aliphatic alcohols underwent selective alkylation reactions, in which water is the only byproduct. Notably, catalytically derived α-alkyl-β-naphthol products displayed high absorbance, emissive properties, and quantum yields (up to 93.2 %). Dearomative bromination on α-alkyl-β-naphthol is demonstrated as a synthetic application. Mechanistic studies indicate that the reaction involves an aldehyde intermediate. DFT studies support this finding and further reveal that a stoichiometric amount of base is required to make the aldol condensation as well as elementary steps required for regeneration of catalytically active species. In situ-generated water molecule from the aldol condensation reaction plays an important role in the regeneration of an active catalyst.
Collapse
Affiliation(s)
- Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| | - Abra Mathew
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Kerala, 678623, India
| | - Subham Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Kerala, 678623, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| |
Collapse
|
55
|
De S, Ranjan P, Chaurasia V, Pal S, Pal S, Pandey P, Bera JK. Synchronous Proton-Hydride Transfer by a Pyrazole-Functionalized Protic Mn(I) Complex in Catalytic Alcohol Dehydrogenative Coupling. Chemistry 2023; 29:e202301758. [PMID: 37490592 DOI: 10.1002/chem.202301758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
A series of Mn(I) complexes Mn(L1 )(CO)3 Br, Mn(L2 )(CO)3 Br, Mn(L1 )(CO)3 (OAc) and Mn(L3 )(CO)3 Br [L1 =2-(5-tert-butyl-1H-pyrazol-3-yl)-1,8-naphthyridine, L2 =2-(5-tert-butyl-1H-pyrazol-3-yl)pyridine, L3 =2-(5-tert-butyl-1-methyl-1H-pyrazol-3-yl)-1,8-naphthyridine] were synthesized and fully characterized. The acid-base equilibrium between the pyrazole and the pyrazolato forms of Mn(L1 )(CO)3 Br was studied by 1 H NMR and UV-vis spectra. These complexes are screened as catalysts for acceptorless dehydrogenative coupling (ADC) of primary alcohols and aromatic diamines for the synthesis of benzimidazole and quinoline derivatives with the release of H2 and H2 O as byproducts. The protic complex Mn(L1 )(CO)3 Br shows the highest catalytic activity for the synthesis of 2-substituted benzimidazole derivatives with broad substrate scope, whereas a related complex [Mn(L3 )(CO)3 Br], which is devoid of the proton responsive β-NH unit, shows significantly reduced catalytic efficiency validating the crucial role of the β-NH functionality for the alcohol dehydrogenation reactions. Control experiments, kinetic and deuterated studies, and density functional theory (DFT) calculations reveal a synchronous hydride-proton transfer by the metal-ligand construct in the alcohol dehydrogenation step.
Collapse
Affiliation(s)
- Subhabrata De
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Prabodh Ranjan
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vishal Chaurasia
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sourav Pal
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Saikat Pal
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Pragati Pandey
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jitendra K Bera
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
56
|
Manikpuri D, Sankar RV, Gunanathan C. Direct Synthesis of Aldoximes: Ruthenium-Catalyzed Coupling of Alcohols and Hydroxylamine Hydrochloride. Chem Asian J 2023; 18:e202300678. [PMID: 37671629 DOI: 10.1002/asia.202300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
A catalytic method for the direct synthesis of oximes from alcohols and hydroxyl amine hydrochloride salt is reported. The reaction is catalyzed by a ruthenium pincer catalyst, which oxidizes alcohols involving amine-amide metal-ligand cooperation, and the in situ formed aldehydes condense with hydroxyl amine to deliver the oximes. Notably, the reaction requires only a catalyst and base; water and liberated hydrogen are the only byproducts, making this protocol attractive and environmentally benign.
Collapse
Affiliation(s)
- Deepsagar Manikpuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| | - Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| |
Collapse
|
57
|
Cao H, Cheng Q, Studer A. meta-Selective C-H Functionalization of Pyridines. Angew Chem Int Ed Engl 2023; 62:e202302941. [PMID: 37013613 DOI: 10.1002/anie.202302941] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
The pyridine moiety is an important core structure for a variety of drugs, agrochemicals, catalysts, and functional materials. Direct functionalization of C-H bonds in pyridines is a straightforward approach to access valuable substituted pyridines. Compared to the direct ortho- and para-functionalization, meta-selective pyridine C-H functionalization is far more challenging due to the inherent electronic properties of the pyridine entity. This review summarizes currently available methods for pyridine meta-C-H functionalization using a directing group, non-directed metalation, and temporary dearomatization strategies. Recent advances in ligand control and temporary dearomatization are highlighted. We analyze the advantages as well as limitations of current techniques and hope to inspire further developments in this important area.
