51
|
Fu D, Xin J, He Y, Wu S, Zhang X, Zhang X, Luo J. Chirality‐Dependent Second‐Order Nonlinear Optical Effect in 1D Organic–Inorganic Hybrid Perovskite Bulk Single Crystal. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dongying Fu
- Institute of Crystalline Materials Shanxi University Taiyuan Shanxi 030006 China
| | - Jianli Xin
- Institute of Crystalline Materials Shanxi University Taiyuan Shanxi 030006 China
| | - Yueyue He
- Institute of Crystalline Materials Shanxi University Taiyuan Shanxi 030006 China
| | - Shichao Wu
- Institute of Crystalline Materials Shanxi University Taiyuan Shanxi 030006 China
| | - Xinyuan Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Xian‐Ming Zhang
- College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
52
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
53
|
Ma J, Wang H, Li D. Recent Progress of Chiral Perovskites: Materials, Synthesis, and Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008785. [PMID: 34028888 DOI: 10.1002/adma.202008785] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Indexed: 05/27/2023]
Abstract
Chiral materials with intrinsic inversion-symmetric structures possess many unique physicochemical features, including circular dichroism, circularly polarized photoluminescence, nonlinear optics, ferroelectricity, and spintronics. Halide perovskites have attracted considerable attention owing to their excellent optical and electrical properties, which are particularly suitable for realizing high power-conversion efficiency in solar cells. Recent studies have shown that chirality can be transferred from chiral organic ligands into halide perovskites and the resultant chiral perovskites combine the advantages of both chiral materials and halide perovskites; this provides an ideal platform to design next-generation optoelectronic and spintronic devices. In this progress report, the most recent advances are summarized in various chemical structures of chiral perovskites, their synthesis strategies, chirality generation mechanisms, and physical properties. Furthermore, the potential chiral-halide-perovskite-based applications are presented and the challenges and prospects of chiral perovskites are discussed. This report outlines the diverse construction strategies of and proposes research directions for chiral halide perovskites; thus, it provides insights into the design of novel chiral perovskites and facilitates investigation of the optoelectronic applications that employ chirality.
Collapse
Affiliation(s)
- Jiaqi Ma
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haizhen Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dehui Li
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
54
|
Li ZQ, Gong ZL, Shao JY, Yao J, Zhong YW. Full-Color and White Circularly Polarized Luminescence of Hydrogen-Bonded Ionic Organic Microcrystals. Angew Chem Int Ed Engl 2021; 60:14595-14600. [PMID: 33822449 DOI: 10.1002/anie.202103091] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Indexed: 01/08/2023]
Abstract
A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor glum , high fluorescence quantum efficiency (ΦFL ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with glum in the order of 10-2 and ΦFL up to 80 %. Moreover, organic microcrystals with high-performance white CPL (ΦFL =46 %; |glum |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Liang Gong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiang-Yang Shao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
55
|
Zhou B, Liang L, Ma J, Li J, Li W, Liu Z, Li H, Chen R, Li D. Thermally Assisted Rashba Splitting and Circular Photogalvanic Effect in Aqueously Synthesized 2D Dion-Jacobson Perovskite Crystals. NANO LETTERS 2021; 21:4584-4591. [PMID: 34037402 DOI: 10.1021/acs.nanolett.1c00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, a two-dimensional Dion-Jacobson (DJ) perovskite (AMP)PbI4 (AMP = 4-(aminomethyl)piperidinium) is emerging with remarkable Rashba effect and ferroelectricity. However, the origin of the giant Rashba splitting remains elusive and the current synthetic strategy via slow cooling is time- and power-consuming, hindering its future applications. Here, we report on an economical aqueous method to obtain (AMP)PbI4 crystals and clarify the origin of the giant Rashba effect by temperature- and polarization-dependent photoluminescence (PL) spectroscopy. The strong temperature-dependent PL helicity indicates the thermally assisted structural distortion as the main origin of the Rashba effect, suggesting that valley polarization still preserves at high temperatures. The Rashba effect was further confirmed by the circular photogalvanic effect near the indirect bandgap. Our study not only optimizes the synthetic strategies of this DJ perovskite but also sheds light on its potential applications in room/high-temperature spintronics and valleytronics.
