51
|
Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022; 20:395. [PMID: 36045386 PMCID: PMC9428887 DOI: 10.1186/s12951-022-01605-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
The rapid advancement of nanomedicine and nanoparticle (NP) materials presents novel solutions potentially capable of revolutionizing health care by improving efficacy, bioavailability, drug targeting, and safety. NPs are intriguing when considering medical applications because of their essential and unique qualities, including a significantly higher surface to mass ratio, quantum properties, and the potential to adsorb and transport drugs and other compounds. However, NPs must overcome or navigate several biological barriers of the human body to successfully deliver drugs at precise locations. Engineering the drug carrier biointerface can help overcome the main biological barriers and optimize the drug delivery in a more personalized manner. This review discusses the significant heterogeneous biological delivery barriers and how biointerface engineering can promote drug carriers to prevail over hurdles and navigate in a more personalized manner, thus ushering in the era of Precision Medicine. We also summarize the nanomedicines' current advantages and disadvantages in drug administration, from natural/synthetic sources to clinical applications. Additionally, we explore the innovative NP designs used in both non-personalized and customized applications as well as how they can attain a precise therapeutic strategy.
Collapse
Affiliation(s)
- Saquib Waheed
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Fangyingnan Zhang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| | - Ubaldo Armato
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy.
| |
Collapse
|
52
|
Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022; 13:979469. [PMID: 36072591 PMCID: PMC9441741 DOI: 10.3389/fimmu.2022.979469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer represents the leading global driver of death and is recognized as a critical obstacle to increasing life expectancy. In recent years, with the development of precision medicine, significant progress has been made in cancer treatment. Among them, various therapies developed with the help of the immune system have succeeded in clinical treatment, recognizing and killing cancer cells by stimulating or enhancing the body’s intrinsic immune system. However, low response rates and serious adverse effects, among others, have limited the use of immunotherapy. It also poses problems such as drug resistance and hyper-progression. Fortunately, thanks to the rapid development of nanotechnology, engineered multifunctional nanomaterials and biomaterials have brought breakthroughs in cancer immunotherapy. Unlike conventional cancer immunotherapy, nanomaterials can be rationally designed to trigger specific tumor-killing effects. Simultaneously, improved infiltration of immune cells into metastatic lesions enhances the efficiency of antigen submission and induces a sustained immune reaction. Such a strategy directly reverses the immunological condition of the primary tumor, arrests metastasis and inhibits tumor recurrence through postoperative immunotherapy. This paper discusses several types of nanoscale biomaterials for cancer immunotherapy, and they activate the immune system through material-specific advantages to provide novel therapeutic strategies. In summary, this article will review the latest advances in tumor immunotherapy based on self-assembled, mesoporous, cell membrane modified, metallic, and hydrogel nanomaterials to explore diverse tumor therapies.
Collapse
Affiliation(s)
- Ziyin Chen
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Ronghua Wang
- Department of Outpatient, Dongying People’s Hospital, Dongying, China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
53
|
Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081579. [PMID: 36015204 PMCID: PMC9415106 DOI: 10.3390/pharmaceutics14081579] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review focuses on the biomedical application of mesoporous silica nanoparticles (MSNs), mainly focusing on the therapeutic application of MSNs for cancer treatment and specifically on overcoming the challenges of currently available anthelmintics (e.g., low water solubility) as repurposed drugs for cancer treatment. MSNs, due to their promising features, such as tunable pore size and volume, ability to control the drug release, and ability to convert the crystalline state of drugs to an amorphous state, are appropriate carriers for drug delivery with the improved solubility of hydrophobic drugs. The biomedical applications of MSNs can be further improved by the development of MSN-based multimodal anticancer therapeutics (e.g., photosensitizer-, photothermal-, and chemotherapeutics-modified MSNs) and chemical modifications, such as poly ethyleneglycol (PEG)ylation. In this review, various applications of MSNs (photodynamic and sonodynamic therapies, chemotherapy, radiation therapy, gene therapy, immunotherapy) and, in particular, as the carrier of anthelmintics for cancer therapy have been discussed. Additionally, the issues related to the safety of these nanoparticles have been deeply discussed. According to the findings of this literature review, the applications of MSN nanosystems for cancer therapy are a promising approach to improving the efficacy of the diagnostic and chemotherapeutic agents. Moreover, the MSN systems seem to be an efficient strategy to further help to decrease treatment costs by reducing the drug dose.