Collapse
Affiliation(s)
- Hui Cao
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Qiang Cheng
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
58
|
Ke Z, Wang Y, Zhao Y, Tang M, Zeng W, Wang Y, Chang X, Han B, Liu Z. Ionic-Liquid Hydrogen-Bonding Promoted Alcohols Amination over Cobalt Catalyst via Dihydrogen Autotransfer Mechanism. CHEMSUSCHEM 2023; 16:e202300513. [PMID: 37191041 DOI: 10.1002/cssc.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
Higher amines are important high-valuable chemicals with wide applications, and amination of alcohols is a green route to them, which however generally suffers from harsh reaction conditions and use of equivalent base. Herein, we report an ionic-liquid (IL) hydrogen-bonding promoted dihydrogen autotransfer strategy for amination of alcohols to higher amines over cobalt catalyst under base-free conditions. Co(BF4 )2 ⋅ 6 H2 O complexed with triphos and IL (e. g., tetrabutylphosphonium tetrafluoroborate, [P4444 ][BF4 ]) shows high performances for the reaction and is tolerant of a wide scope of amines and alcohols, affording higher amines in good to excellent yields. Mechanism investigation indicates that the [BF4 ]- anion activates the alcohol via hydrogen bonding, promoting transfer of both hydroxyl H and α-H atoms of alcohol to the cobalt catalyst to form an aldehyde intermediate and cobalt dihydride complex, which are involved in the subsequent reductive amination. This strategy provides a green and effective route for alcohol amination, which may have promising applications in alcohol-involved alkylation reactions.
Collapse
Affiliation(s)
- Zhengang Ke
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yuepeng Wang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfei Zhao
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minhao Tang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zeng
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Chang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhimin Liu
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
59
|
Gao Y, Hong G, Yang BM, Zhao Y. Enantioconvergent transformations of secondary alcohols through borrowing hydrogen catalysis. Chem Soc Rev 2023; 52:5541-5562. [PMID: 37519093 DOI: 10.1039/d3cs00424d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Direct substitution of readily available alcohols is recognized as a key research area in green chemical synthesis. Starting from simple racemic secondary alcohols, the achievement of catalytic enantioconvergent transformations of the substrates will be highly desirable for efficient access to valuable enantiopure compounds. To accomplish such attractive yet challenging transformations, the strategy of the enantioconvergent borrowing hydrogen methodology has proven to be uniquely effective and versatile. This review aims to provide an overview of the impressive progress made on this topic of research that has only thrived in the past decade. In particular, the conversion of racemic secondary alcohols to enantioenriched chiral amines, N-heterocycles, higher-order alcohols and ketones will be discussed in detail.
Collapse
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| |
Collapse
|
60
|
P H, Hati S, Dey R. S-Alkylation of dithiocarbamates via a hydrogen borrowing reaction strategy using alcohols as alkylating agents. Org Biomol Chem 2023; 21:6360-6367. [PMID: 37489908 DOI: 10.1039/d3ob00958k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Herein, we report an operationally simple, environmentally benign and scalable approach towards the synthesis of S-benzyl/alkyl dithiocarbamates via a hydrogen borrowing reaction between alcohols and dithiocarbamate anions catalyzed using a hydroxyapatite-supported copper nano-catalyst. This strategy has a broad substrate scope and offers high yields of products using inexpensive and readily available alcohols as starting materials. The catalyst was prepared by easy and straightforward methods and analyzed by several analytical techniques, e.g., FESEM, HR-TEM, BET, XRD, EDS, and XPS, demonstrating the anchoring of Cu nanoparticles on hydroxyapatite in the zero oxidation state.
Collapse
Affiliation(s)
- Hima P
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| | - Spandan Hati
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| | - Raju Dey
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| |
Collapse
|
61
|
Izquierdo-Aranda L, Adam R, Cabrero-Antonino JR. Silver Supported Nanoparticles on [Mg 4 Al-LDH] as an Efficient Catalyst for the α-Alkylation of Nitriles, Oxindoles and Other Carboxylic Acid Derivatives with Alcohols. CHEMSUSCHEM 2023:e202300818. [PMID: 37486295 DOI: 10.1002/cssc.202300818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
An efficient heterogeneous silver-catalyzed α-alkylation of nitriles and oxindoles using alcohols via borrowing hydrogen strategy has been developed for the first time. The active nanostructured material, namely [Ag/Mg4 Al-LDH], composed by silver nanoparticles (3-4 nm average particle size) homogeneously stabilized onto a [Mg4 Al-LDH] support with suitable Brønsted basic properties, constitutes a stable catalyst for the sustainable building of novel C-C bonds from alcohols and C-nucleophiles. By applying this catalyst, a broad range of α-functionalized nitriles and oxindoles has been accessed with good to excellent isolated yields and without the addition of external bases. Moreover, the novel silver nanocatalyst has also demonstrated its successful application to the cyclization of N-[2-(hydroxymethyl)phenyl]-2-phenylacetamides to afford 3-arylquinolin-2(1H)-ones, through a one-pot dehydrogenation and intramolecular α-alkylation. Control experiments, kinetic studies, and characterization data of a variety of [Ag/LDH]-type materials confirmed the silver role in the dehydrogenation and hydrogenation steps, while [Mg4 Al-LDH] matrix is able to catalyze condensation. Interestingly, these studies suggest as key point for the successful activity of [Ag/Mg4 Al-LDH], in comparison with other [Ag/LDH]-type nanocatalysts, the suitable acid-base properties of this material.