Collapse
Affiliation(s)
- Boxuan Zhou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lihan Liang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaqi Ma
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junze Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wancai Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zeyi Liu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haolin Li
- Department of Electrical and Electronic Engineering Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
56
|
Li Z, Gong Z, Shao J, Yao J, Zhong Y. Full‐Color and White Circularly Polarized Luminescence of Hydrogen‐Bonded Ionic Organic Microcrystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhong‐Qiu Li
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhong‐Liang Gong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jiang‐Yang Shao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jiannian Yao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu‐Wu Zhong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
57
|
Guo Z, Li J, Wang C, Liu R, Liang J, Gao Y, Cheng J, Zhang W, Zhu X, Pan R, He T. Giant Optical Activity and Second Harmonic Generation in 2D Hybrid Copper Halides. Angew Chem Int Ed Engl 2021; 60:8441-8445. [PMID: 33481292 DOI: 10.1002/anie.202015445] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Hybrid organic-inorganic metal halides have emerged as highly promising materials for a wide range of applications in optoelectronics. Incorporating chiral organic molecules into metal halides enables the extension of their unique optical and electronic properties to chiral optics. By using chiral (R)- or (S)-methylbenzylamine (R-/S-MBA) as the organic component, we synthesized chiral hybrid copper halides, (R-/S-MBA)2 CuCl4 , and investigated their optical activity. Thin films of this material showed a record anisotropic g-factor as high as approximately 0.06. We discuss the origin of the giant optical activity observed in (R-/S-MBA)2 CuCl4 by theoretical modeling based on density functional theory (DFT) and demonstrate highly efficient second harmonic generation (SHG) in these samples. Our study provides insight into the design of chiral materials by structural engineering, creating a new platform for chiral and nonlinear photonic device applications of the chiral hybrid copper halides.
Collapse
Affiliation(s)
- Zhihang Guo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Junzi Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,SZU-NUS Collaborative Innovation Center for Optoelectronic, Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Changshun Wang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rulin Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Jiechun Liang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yang Gao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiaji Cheng
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Wenjing Zhang
- SZU-NUS Collaborative Innovation Center for Optoelectronic, Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xi Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ruikun Pan
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Tingchao He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
58
|
Huang PJ, Taniguchi K, Shigefuji M, Kobayashi T, Matsubara M, Sasagawa T, Sato H, Miyasaka H. Chirality-Dependent Circular Photogalvanic Effect in Enantiomorphic 2D Organic-Inorganic Hybrid Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008611. [PMID: 33754374 DOI: 10.1002/adma.202008611] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Indexed: 05/21/2023]
Abstract
The control of the optoelectronic properties of 2D organic-inorganic hybrid perovskite (2D-OIHP) lead halides is an increasingly prevalent topic. Herein, the observation of the circular photogalvanic effect (CPGE) in new enantiomorphic 2D-OIHP lead iodides is reported, which are synthesized as a first OIHP-related system belonging to a chiral space group by incorporating organic chiral cations into the inorganic layers of lead iodides. The CPGE is an optoelectronic phenomenon associated with the spin-orbit coupling of heavy atoms in noncentrosymmetric systems. Owing to the CPGE, light-helicity-dependent steady photocurrents are generated without an external bias voltage under the irradiation of circularly polarized light. Furthermore, the sign reversal of the CPGE photocurrent depending on the chirality of the designed 2D-OIHP lead iodides is observed. This result indicates formation of the theoretically predicted radial spin-polarized texture in k-space of chiral systems owing to spin-momentum locking. Hence, chiral 2D-OIHP lead halides can be a promising platform for engineering opto-spintronic functionalities.
Collapse
Affiliation(s)
- Po-Jung Huang
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Kouji Taniguchi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- PRESTO, Japan Science and Technology Agency (JST), 5-3 Yonbancho, Chiyoda-ku, Tokyo, 102-8666, Japan
| | - Masato Shigefuji
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Takatsugu Kobayashi
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Masakazu Matsubara
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
- Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Takao Sasagawa
- Laboratory for Materials and Structures (MSL), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Hiroyasu Sato
- Application Laboratories, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Hitoshi Miyasaka
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
59
|
Abstract
Chiral perovskite materials have been intensively studied because of their unique properties and wide range of potential applications; however, the synthesis of perovskite nanocrystals with improved chirality has been scarcely investigated. In this Letter, two-dimensional perovskite nanosheets with intrinsic chirality are demonstrated. Inserting chiral amines into the perovskite framework leads to the chirality transfer from amine molecules to perovskite structure. The protecting agent, specifically, achiral octylamine, is found to influence the chiral optical signal or dissymmetric factor of nanosheets significantly. By controlling the amount of octylamine, we have synthesized perovskite nanosheets with the highest g-factor ever reported. We expect our primary demonstration could attract more attention toward the synthesis of intrinsic chiral perovskite nanocrystals and the development of nanocrystal-based chiral-optical devices with improved functions.