Collapse
Affiliation(s)
- Maedeh Koohi Moftakhari Esfahani
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|
54
|
Li SR, Huo FY, Wang HQ, Wang J, Xu C, Liu B, Bu LL. Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. J Nanobiotechnology 2022; 20:277. [PMID: 35701847 PMCID: PMC9195345 DOI: 10.1186/s12951-022-01489-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy is a novel therapeutic regimen because of the specificity and durability of immune modulations to treat cancers. Current cancer immunotherapy is limited by some barriers such as poor response rate, low tumor specificity and systemic toxicities. Porous nanomaterials (PNMs) possess high loading capacity and tunable porosity, receiving intense attention in cancer immunotherapy. Recently, novel PNMs based drug delivery systems have been employed in antitumor immunotherapy to enhance tissue or organ targeting and reduce immune-related adverse events. Herein, we summarize the recent progress of PNMs including inorganic, organic, and organic–inorganic hybrid ones for cancer immunotherapy. The design of PNMs and their performance in cancer immunotherapy are discussed in detail, with a focus on how those designs can address the challenges in current conventional immunotherapy. Lastly, we present future directions of PNMs for cancer immunotherapy including the challenges and research gaps, providing new insights about the design of PNMs for efficient cancer immunotherapy with better performance as powerful weapons against tumors. Finally, we discussed the relevant challenges that urgently need to be addressed in clinical practice, coupled with corresponding solutions to these problems.
Collapse
Affiliation(s)
- Su-Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Fang-Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Han-Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China. .,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China.
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China. .,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
55
|
Chen C, Wu C, Yu J, Zhu X, Wu Y, Liu J, Zhang Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
56
|
Shim MK, Song SK, Jeon SI, Hwang KY, Kim K. Nano-sized drug delivery systems to potentiate the immune checkpoint blockade therapy. Expert Opin Drug Deliv 2022; 19:641-652. [DOI: 10.1080/17425247.2022.2081683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Su Kyung Song
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biosystems & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seong Ik Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biosystems & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
57
|
Ferreira LF, Giordano GF, Gobbi AL, Piazzetta MHO, Schleder GR, Lima RS. Real-Time and In Situ Monitoring of the Synthesis of Silica Nanoparticles. ACS Sens 2022; 7:1045-1057. [PMID: 35417147 DOI: 10.1021/acssensors.1c02697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time and in situ monitoring of the synthesis of nanomaterials (NMs) remains a challenging task, which is of pivotal importance by assisting fundamental studies (e.g., synthesis kinetics and colloidal phenomena) and providing optimized quality control. In fact, the lack of reproducibility in the synthesis of NMs is a bottleneck against the translation of nanotechnologies into the market toward daily practice. Here, we address an impedimetric millifluidic sensor with data processing by machine learning (ML) as a sensing platform to monitor silica nanoparticles (SiO2NPs) over a 24 h synthesis from a single measurement. The SiO2NPs were selected as a model NM because of their extensive applications. Impressively, simple ML-fitted descriptors were capable of overcoming interferences derived from SiO2NP adsorption over the signals of polarizable Au interdigitate electrodes to assure the determination of the size and concentration of nanoparticles over synthesis while meeting the trade-off between accuracy and speed/simplicity of computation. The root-mean-square errors were calculated as ∼2.0 nm (size) and 2.6 × 1010 nanoparticles mL-1 (concentration). Further, the robustness of the ML size descriptor was successfully challenged in data obtained along independent syntheses using different devices, with the global average accuracy being 103.7 ± 1.9%. Our work advances the developments required to transform a closed flow system basically encompassing the reactional flask and an impedimetric sensor into a scalable and user-friendly platform to assess the in situ synthesis of SiO2NPs. Since the sensor presents a universal response principle, the method is expected to enable the monitoring of other NMs. Such a platform may help to pave the way for translating "sense-act" systems into practice use in nanotechnology.