Collapse
Affiliation(s)
- Luis Izquierdo-Aranda
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
| | - Rosa Adam
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Jose R Cabrero-Antonino
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
| |
Collapse
|
62
|
Bera A, Ghosh A, Banerjee D. Nickel-Catalyzed Alkylation of Oxindoles with Secondary Alcohols. J Org Chem 2023. [PMID: 37161856 DOI: 10.1021/acs.joc.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Herein, we have demonstrated a simple nickel-catalyzed C-3-selective alkylation of 2-oxindoles using a wide variety of secondary alkyl alcohols. As a special highlight, functionalization of the cholesterol derivative was reported. Control experiments, initial mechanistic studies, and deuterium-labeling experiments were performed for the alkylation process.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Adrija Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debasis Banerjee
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
63
|
Larduinat M, François J, Jacolot M, Popowycz F. Ir-Catalyzed Synthesis of Functionalized Pyrrolidines and Piperidines Using the Borrowing Hydrogen Methodology. J Org Chem 2023. [PMID: 37134228 DOI: 10.1021/acs.joc.3c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Ir(III)-catalyzed synthesis of 3-pyrrolidinols and 4-piperidinols combining 1,2,4-butanetriol or 1,3,5-pentanetriol with primary amines was carried out. This borrowing hydrogen methodology was further extended to the sequential diamination of triols leading to amino-pyrrolidines and amino-piperidines.
Collapse
Affiliation(s)
- Malvina Larduinat
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Jordan François
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Maïwenn Jacolot
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Florence Popowycz
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| |
Collapse
|
64
|
Lin WS, Kuwata S. Recent Developments in Reactions and Catalysis of Protic Pyrazole Complexes. Molecules 2023; 28:molecules28083529. [PMID: 37110763 PMCID: PMC10143336 DOI: 10.3390/molecules28083529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Protic pyrazoles (N-unsubstituted pyrazoles) have been versatile ligands in various fields, such as materials chemistry and homogeneous catalysis, owing to their proton-responsive nature. This review provides an overview of the reactivities of protic pyrazole complexes. The coordination chemistry of pincer-type 2,6-bis(1H-pyrazol-3-yl)pyridines is first surveyed as a class of compounds for which significant advances have made in the last decade. The stoichiometric reactivities of protic pyrazole complexes with inorganic nitrogenous compounds are then described, which possibly relates to the inorganic nitrogen cycle in nature. The last part of this article is devoted to outlining the catalytic application of protic pyrazole complexes, emphasizing the mechanistic aspect. The role of the NH group in the protic pyrazole ligand and resulting metal-ligand cooperation in these transformations are discussed.
Collapse
Affiliation(s)
- Wei-Syuan Lin
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shigeki Kuwata
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
65
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. N-Alkylation of Amines by C1-C10 Aliphatic Alcohols Using A Well-Defined Ru(II)-Catalyst. A Metal-Ligand Cooperative Approach. J Org Chem 2023; 88:5944-5961. [PMID: 37052217 DOI: 10.1021/acs.joc.3c00313] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A Ru(II)-catalyzed efficient and selective N-alkylation of amines by C1-C10 aliphatic alcohols is reported. The catalyst [Ru(L1a)(PPh3)Cl2] (1a) bearing a tridentate redox-active azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) is air-stable, easy to prepare, and showed wide functional group tolerance requiring only 1.0 mol % (for N-methylation and N-ethylation) and 0.1 mol % of catalyst loading for N-alkylation with C3-C10 alcohols. A wide array of N-methylated, N-ethylated, and N-alkylated amines were prepared in moderate to good yields via direct coupling of amines and alcohols. 1a efficiently catalyzes the N-alkylation of diamines selectively. It is even suitable for synthesizing N-alkylated diamines using (aliphatic) diols producing the tumor-active drug molecule MSX-122 in moderate yield. 1a showed excellent chemo-selectivity during the N-alkylation using oleyl alcohol and monoterpenoid β-citronellol. Control experiments and mechanistic investigations revealed that the 1a-catalyzed N-alkylation reactions proceed via a borrowing hydrogen transfer pathway where the hydrogen removed from the alcohol during the dehydrogenation step is stored in the ligand backbone of 1a, which in the subsequent steps transferred to the in situ formed imine intermediate to produce the N-alkylated amines.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
66
|
Wang WH, Shao WY, Sang JY, Li X, Yu X, Yamamoto Y, Bao M. N,N-Dialkylation of Acyl Hydrazides with Alcohols Catalyzed by Amidato Iridium Complexes via Borrowing Hydrogen. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Wan-Hui Wang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Wei-Yu Shao
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Jia-Yue Sang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xu Li
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Ming Bao
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
67
|
Liu Y, Diao H, Hong G, Edward J, Zhang T, Yang G, Yang BM, Zhao Y. Iridium-Catalyzed Enantioconvergent Borrowing Hydrogen Annulation of Racemic 1,4-Diols with Amines. J Am Chem Soc 2023; 145:5007-5016. [PMID: 36802615 DOI: 10.1021/jacs.2c09958] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We present an enantioconvergent access to chiral N-heterocycles directly from simple racemic diols and primary amines, through a highly economical borrowing hydrogen annulation. The identification of a chiral amine-derived iridacycle catalyst was the key for achieving high efficiency and enantioselectivity in the one-step construction of two C-N bonds. This catalytic method enabled a rapid access to a wide range of diversely substituted enantioenriched pyrrolidines including key precursors to valuable drugs such as aticaprant and MSC 2530818.