Collapse
Affiliation(s)
- He Ren
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chenchen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
60
|
Li D, Liu X, Wu W, Peng Y, Zhao S, Li L, Hong M, Luo J. Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Wu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Yu Peng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Lina Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
61
|
Li D, Liu X, Wu W, Peng Y, Zhao S, Li L, Hong M, Luo J. Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection. Angew Chem Int Ed Engl 2021; 60:8415-8418. [DOI: 10.1002/anie.202013947] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Dong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Wu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Yu Peng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Lina Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
62
|
Guo Z, Li J, Wang C, Liu R, Liang J, Gao Y, Cheng J, Zhang W, Zhu X, Pan R, He T. Giant Optical Activity and Second Harmonic Generation in 2D Hybrid Copper Halides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhihang Guo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Key Laboratory for the Green Preparation and Application of Functional Materials Ministry of Education School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Junzi Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- SZU-NUS Collaborative Innovation Center for Optoelectronic, Science and Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Changshun Wang
- State Key Laboratory of Advanced Optical Communication Systems and Networks School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China
| | - Rulin Liu
- School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Jiechun Liang
- School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Yang Gao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Jiaji Cheng
- Key Laboratory for the Green Preparation and Application of Functional Materials Ministry of Education School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Wenjing Zhang
- SZU-NUS Collaborative Innovation Center for Optoelectronic, Science and Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Xi Zhu
- School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Ruikun Pan
- Key Laboratory for the Green Preparation and Application of Functional Materials Ministry of Education School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Tingchao He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| |
Collapse
|
63
|
Wang X, Wang Y, Gao W, Song L, Ran C, Chen Y, Huang W. Polarization-Sensitive Halide Perovskites for Polarized Luminescence and Detection: Recent Advances and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003615. [PMID: 33586290 DOI: 10.1002/adma.202003615] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Indexed: 05/21/2023]
Abstract
While halide perovskites (HPs) have achieved enormous success in the field of optoelectronic applications, much attention has been recently drawn to the unique polarization sensitivity of HPs, either intrinsic or extrinsic, which makes HPs a potential candidate for innovative applications in directly polarized luminescence and detection. Herein, the research status in the field of polarization-sensitive HPs, including linear polarization and circular polarization, is comprehensively summarized. To evaluate the effectiveness of HPs in generating and detecting linearly or circularly polarized light, the principles and characterization methods of polarized luminescence and detection are introduced. Sequentially, the state-of-the-art development of the strategies that induce the linear or circular polarization characteristics of HPs is systematically reviewed, based on which the application of polarization-sensitive HPs in the field of polarization luminescence and detection are summarized. Moreover, the current challenges and opportunities are discussed, and prospects of the future development in this promising field are outlined.