Collapse
Affiliation(s)
- Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriela F. Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R. Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
58
|
Yue J, Mei Q, Wang P, Miao P, Dong WF, Li L. Light-triggered multifunctional nanoplatform for efficient cancer photo-immunotherapy. J Nanobiotechnology 2022; 20:181. [PMID: 35392911 PMCID: PMC8991811 DOI: 10.1186/s12951-022-01388-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/19/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer immunotherapy is limited by the immune escape of tumor cells and adverse effects. Photo-immunotherapy, the combination of immunotherapy and phototherapy (such as photodynamic therapy (PDT) and photothermal therapy (PTT)), can improve the effectiveness of immunotherapy in cancer treatment. Here, we first explored mesoporous hexagonal core–shell zinc porphyrin-silica nanoparticles (MPSNs), which are composed of a zinc porphyrin core and a mesoporous silica shell, and exhibit high laser-triggered photodynamic and photothermal activity, as well as outstanding drug loading capacity. In other words, MPSNs can be used not only as excellent photosensitizers for photo-immunotherapy, but also as an ideal drug carrier to achieve more efficient synergy. After loading with R837 (imiquimod, a toll-like receptor-7 agonist), MPSNs@R837 will elicit high-efficiency immunogenic cell death via PDT and PTT, and promote dendritic cell maturation after the PH-responsive release of R837, thereby, inducing tumor-specific immune responses. When combined with a programmed death ligand-1 checkpoint blockade, the photo-immunotherapy system markedly restrains primary tumors and metastatic tumors with negligible systemic toxicity. Therefore, the therapeutic strategy of integrating PTT, PDT and checkpoint blockade, shows great potential for suppressing cancer metastasis.
Collapse
Affiliation(s)
- Juan Yue
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Qian Mei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Peng Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| |
Collapse
|
59
|
Zhou L, Kodidela S, Godse S, Thomas-Gooch S, Kumar A, Raji B, Zhi K, Kochat H, Kumar S. Targeted Drug Delivery to the Central Nervous System Using Extracellular Vesicles. Pharmaceuticals (Basel) 2022; 15:358. [PMID: 35337155 PMCID: PMC8950604 DOI: 10.3390/ph15030358] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The blood brain barrier (BBB) maintains the homeostasis of the central nervous system (CNS) and protects the brain from toxic substances present in the circulating blood. However, the impermeability of the BBB to drugs is a hurdle for CNS drug development, which hinders the distribution of the most therapeutic molecules into the brain. Therefore, scientists have been striving to develop safe and effective technologies to advance drug penetration into the CNS with higher targeting properties and lower off-targeting side effects. This review will discuss the limitation of artificial nanomedicine in CNS drug delivery and the use of natural extracellular vesicles (EVs), as therapeutic vehicles to achieve targeted delivery to the CNS. Information on clinical trials regarding CNS targeted drug delivery using EVs is very limited. Thus, this review will also briefly highlight the recent clinical studies on targeted drug delivery in the peripheral nervous system to shed light on potential strategies for CNS drug delivery. Different technologies engaged in pre- and post-isolation have been implemented to further utilize and optimize the natural property of EVs. EVs from various sources have also been applied in the engineering of EVs for CNS targeted drug delivery in vitro and in vivo. Here, the future feasibility of those studies in clinic will be discussed.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Sandip Godse
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Stacey Thomas-Gooch
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Asit Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Babatunde Raji