Collapse
Affiliation(s)
- Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Huanlin Diao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Jonathan Edward
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Tao Zhang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guoqiang Yang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| |
Collapse
|
68
|
Banik A, Datta P, Mandal SK. C-Alkylation by Phenalenyl-Based Molecule via a Borrowing Hydrogen Pathway. Org Lett 2023. [PMID: 36800435 DOI: 10.1021/acs.orglett.3c00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The present study demonstrates the first transition-metal-free catalytic C-alkylation via a borrowing hydrogen pathway for the α-alkylation of ketone, synthesis of substituted quinoline, and 9-monoalkylation of fluorene. With applications on diversification of biologically active molecules and gram-scale synthesis, a preliminary investigation of the reaction mechanism has been carried out, suggesting a radical-mediated borrowing hydrogen pathway.
Collapse
Affiliation(s)
- Ananya Banik
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Paramita Datta
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| |
Collapse
|
69
|
Chakraborty P, Pradhan S, Richard Premkumar J, Sundararaju B. Valorization of Terpenols Under Iron Catalysis. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
70
|
Tang J, He J, Zhao SY, Liu W. Manganese-Catalyzed Chemoselective Coupling of Secondary Alcohols, Primary Alcohols and Methanol. Angew Chem Int Ed Engl 2023; 62:e202215882. [PMID: 36847452 DOI: 10.1002/anie.202215882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Herein, we report a manganese-catalyzed three-component coupling of secondary alcohols, primary alcohols and methanol for the synthesis of β,β-methylated/alkylated secondary alcohols. Using our method, a series of 1-arylethanol, benzyl alcohol derivatives, and methanol undergo sequential coupling efficiently to construct assembled alcohols with high chemoselectivity in moderate to good yields. Mechanistic studies suggest that the reaction proceeds via methylation of a benzylated secondary alcohol intermediate to generate the final product.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jingxi He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Sheng-Yin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
71
|
Lucie G, Marian P, Florence P, Maïwenn J. 1,4-d-Sorbitan: A Promising Biobased-Platform for the Synthesis of Chiral Amines. J Org Chem 2023; 88:2642-2647. [PMID: 36715414 DOI: 10.1021/acs.joc.2c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The regio- and diastereoselective synthesis of chiral amines derived from 1,4-d-sorbitan has been developed via the borrowing hydrogen reaction using a cooperative catalysis between an achiral iridium catalyst and diphenylphosphoric acid. The different reactivities of the four hydroxyl groups on the 1,4-d-sorbitan scaffold have also been highlighted.
Collapse
Affiliation(s)
- Grand Lucie
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, Villeurbanne 69621 Cedex, France
| | - Powderly Marian
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, Villeurbanne 69621 Cedex, France
| | - Popowycz Florence
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, Villeurbanne 69621 Cedex, France
| | - Jacolot Maïwenn
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, Villeurbanne 69621 Cedex, France
| |
Collapse
|
72
|
Donthireddy SNR, Siddique M, Rit A. N-Heterocyclic Carbene-Supported Nickel-Catalyzed Selective (Un)Symmetrical N-Alkylation of Aromatic Diamines with Alcohols. J Org Chem 2023; 88:1135-1146. [PMID: 36603160 DOI: 10.1021/acs.joc.2c02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The "borrowing hydrogen" (BH) approach for the N-alkylation of phenylenediamines using alcohols as coupling partners is highly challenging due to the selectivity issue of the generated products. Furthermore, the development of base-metal systems that can potentially substitute precious metals with competitive activity is a major challenge in BH catalysis. We present herein an efficient protocol for the N,N'-di-alkylation of aromatic diamines using an in situ-generated Ni-NHC complex from NiCl2 and the ligand L1, which gave access to a wide range of N,N'-di-alkylated orthophenylene diamines (rather than the generally observed benzimidazole derivatives), meta- and para-phenylene diamines along with 2,6-diamino pyridine derivatives in good to excellent yields. Moreover, the catalyst system was also successful in the derivatization of a clinically important drug molecule, Dapsone. Notably, the present protocol could be applied effectively to synthesize unsymmetrically substituted N,N'-di-alkylated diamines via sequential alkylation and is the first report in the base-metal system to the best of our knowledge. Diverse control experiments including the deuterium incorporation studies suggest that the present protocol proceeds via a BH sequence.