Collapse
Affiliation(s)
- Xiaobo Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Yue Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Weiyin Gao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Lin Song
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Yonghua Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
64
|
Han Z, Fu W, Zou Y, Gu Y, Liu J, Huang B, Yu D, Cao F, Li X, Xu X, Zeng H. Oriented Perovskite Growth Regulation Enables Sensitive Broadband Detection and Imaging of Polarized Photons Covering 300-1050 nm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003852. [PMID: 33554373 DOI: 10.1002/adma.202003852] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Photodetectors selective to the polarization empower breakthroughs in sensing technology for target identification. However, the realization of polarization-sensitive photodetectors based on intrinsically anisotropic crystal structure or extrinsically anisotropic device pattern requires complicated epitaxy and etching processes, which limit scalable production and application. Here, solution-processed PEA2 MA4 (Sn0.5 Pb0.5 )5 I16 (PEA= phenylethylammonium, MA= methylammonium) polycrystalline film is probed as photoactive layer toward sensing polarized photon from 300 to 1050 nm. The growth of the PEA2 MA4 (Sn0.5 Pb0.5 )5 I16 crystal occurs in confined crystallographic orientation of the (202) facet upon the assistance of NH4 SCN and NH4 Cl, enhancing anisotropic photoelectric properties. Therefore, the photodetector achieves a polarization ratio of 0.41 and dichroism ratio (Imax /Imin ) of 2.4 at 900 nm. At 520 nm, the Imax /Imin even surpasses the one of the perovskite crystalline films, 1.8 and ≈1.2, respectively. It is worth noting that the superior figure-of-merits possess a response width of 900 kHz, Ion /Ioff ratio of ≈3 × 108 , linear dynamic range from 0.15 nW to 12 mW, noise current of 8.28 × 10-13 A × Hz-0.5 , and specific detectivity of 1.53 × 1012 Jones, which demonstrate high resolution and high speed for weak signal sensing and imaging. The proof of concept in polarized imaging confirms that the polarization-sensitive photodetector meets the requirements for practical application in target recognition.
Collapse
Affiliation(s)
- Zeyao Han
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics and Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weifei Fu
- Department of Materials Science, Technical University of Darmstadt, Darmstadt, 64287, Germany
| | - Yousheng Zou
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics and Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yu Gu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics and Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiaxin Liu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics and Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bo Huang
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics and Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dejian Yu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics and Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fei Cao
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics and Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaoming Li
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics and Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaobao Xu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics and Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Haibo Zeng
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics and Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
65
|
Wang HP, Li S, Liu X, Shi Z, Fang X, He JH. Low-Dimensional Metal Halide Perovskite Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003309. [PMID: 33346383 DOI: 10.1002/adma.202003309] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites (MHPs) have been a hot research topic due to their facile synthesis, excellent optical and optoelectronic properties, and record-breaking efficiency of corresponding optoelectronic devices. Nowadays, the development of miniaturized high-performance photodetectors (PDs) has been fueling the demand for novel photoactive materials, among which low-dimensional MHPs have attracted burgeoning research interest. In this report, the synthesis, properties, photodetection performance, and stability of low-dimensional MHPs, including 0D, 1D, 2D layered and nonlayered nanostructures, as well as their heterostructures are reviewed. Recent advances in the synthesis approaches of low-dimensional MHPs are summarized and the key concepts for understanding the optical and optoelectronic properties related to the PD applications of low-dimensional MHPs are introduced. More importantly, recent progress in novel PDs based on low-dimensional MHPs is presented, and strategies for improving the performance and stability of perovskite PDs are highlighted. By discussing recent advances, strategies, and existing challenges, this progress report provides perspectives on low-dimensional MHP-based PDs in the future.
Collapse
Affiliation(s)
- Hsin-Ping Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siyuan Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xinya Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
66
|
Chen W, Ma K, Duan P, Ouyang G, Zhu X, Zhang L, Liu M. Circularly polarized luminescence of nanoassemblies via multi-dimensional chiral architecture control. NANOSCALE 2020; 12:19497-19515. [PMID: 32966505 DOI: 10.1039/d0nr04239k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Circularly polarized luminescence (CPL) materials are currently an important class of chiroptical materials that are attracting increasing interest. Nanoassemblies constructed from chiral or achiral building blocks show great potential for achieving CPL-active nanomaterials with high quantum yields and dissymmetry factors, which is crucial for further applications. In nanoassemblies, the dimensional morphology affects the chiroptical properties significantly since the microscopic packing modes will affect the luminescence processes and chirality transfer processes. In this review, we will show some examples for illustrating the relationship between multi-dimensional morphology and chiroptical properties. Furthermore, with dimensional morphology tuning, higher dissymmetry factors would be obtained. We hope to provide a useful and powerful insight into the design and control of CPL-active nanoassemblies via morphology control.