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| |
Collapse
|
60
|
Wang R, Kim KH, Yoo J, Li X, Kwon N, Jeon YH, Shin SK, Han SS, Lee DS, Yoon J. A Nanostructured Phthalocyanine/Albumin Supramolecular Assembly for Fluorescence Turn-On Imaging and Photodynamic Immunotherapy. ACS NANO 2022; 16:3045-3058. [PMID: 35089696 DOI: 10.1021/acsnano.1c10565] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart phototheranostic nanomaterials are of significant interest for high-quality imaging and targeted therapy in the precision medicine field. Herein, a nanoscale photosensitizer (NanoPcM) is constructed through the self-assembly of morpholine-substituted silicon phthalocyanine (PcM) and albumin. NanoPcM displays a turn-on fluorescence depending on the acid-induced abolition of the photoinduced electron transfer effect (change in molecular structure) and disassembly of the nanostructure (change in supramolecular structure), which enables low-background and tumor-targeted fluorescence imaging. In addition, its efficient type I photoreaction endows NanoPcM with a superior immunogenic photodynamic therapy (PDT) effect against solid tumors. The combination of NanoPcM-based PDT and αPD-1-based immunotherapy can efficiently inhibit tumor growth, reduce spontaneous lung metastasis, and trigger abscopal effects. This study should provide a perspective for the future design of nanomaterials as promising phototheranostics for cancer imaging and therapy.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyu-Hwan Kim
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jiyoon Yoo
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yun-Hui Jeon
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Suk-Kyung Shin
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Seung Seok Han
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
61
|
Yu A, Dai X, Wang Z, Chen H, Guo B, Huang L. Recent Advances of Mesoporous Silica as a Platform for Cancer Immunotherapy. BIOSENSORS 2022; 12:109. [PMID: 35200369 PMCID: PMC8869707 DOI: 10.3390/bios12020109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 05/06/2023]
Abstract
Immunotherapy is a promising modality of treatment for cancer. Immunotherapy is comprised of systemic and local treatments that induce an immune response, allowing the body to fight back against cancer. Systemic treatments such as cancer vaccines harness antigen presenting cells (APCs) to activate T cells with tumor-associated antigens. Small molecule inhibitors can be employed to inhibit immune checkpoints, disrupting tumor immunosuppression and immune evasion. Despite the current efficacy of immunotherapy, improvements to delivery can be made. Nanomaterials such as mesoporous silica can facilitate the advancement of immunotherapy. Mesoporous silica has high porosity, decent biocompatibility, and simple surface functionalization. Mesoporous silica can be utilized as a versatile carrier of various immunotherapeutic agents. This review gives an introduction on mesoporous silica as a nanomaterial, briefly covering synthesis and biocompatibility, and then an overview of the recent progress made in the application of mesoporous silica to cancer immunotherapy.
Collapse
Affiliation(s)
- Albert Yu
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (A.Y.); (X.D.); (Z.W.); (H.C.)
- Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyong Dai
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (A.Y.); (X.D.); (Z.W.); (H.C.)
- Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Tsinghua University, Shenzhen 518055, China
| | - Zixian Wang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (A.Y.); (X.D.); (Z.W.); (H.C.)
- Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Tsinghua University, Shenzhen 518055, China
| | - Huaqing Chen
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (A.Y.); (X.D.); (Z.W.); (H.C.)
- Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Tsinghua University, Shenzhen 518055, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China;
| | - Laiqiang Huang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (A.Y.); (X.D.); (Z.W.); (H.C.)
- Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
62
|
Tao W, Wang N, Ruan J, Cheng X, Fan L, Zhang P, Lu C, Hu Y, Che C, Sun D, Duan J, Zhao M. Enhanced ROS-Boosted Phototherapy against Pancreatic Cancer via Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6404-6416. [PMID: 35077153 DOI: 10.1021/acsami.1c22861] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ oxygen generation is the most common strategy to boost reactive oxygen species (ROS) for enhancing the efficacy of phototherapy in cancer, including photodynamic therapy (PDT) and photothermal therapy (PTT). However, hyperoxidation or hyperthermia often triggers stress-defense pathways and promotes tumor cell survival, thus severely limiting the therapeutic efficacy. To overcome the tumor hypoxia and thermal resistance existing in phototherapy, we constructed a self-synergistic nanoplatform for tumors by incorporating brusatol, a nuclear factor erythroid 2-related factor (Nrf2) inhibitor, into the silica nanonetwork. It was then sequentially decorated with MnO2 and the photosensitizer chlorin e6 (Ce6) and then coated with poly(ethylene glycol)-folate (PEG-FA)-functionalized polydopamine (PDA) (designated as brusatol/silica@MnO2/Ce6@PDA-PEG-FA). As an oxygen generator, MnO2 can promote ROS production, which not only directly enhances Ce6-mediated PDT but also strengthens PDA-mediated PTT by attacking heat shock proteins (HSPs). Particularly, brusatol could efficiently inhibit the activation of Nrf2 defense pathway under hyperoxidation and hyperthermia and cause glutathione peroxidase 4 (GPX4) and ferritin heavy chain (FTH) inactivation, thereby inducing ferroptosis and ultimately enhancing the phototherapeutic effects. By exploiting these features, brusatol/silica@MnO2/Ce6@PDA-PEG-FA exhibited excellent antitumor efficacy with enhanced PDT and PTT both in in vitro and in vivo studies. Overall, our work highlights a promising strategy against hypoxia- and hyperthermia-associated resistance in phototherapy via suppressing stress-defense system and inducing ferroptosis.
Collapse
Affiliation(s)
- Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Neng Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Ruan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaolan Cheng
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pengfei Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cai Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Hu
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chuntao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Dongdong Sun
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
63
|
Abdollahi L, Dianat MJ, Marcos MD, Martínez-Máñez R, Karimi S. Hollow mesoporous silica nanoparticles: Effective silica etching using tri-di- and mono-valent cations. BIOMATERIALS ADVANCES 2022; 133:112621. [PMID: 35039199 DOI: 10.1016/j.msec.2021.112621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Among different hollow nanostructures, the preparation of hollow mesoporous silica nanoparticles (HMSNs) is still a hotspot research field due to their unique properties e.g., large pore sizes and volumes, high drug loading capacity, ease of surface modification, large surface area, and biodegradability. Herein, novel uniform HMSNs are prepared for the first time by a combination of heterogeneous oil-water biphase stratification and simple mono-, di-, and tri-valent etching reactions. The biphase stratification reaction allows self-assembly of reactants at the oil-water interface, while the subsequent step is designed for the efficient selective silica etching under mild conditions. We have studied the effect of cation's valence (NH4+, Ca2+, and Al3+) on the silica etching reaction coupled with the biphase stratification reaction both in the absence and presence of the auxiliary pore expanded agent 1, 3, 5 trimethylbenzene (TMB). In the absence of TMB, the Brunauer-Emmett-Teller (BET) analysis confirms that Al3+ creates materials with the largest pore size (18.0 nm), whereas the use of NH4+ results in the largest pore volume (2.30 cm3/g). The pores generated using Ca2+ and Al3+ as silica etching agents have a volume 2.01 cm3/g and 2.05 cm3/g, respectively. Similar experiments in the presence of TMB leads to the formation of HMSN with larger pore sizes (24 nm and 21.5 nm) and volumes (2.70 cm3/g and 2.12 cm3/g) when using Al3+ and Ca2+, respectively, as etching agents. Drug loading capacity using Langmuir adsorption model indicate our hollow MSN material exhibit the high adsorbing DOX up to 558.23 mg per gram of nanoparticles in pH of 7.2. Furthermore, synthetized NPs exhibited high loading capacity for large protein and biomolecules such as BSA. Our findings confirmed that the charge density of cation has a critical role on selective silica etching in the preparation of HMSNs.