Collapse
Affiliation(s)
- S N R Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Misba Siddique
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
73
|
Chakraborty S, Mondal R, Pal S, Guin AK, Roy L, Paul ND. Zn(II)-Catalyzed Selective N-Alkylation of Amines with Alcohols Using Redox Noninnocent Azo-Aromatic Ligand as Electron and Hydrogen Reservoir. J Org Chem 2023; 88:771-787. [PMID: 36577023 DOI: 10.1021/acs.joc.2c01773] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a sustainable and eco-friendly approach for selective N-alkylation of various amines by alcohols, catalyzed by a well-defined Zn(II)-catalyst, Zn(La)Cl2 (1a), bearing a tridentate arylazo scaffold. A total of 57 N-alkylated amines were prepared in good to excellent yields, out of which 17 examples are new. The Zn(II)-catalyst shows wide functional group tolerance, is compatible with the synthesis of dialkylated amines via double N-alkylation of diamines, and produces the precursors in high yields for the marketed drugs tripelennamine and thonzonium bromide in gram-scale reactions. Control reactions and DFT studies indicate that electron transfer events occur at the azo-chromophore throughout the catalytic process, which shuttles between neutral azo, one-electron reduced azo-anion radical, and two-electron reduced hydrazo forms acting both as electron and hydrogen reservoir, enabling the Zn(II)-catalyst for N-alkylation reaction.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
74
|
Yu H, Fu K, Yang G, Liu M, Yang P, Liu T. Divergent upgrading pathways of sulfones with primary alcohols: nickel-catalyzed α-alkylation under N 2 and metal-free promoted β-olefination in open air. Chem Commun (Camb) 2023; 59:615-618. [PMID: 36533586 DOI: 10.1039/d2cc05882k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report here our findings on the diverse reaction results of sulfones and alcohols. In the presence of NiCl2/P(t-Bu)3 and under a N2 atmosphere, α-C-alkylation of sulfones with alcohols occurs through a borrowing-hydrogen mechanism; when the reaction was carried out in the open air without nickel, the product was not the predicted α,β-unsaturated sulfone, but the β-alkenyl sulfone, which is a useful building block in organic synthesis.
Collapse
Affiliation(s)
- Haiping Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Kaiyue Fu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Guang Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Mengyu Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China. .,State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Tao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
75
|
Ng TW, Tao R, See WWL, Poh SB, Zhao Y. Economical Access to Diverse Enantiopure Tetrahydropyridines and Piperidines Enabled by Catalytic Borrowing Hydrogen. Angew Chem Int Ed Engl 2023; 62:e202212528. [PMID: 36374610 DOI: 10.1002/anie.202212528] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/16/2022]
Abstract
We disclose herein a catalytic borrowing hydrogen method that enables an unprecedented, economical one-pot access to enantiopure tetrahydropyridines with minimal reagent use or waste formation. This method couples a few classes of readily available substrates with commercially available 1,3-amino alcohols, and delivers the valuable tetrahydropyridines of different substitution patterns free of N-protection. Such transformations are highly challenging to achieve, as multiple redox steps need to be realized in a cascade and numerous side reactions including a facile aromatization have to be overcome. Highly diastereoselective functionalizations of tetrahydropyridines also result in a general access to enantiopure di- and tri-substituted piperidines, which ranks the topmost frequent N-heterocycle in commercial drugs.
Collapse
Affiliation(s)
- Teng Wei Ng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ran Tao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore.,Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Willy Wei Li See
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Si Bei Poh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
76
|
Sankar RV, Manikpuri D, Gunanathan C. Ruthenium-catalysed α-prenylation of ketones using prenol. Org Biomol Chem 2023; 21:273-278. [PMID: 36374234 DOI: 10.1039/d2ob01882a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prenol and isoprenoids are common structural motifs in biological systems and possess diverse applications. An unprecedented direct catalytic prenylation of ketones using prenol is attained. This C-C bond formation reaction requires only a ruthenium pincer catalyst and a base, and H2O is the only byproduct.
Collapse
Affiliation(s)
- Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
| | - Deepsagar Manikpuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
| |
Collapse
|
77
|
Manojveer S, Garg NK, Gul Z, Kanwal A, Goriya Y, Johnson MT. Ligand-Promoted [Pd]-Catalyzed α-Alkylation of Ketones through a Borrowing-Hydrogen Approach. ChemistryOpen 2023; 12:e202200245. [PMID: 36592045 PMCID: PMC9807026 DOI: 10.1002/open.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Indexed: 01/03/2023] Open
Abstract
A new class of palladium complexes bearing bidentate 2-hydroxypyridine based ligands have been prepared and fully characterized. The applications of these new complexes towards ketone alkylation reactions with alcohols through a metal-ligand cooperative borrowing-hydrogen (BH) process were demonstrated.
Collapse
Affiliation(s)
- Seetharaman Manojveer
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Nitish K. Garg
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Zarif Gul
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Ayesha Kanwal
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Yogesh Goriya
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Magnus T. Johnson
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
- Perstorp ABPerstorp Industrial Park284 80PerstorpSweden
| |
Collapse
|
78
|
Messori A, Gagliardi A, Cesari C, Calcagno F, Tabanelli T, Cavani F, Mazzoni R. Advances in the homogeneous catalyzed alcohols homologation: the mild side of the Guerbet reaction. A mini-review. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
79
|
Yang X, Tian X, Sun N, Hu B, Shen Z, Hu X, Jin L. Geometry-Constrained N, N, O-Nickel Catalyzed α-Alkylation of Unactivated Amides via a Borrowing Hydrogen Strategy. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xue Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xiaoyu Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Nan Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Baoxiang Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Liqun Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
80
|
Putta RR, Chun S, Lee SB, Hong J, Choi SH, Oh DC, Hong S. Chemoselective α-Alkylation and α-Olefination of Arylacetonitriles with Alcohols via Iron-Catalyzed Borrowing Hydrogen and Dehydrogenative Coupling. J Org Chem 2022; 87:16378-16389. [PMID: 36417466 DOI: 10.1021/acs.joc.2c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
α-Alkyl and α-olefin nitriles are very important for organic synthesis and medicinal chemistry. However, different types of catalysts are employed to achieve either α-alkylation of nitriles by borrowing hydrogen or α-olefination by dehydrogenative coupling methods. Designing and developing high-performance earth-abundant catalysts that can procure different products from the same starting materials remain a great challenge. Herein, we report an iron(0) catalyst system that achieves chemoselectivity between borrowing hydrogen and dehydrogenative coupling protocols by simply changing the base. A broad range of nitriles and alcohols, including benzylic, linear aliphatic, cycloaliphatic, heterocyclic, and allylic alcohols, were selectively and efficiently converted to the corresponding products. Mechanistic studies reveal that the reaction mechanism proceeds through a dehydrogenative pathway. This iron catalytic protocol is environmentally benign and atom-efficient with the liberation of H2 and H2O as green byproducts.