Collapse
Affiliation(s)
- Wenjie Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China and State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Li Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. and CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
67
|
Wang L, Xue Y, Cui M, Huang Y, Xu H, Qin C, Yang J, Dai H, Yuan M. A Chiral Reduced‐Dimension Perovskite for an Efficient Flexible Circularly Polarized Light Photodetector. Angew Chem Int Ed Engl 2020; 59:6442-6450. [DOI: 10.1002/anie.201915912] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Lin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai University Tianjin 300071 P. R. China
- Renewable Energy Conversion and Storage Center (RECAST)Nankai University Tianjin 300071 P. R. China
| | - Yongxiang Xue
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing TechnologySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Minghuan Cui
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and ApplicationsSchool of PhysicsHenan Normal University Xinxiang 453007 P.R. China
| | - Yanmin Huang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai University Tianjin 300071 P. R. China
- Renewable Energy Conversion and Storage Center (RECAST)Nankai University Tianjin 300071 P. R. China
| | - Hongyu Xu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai University Tianjin 300071 P. R. China
- Renewable Energy Conversion and Storage Center (RECAST)Nankai University Tianjin 300071 P. R. China
| | - Chaochao Qin
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and ApplicationsSchool of PhysicsHenan Normal University Xinxiang 453007 P.R. China
| | - Jien Yang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and ApplicationsSchool of PhysicsHenan Normal University Xinxiang 453007 P.R. China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing TechnologySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai University Tianjin 300071 P. R. China
- Renewable Energy Conversion and Storage Center (RECAST)Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
68
|
Wang L, Xue Y, Cui M, Huang Y, Xu H, Qin C, Yang J, Dai H, Yuan M. A Chiral Reduced‐Dimension Perovskite for an Efficient Flexible Circularly Polarized Light Photodetector. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915912] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai University Tianjin 300071 P. R. China
- Renewable Energy Conversion and Storage Center (RECAST)Nankai University Tianjin 300071 P. R. China
| | - Yongxiang Xue
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing TechnologySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Minghuan Cui
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and ApplicationsSchool of PhysicsHenan Normal University Xinxiang 453007 P.R. China
| | - Yanmin Huang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai University Tianjin 300071 P. R. China
- Renewable Energy Conversion and Storage Center (RECAST)Nankai University Tianjin 300071 P. R. China
| | - Hongyu Xu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai University Tianjin 300071 P. R. China
- Renewable Energy Conversion and Storage Center (RECAST)Nankai University Tianjin 300071 P. R. China
| | - Chaochao Qin
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and ApplicationsSchool of PhysicsHenan Normal University Xinxiang 453007 P.R. China
| | - Jien Yang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and ApplicationsSchool of PhysicsHenan Normal University Xinxiang 453007 P.R. China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing TechnologySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai University Tianjin 300071 P. R. China
- Renewable Energy Conversion and Storage Center (RECAST)Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
69
|
Gao JX, Zhang WY, Wu ZG, Zheng YX, Fu DW. Enantiomorphic Perovskite Ferroelectrics with Circularly Polarized Luminescence. J Am Chem Soc 2020; 142:4756-4761. [PMID: 32090555 DOI: 10.1021/jacs.9b13291] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Materials with circularly polarized luminescence (CPL) activity have immense potential applications in molecular switches, optical sensors, information storage, asymmetric photosynthesis, 3D optical displays, biological probe, and spintronic devices. However, the achiral architectures of most of the luminophores severely limit their practical needs. Within this context, molecular ferroelectrics with striking chemical variability and structure-property flexibility bring light to the assembly of CPL-active ferroelectric materials. Herein, we report organic-inorganic perovskite enantiomorphic ferroelectrics, (R)- and (S)-3-(fluoropyrrolidinium)MnBr3, undergoing a 222F2-type ferroelectric phase transition at 273 K. Their mirror relationships are verified by both single-crystal X-ray diffraction and vibrational circular dichroism (VCD). Furthermore, the corresponding Cotton effect for two chiral crystals was captured by mirror CPL activity. This may be assigned to the inducing interaction between the achiral luminescent perovskite framework and chiral organic components. As far as we know, this is the first molecular ferroelectric with CPL activity. Accordingly, this will inspire intriguing research in molecular ferroelectrics with CPL activity and holds great potential for the development of new optoelectronic devices.
Collapse
Affiliation(s)
- Ji-Xing Gao
- Institute for Science and Applications of Molecular Ferroelectrics, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Wan-Ying Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - You-Xuan Zheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|