Collapse
Affiliation(s)
- Leila Abdollahi
- Department of Chemistry, Faculty of Nano, Bioscience and Technology, Persian Gulf University, Bushehr, Iran
| | - Mohammad Javad Dianat
- Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University
| | - Maria Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valencia, Universitat de València, Spain; CIBER de Bioingenierıía, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Departamento de Química, Universitat Politécnica de València, Camino de Vera s/n, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valencia, Universitat de València, Spain; CIBER de Bioingenierıía, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Departamento de Química, Universitat Politécnica de València, Camino de Vera s/n, Valencia, Spain.
| | - Sadegh Karimi
- Department of Chemistry, Faculty of Nano, Bioscience and Technology, Persian Gulf University, Bushehr, Iran.
| |
Collapse
|
64
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
65
|
Liu J, He S, Luo Y, Zhang Y, Du X, Xu C, Pu K, Wang J. Tumor-Microenvironment-Activatable Polymer Nano-Immunomodulator for Precision Cancer Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106654. [PMID: 34854147 DOI: 10.1002/adma.202106654] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Cancer nanomedicine combined with immunotherapy has become a promising strategy for treating cancer in terms of safety and potency; however, precise regulation of the activation of antitumor immunity remains challenging. Herein, a smart semiconducting polymer nano-immunomodulator (SPNI), which responds to the acidic tumor microenvironment (TME), for precision photodynamic immunotherapy of cancer, is reported. The SPNI is self-assembled by a near-infrared (NIR)-absorbing semiconducting polymer and an amphipathic polymer conjugated with a Toll-like receptor 7 (TLR7) agonist via an acid-labile linker. Upon arrival at tumor site, SPNI undergoes hydrolysis and triggers an efficient liberation of TLR7 agonist in response to the acidic TME for dendritic cell activation. Moreover, SPNI exerts photodynamic effects for direct tumor eradication and immunogenic cancer cell death under NIR photoirradiation. The synergistic action of released immunogenic factors and acidic-TME-activated TLR7 agonist can serve as an in situ generated cancer vaccine to evoke strong antitumor activities. Notably, such localized immune activation boosts systemic antitumor immune responses, resulting in enhanced cytotoxic CD8+ T infiltration to inhibit tumor growth and metastasis. Thereby, this work presents a general strategy to devise prodrug of immunotherapeutics for precise regulation of cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yingli Luo
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yue Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xiaojiao Du
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Cheng Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
66
|
Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials 2022; 282:121433. [DOI: 10.1016/j.biomaterials.2022.121433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
67
|
Tang L, Zhang A, Zhang Z, Zhao Q, Li J, Mei Y, Yin Y, Wang W. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Commun (Lond) 2022; 42:141-163. [PMID: 35001556 PMCID: PMC8822595 DOI: 10.1002/cac2.12255] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/24/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Phototherapy and immunotherapy in combination is regarded as the ideal therapeutic modality to treat both primary and metastatic tumors. Immunotherapy uses different immunological approaches to stimulate the immune system to identify tumor cells for targeted elimination. Phototherapy destroys the primary tumors by light irradiation, which induces a series of immune responses through triggering immunogenic cancer cell death. Therefore, when integrating immunotherapy with phototherapy, a novel anti-cancer strategy called photoimmunotherapy (PIT) is emerging. This synergistic treatment modality can not only enhance the effectiveness of both therapies but also overcome their inherent limitations, opening a new era for the current anti-cancer therapy. Recently, the advancement of nanomaterials affords a platform for PIT. From all these nanomaterials, inorganic nanomaterials stand out as ideal mediators in PIT due to their unique physiochemical properties. Inorganic nanomaterials can not only serve as carriers to transport immunomodulatory agents in immunotherapy owing to their excellent drug-loading capacity but also function as photothermal agents or photosensitizers in phototherapy because of their great optical characteristics. In this review, the recent advances of multifunctional inorganic nanomaterial-mediated drug delivery and their contributions to cancer PIT will be highlighted.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Qingqing Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
68
|
Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14010120. [PMID: 35057015 PMCID: PMC8780767 DOI: 10.3390/pharmaceutics14010120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT), in which a light source is used in combination with a photosensitizer to induce local cell death, has shown great promise in therapeutically targeting primary tumors with negligible toxicity and minimal invasiveness. However, numerous studies have shown that noninvasive PDT alone is not sufficient to completely ablate tumors in deep tissues, due to its inherent shortcomings. Therefore, depending on the characteristics and type of tumor, PDT can be combined with surgery, radiotherapy, immunomodulators, chemotherapy, and/or targeted therapy, preferably in a patient-tailored manner. Nanoparticles are attractive delivery vehicles that can overcome the shortcomings of traditional photosensitizers, as well as enable the codelivery of multiple therapeutic drugs in a spatiotemporally controlled manner. Nanotechnology-based combination strategies have provided inspiration to improve the anticancer effects of PDT. Here, we briefly introduce the mechanism of PDT and summarize the photosensitizers that have been tested preclinically for various cancer types and clinically approved for cancer treatment. Moreover, we discuss the current challenges facing the combination of PDT and multiple cancer treatment options, and we highlight the opportunities of nanoparticle-based PDT in cancer therapies.
Collapse
|
69
|
Liu D, Gao S, Zhai Y, Yang X, Zhai G. Research progress of tumor targeted drug delivery based on PD-1/PD-L1. Int J Pharm 2022; 616:121527. [DOI: 10.1016/j.ijpharm.2022.121527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
70
|
Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103790. [PMID: 34651344 DOI: 10.1002/adma.202103790] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cancer vaccines aim at eliciting tumor-specific responses for the immune system to identify and eradicate malignant tumor cells while sparing the normal tissues. Furthermore, cancer vaccines can potentially induce long-term immunological memory for antitumor responses, preventing metastasis and cancer recurrence, thus presenting an attractive treatment option in cancer immunotherapy. However, clinical efficacy of cancer vaccines has remained low due to longstanding challenges, such as poor immunogenicity, immunosuppressive tumor microenvironment, tumor heterogeneity, inappropriate immune tolerance, and systemic toxicity. Recently, bioinspired materials and biomimetic technologies have emerged to play a part in reshaping the field of cancer nanomedicine. By mimicking desirable chemical and biological properties in nature, bioinspired engineering of cancer vaccine delivery platforms can effectively transport therapeutic cargos to tumor sites, amplify antigen and adjuvant bioactivities, and enable spatiotemporal control and on-demand immunoactivation. As such, integration of biomimetic designs into delivery platforms for cancer vaccines can enhance efficacy while retaining good safety profiles, which contributes to expediting the clinical translation of cancer vaccines. Recent advances in bioinspired delivery platforms for cancer vaccines, existing obstacles faced, as well as insights and future directions for the field are discussed here.
Collapse
Affiliation(s)
- Jing Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Si Si Liew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
71
|
Peng S, Xiao F, Chen M, Gao H. Tumor-Microenvironment-Responsive Nanomedicine for Enhanced Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103836. [PMID: 34796689 PMCID: PMC8728817 DOI: 10.1002/advs.202103836] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Indexed: 05/07/2023]
Abstract
The past decades have witnessed great progress in cancer immunotherapy, which has profoundly revolutionized oncology, whereas low patient response rates and potential immune-related adverse events remain major clinical challenges. With the advantages of controlled delivery and modular flexibility, cancer nanomedicine has offered opportunities to strengthen antitumor immune responses and to sensitize tumor to immunotherapy. Furthermore, tumor-microenvironment (TME)-responsive nanomedicine has been demonstrated to achieve specific and localized amplification of the immune response in tumor tissue in a safe and effective manner, increasing patient response rates to immunotherapy and reducing the immune-related side effects simultaneously. Here, the recent progress of TME-responsive nanomedicine for cancer immunotherapy is summarized, which responds to the signals in the TME, such as weak acidity, reductive environment, high-level reactive oxygen species, hypoxia, overexpressed enzymes, and high-level adenosine triphosphate. Moreover, the potential to combine nanomedicine-based therapy and immunotherapeutic strategies to overcome each step of the cancer-immunity cycle and to enhance antitumor effects is discussed. Finally, existing challenges and further perspectives in this rising field with the hope for improved development of clinical applications are discussed.