Collapse
Affiliation(s)
- Ramachandra Reddy Putta
- BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhwa Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
81
|
Genç S, Arslan B, Gülcemal D, Gülcemal S, Günnaz S. Nickel-catalyzed alkylation of ketones and nitriles with primary alcohols. Org Biomol Chem 2022; 20:9753-9762. [PMID: 36448637 DOI: 10.1039/d2ob01787c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nickel(II)-salen or nickel(II)-salphen catalyzed α-alkylation of ketones and nitriles with primary alcohols is reported. Various α-alkylated ketones and nitriles were obtained in high yields through a borrowing hydrogen strategy by using 1-3 mol% of nickel catalyst and a catalytic amount of NaOH (5-10 mol%) under aerobic conditions.
Collapse
Affiliation(s)
- Sertaç Genç
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Burcu Arslan
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Derya Gülcemal
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Süleyman Gülcemal
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Salih Günnaz
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
82
|
Nad P, Behera AK, Sen A, Mukherjee A. Catalytic and Mechanistic Approach to the Metal-Free N-Alkylation of 2-Aminopyridines with Diketones. J Org Chem 2022; 87:15403-15414. [PMID: 36350139 DOI: 10.1021/acs.joc.2c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
N-alkylation of amines is an important catalytic reaction in synthetic chemistry. Herein, we report a simple strategy for the N-alkylation of 2-aminopyridines with 1,2-diketones using BF3·OEt2 as a catalyst. The reaction proceeds under aerobic conditions, leading to the formation of a diverse range of substituted secondary amines in good to excellent yields. A close inspection of the mechanistic pathway using various spectroscopic techniques and the computational study revealed that the reaction proceeds through the formation of an iminium-keto intermediate with the liberation of CO2.
Collapse
Affiliation(s)
- Pinaki Nad
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chhattisgarh, India
| | - Anil Kumar Behera
- Department of Chemistry (CMDD Lab), GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Anik Sen
- Department of Chemistry (CMDD Lab), GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
83
|
Chen F, Jin MY, Wang DZ, Xu C, Wang J, Xing X. Simultaneous Access to Two Enantio-enriched Alcohols by a Single Ru-Catalyst: Asymmetric Hydrogen Transfer from Racemic Alcohols to Matching Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fumin Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | | | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianchun Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
84
|
Wu X, De bruyn M, Barta K. A Diamine-Oriented Biorefinery Concept Using Ammonia and Raney Ni as a Multifaceted Catalyst. CHEM-ING-TECH 2022; 94:1808-1817. [PMID: 36632530 PMCID: PMC9826469 DOI: 10.1002/cite.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 01/14/2023]
Abstract
Diamines are important industrial chemicals. In this paper we outline the feasibility of lignocellulose as a source of diol-containing molecules. We also illustrate the possibility of turning these diols into their diamines in good to excellent yields. Central to these transformations is the use of commercially available Raney Ni. For diol formation, the Raney Ni engages in hydrogenation and often also demethoxylation, that way funneling multiple components to one single molecule. For diamine formation, Raney Ni catalyzes hydrogen-borrowing mediated diamination in the presence of NH3.
Collapse
Affiliation(s)
- Xianyuan Wu
- University of GroningenStratingh Institute for ChemistryGroningenThe Netherlands
| | - Mario De bruyn
- University of GrazDepartment of Chemistry, Organic and Bioorganic ChemistryHeinrichstraße 28/II8010GrazAustria
| | - Katalin Barta
- University of GroningenStratingh Institute for ChemistryGroningenThe Netherlands,University of GrazDepartment of Chemistry, Organic and Bioorganic ChemistryHeinrichstraße 28/II8010GrazAustria
| |
Collapse
|
85
|
Ruijten D, Narmon T, De Weer H, van der Zweep R, Poleunis C, Debecker DP, Maes BUW, Sels BF. Hydrogen Borrowing: towards Aliphatic Tertiary Amines from Lignin Model Compounds Using a Supported Copper Catalyst. CHEMSUSCHEM 2022; 15:e202200868. [PMID: 35900053 DOI: 10.1002/cssc.202200868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Upcoming biorefineries, such as lignin-first provide renewable aromatics containing unique aliphatic alcohols. In this context, a Cu-ZrO2 catalyzed hydrogen borrowing approach was established to yield tertiary amine from the lignin model monomer 3-(3,4-dimethoxyphenyl)-1-propanol and the actual lignin-derived monomers, (3-(4-hydroxyphenyl)-1-propanol and dihydroconiferyl alcohol), with dimethylamine. Various industrial metal catalysts were evaluated, resulting in nearly quantitative mass balances for most catalysts. Identified intermediates, side and reaction products were placed into a corresponding reaction network, supported by kinetic evolution experiments. Cu-ZrO2 was selected as most suitable catalyst combining high alcohol conversion with respectable aliphatic tertiary amine selectivity. Low pressure H2 was key for high catalyst activity and tertiary amine selectivity, mainly by hindering undesired reactant dimethylamine disproportionation and alcohol amidation. Besides dimethylamine model, diverse secondary amine reactants were tested with moderate to high tertiary amine yields. As most active catalytic site, highly dispersed Cu species in strong contact with ZrO2 is suggested. ToF-SIMS, N2 O chemisorption, TGA and XPS of spent Cu-ZrO2 revealed that imperfect amine product desorption and declining surface Cu lowered the catalytic activity upon catalyst reuse, while thermal reduction readily restored the initial activity and selectivity demonstrating catalyst reuse.
Collapse
Affiliation(s)
- Dieter Ruijten
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Thomas Narmon
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hanne De Weer
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Robbe van der Zweep
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Claude Poleunis
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain (UCLouvain), 1348, Louvain-La-Neuve, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain (UCLouvain), 1348, Louvain-La-Neuve, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
86
|
Wu J, Tongdee S, Cordier M, Darcel C. Selective Iron Catalyzed Synthesis of N-Alkylated Indolines and Indoles. Chemistry 2022; 28:e202201809. [PMID: 35700072 PMCID: PMC9796591 DOI: 10.1002/chem.202201809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/01/2023]
Abstract
Whereas iron catalysts usually promote catalyzed C3-alkylation of indole derivatives via a borrowing-hydrogen methodology using alcohols as the electrophilic partners, this contribution shows how to switch the selectivity towards N-alkylation. Thus, starting from indoline derivatives, N-alkylation was efficiently performed using a tricarbonyl(cyclopentadienone) iron complex as the catalyst in trifluoroethanol in the presence of alcohols leading to the corresponding N-alkylated indoline derivatives in 31-99 % yields (28 examples). The one-pot, two-step strategy for the selective N-alkylation of indolines is completed by an oxidation to give the corresponding N-alkylated indoles in 31-90 % yields (15 examples). This unprecedented oxidation methodology involves an iron salt catalyst associated with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) and a stoichiometric amount of t-BuOOH at room temperature.
Collapse
Affiliation(s)
- Jiajun Wu
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Satawat Tongdee
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Marie Cordier
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Christophe Darcel
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| |
Collapse
|
87
|
Dai K, Chen Q, Xie W, Lu K, Yan Z, Peng M, Li C, Tu Y, Ding T. Facile Benzylic Alkylation of Arenes with Alcohols by Catalysis with Spirocyclic NHC Ir
III
Pincer Complex. Angew Chem Int Ed Engl 2022; 61:e202206446. [DOI: 10.1002/anie.202206446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kun‐Long Dai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Qi‐Long Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Wen‐Ping Xie
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Zhi‐Bo Yan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Meng Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Chang‐Kun Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong‐Qiang Tu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Tong‐Mei Ding
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
88
|
Kita Y, Kuwabara M, Kamata K, Hara M. Heterogeneous Low-Valent Mn Catalysts for α-Alkylation of Ketones with Alcohols through Borrowing Hydrogen Methodology. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Kita
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Midori Kuwabara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
89
|
Shao N, Rodriguez J, Quintard A. Catalysis Driven Six-Step Synthesis of Apratoxin A Key Polyketide Fragment. Org Lett 2022; 24:6537-6542. [PMID: 36073851 DOI: 10.1021/acs.orglett.2c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apratoxin A is a potent anticancer natural product whose key polyketide fragment constitutes a considerable challenge for organic synthesis, with five prior syntheses requiring 12 to 20 steps for its preparation. By combining different redox-economical catalytic stereoselective transformations, the key polyketide fragment could be rapidly prepared. Followed by a site-selective protection of the diol, this strategy enables the preparation of the apratoxin A fragment in only six steps, representing the shortest route to this polyketide.
Collapse
Affiliation(s)
- Na Shao
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France.,Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
90
|
Borrowing hydrogen amination: Whether a catalyst is required? J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
91
|
Wu X, Ma W, Tang W, Xue D, Xiao J, Wang C. Fe‐Catalyzed Amidation of Allylic Alcohols by Borrowing Hydrogen Catalysis. Chemistry 2022; 28:e202201829. [DOI: 10.1002/chem.202201829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
- School of Basic Medical Science Ningxia Medical University 750004 Yinchuan P. R. China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool L69 7ZD Liverpool UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| |
Collapse
|
92
|
Patil RD, Dutta M, Pratihar S. Hydrogenation Involving Two Different Proton- and Hydride-Transferring Reagents through Metal–Ligand Cooperation: Mechanism and Scope. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rahul Daga Patil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Manali Dutta
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
93
|
Gupta NK, Reif P, Palenicek P, Rose M. Toward Renewable Amines: Recent Advances in the Catalytic Amination of Biomass-Derived Oxygenates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Navneet Kumar Gupta
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Phillip Reif
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Phillip Palenicek
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Marcus Rose
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
94
|
Guo J, Tang J, Xi H, Zhao SY, Liu W. Manganese catalyzed urea and polyurea synthesis using methanol as C1 source. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
95
|
Dai KL, Chen QL, Xie WP, Lu K, Yan ZB, Peng M, Li CK, Tu Y, Ding TM. Facile Benzylic Alkylation of Arenes with Alcohols by Catalysis with Spirocyclic NHC Ir(III) Pincer Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kun-Long Dai
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Qi-Long Chen
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Wen-Ping Xie
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Ka Lu
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Zhi-Bo Yan
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Meng Peng
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Chang-Kun Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yongqiang Tu
- Lanzhou University Chemistry 222 Tianshui Road South 730000 Lanzhou CHINA
| | - Tong-Mei Ding
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
96
|
Bains AK, Biswas A, Kundu A, Adhikari D. Nickel‐Catalysis Enabling α‐Alkylation of Ketones by Secondary Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Ayanangshu Biswas
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Abhishek Kundu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Debashis Adhikari
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| |
Collapse
|
97
|
Yang DY, Wang H, Chang CR. Recent Advances for Alkylation of Ketones and Secondary Alcohols using Alcohols in Homogeneous Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
98
|
Jei BB, Yang L, Ackermann L. Selective Labeling of Peptides with o-Carboranes via Manganese(I)-Catalyzed C-H Activation. Chemistry 2022; 28:e202200811. [PMID: 35420234 PMCID: PMC9320968 DOI: 10.1002/chem.202200811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/15/2022]
Abstract
A robust method for the selective labeling of peptides via manganese(I) catalysis was devised to achieve the C-2 alkenylation of tryptophan containing peptides with 1-ethynyl-o-carboranes. The manganese-catalyzed C-H activation was accomplished with high catalytic efficiency, and featured low toxicity, high functional group tolerance and excellent E-stereoselectivity. This approach unravels a promising tool for the assembly of o-carborane with structurally complex peptides of relevance to applications in boron neutron capture therapy.
Collapse
Affiliation(s)
- Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
99
|
Allen MA, Ly HM, O'Keefe GF, Beauchemin AM. A redox-enabled strategy for intramolecular hydroamination. Chem Sci 2022; 13:7264-7268. [PMID: 35799811 PMCID: PMC9214914 DOI: 10.1039/d2sc00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022] Open
Abstract
Metal- or acid-catalyzed intramolecular hydroamination and Cope-type intramolecular hydroamination, a distinct concerted approach using hydroxylamines, typically suffer from significant synthetic limitations. Herein we report a process for intramolecular hydroamination that uses a redox-enabled strategy relying on efficient in situ generation of hydroxylamines by oxidation, followed by Cope-type hydroamination, then reduction of the resulting pyrrolidine N-oxide. The steps are performed sequentially in a single pot, no catalyst is required, the conditions are mild, the process is highly functional group tolerant, and no chromatography is generally required for isolation. A robustness screen and a gram-scale example further support the practicality of this approach.
Collapse
Affiliation(s)
- Meredith A Allen
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa 10 Marie-Curie Ottawa ON K1N 6N5 Canada
| | - Huy M Ly
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa 10 Marie-Curie Ottawa ON K1N 6N5 Canada
| | - Geneviève F O'Keefe
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa 10 Marie-Curie Ottawa ON K1N 6N5 Canada
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa 10 Marie-Curie Ottawa ON K1N 6N5 Canada
| |
Collapse
|
100
|
Biswal P, Siva Subramani M, Samser S, Chandrasekhar V, Venkatasubbaiah K. Ligand-Controlled Ruthenium-Catalyzed Borrowing-Hydrogen and Interrupted-Borrowing-Hydrogen Methodologies: Functionalization of Ketones Using Methanol as a C1 Source. J Org Chem 2022; 88:5135-5146. [PMID: 35695675 DOI: 10.1021/acs.joc.2c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein we report simple, highly efficient, and phosphine-free N,C-Ru and N,N-Ru catalysts for ligand-controlled borrowing-hydrogen (BH) and interrupted-borrowing-hydrogen (I-BH) methods, respectively. This protocol has been employed on a variety of ketones using MeOH as a green, sustainable, and alternative C1 source to form a C-C bond through the BH and I-BH methods. Reasonably good substrate scope, functional group tolerance, and good-to-excellent yields at 70 °C are the added highlights of these methodologies. Controlled experiments reveal that an in situ formed formaldehyde is one of the crucial elements in this ligand-controlled selective protocol, which upon reaction with a ketone generates an enone as an intermediate. This enone in the presence of the N,C-Ru catalyst and N,N-Ru catalyst through the BH and I-BH pathways yields methylated ketones and 1,5-diketones, respectively.
Collapse
Affiliation(s)
- Priyabrata Biswal
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| | - M Siva Subramani
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| | - Shaikh Samser
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| |
Collapse
|