Collapse
Affiliation(s)
- Shaojun Peng
- Zhuhai Institute of Translational MedicineZhuhai Precision Medical CenterZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000China
| | - Fengfeng Xiao
- Zhuhai Institute of Translational MedicineZhuhai Precision Medical CenterZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacau999078China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| |
Collapse
|
72
|
Ji B, Wei M, Yang B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics 2022; 12:434-458. [PMID: 34987658 PMCID: PMC8690913 DOI: 10.7150/thno.67300] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has made tremendous clinical progress in advanced-stage malignancies. However, patients with various tumors exhibit a low response rate to immunotherapy because of a powerful immunosuppressive tumor microenvironment (TME) and insufficient immunogenicity of tumors. Photodynamic therapy (PDT) can not only directly kill tumor cells, but also elicit immunogenic cell death (ICD), providing antitumor immunity. Unfortunately, limitations from the inherent nature and complex TME significantly reduce the efficiency of PDT. Recently, smart nanomedicine-based strategies could subtly modulate the pharmacokinetics of therapeutic compounds and the TME to optimize both PDT and immunotherapy, resulting in an improved antitumor effect. Here, the emerging nanomedicines for PDT-driven cancer immunotherapy are reviewed, including hypoxia-reversed nanomedicines, nanosized metal-organic frameworks, and subcellular targeted nanoparticles (NPs). Moreover, we highlight the synergistic nanotherapeutics used to amplify immune responses combined with immunotherapy against tumors. Lastly, the challenges and future expectations in the field of PDT-driven cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Bin Ji
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Bin Yang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
73
|
Yang YL, Lin K, Yang L. Progress in Nanocarriers Codelivery System to Enhance the Anticancer Effect of Photodynamic Therapy. Pharmaceutics 2021; 13:1951. [PMID: 34834367 PMCID: PMC8617654 DOI: 10.3390/pharmaceutics13111951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer noninvasive method and has great potential for clinical applications. Unfortunately, PDT still has many limitations, such as metastatic tumor at unknown sites, inadequate light delivery and a lack of sufficient oxygen. Recent studies have demonstrated that photodynamic therapy in combination with other therapies can enhance anticancer effects. The development of new nanomaterials provides a platform for the codelivery of two or more therapeutic drugs, which is a promising cancer treatment method. The use of multifunctional nanocarriers for the codelivery of two or more drugs can improve physical and chemical properties, increase tumor site aggregation, and enhance the antitumor effect through synergistic actions, which is worthy of further study. This review focuses on the latest research progress on the synergistic enhancement of PDT by simultaneous multidrug administration using codelivery nanocarriers. We introduce the design of codelivery nanocarriers and discuss the mechanism of PDT combined with other antitumor methods. The combination of PDT and chemotherapy, gene therapy, immunotherapy, photothermal therapy, hyperthermia, radiotherapy, sonodynamic therapy and even multidrug therapy are discussed to provide a comprehensive understanding.
Collapse
Affiliation(s)
| | | | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-L.Y.); (K.L.)
| |
Collapse
|
74
|
Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021; 13:pharmaceutics13111933. [PMID: 34834348 PMCID: PMC8624654 DOI: 10.3390/pharmaceutics13111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.
Collapse
|
75
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
76
|
Moghassemi S, Dadashzadeh A, Azevedo RB, Feron O, Amorim CA. Photodynamic cancer therapy using liposomes as an advanced vesicular photosensitizer delivery system. J Control Release 2021; 339:75-90. [PMID: 34562540 DOI: 10.1016/j.jconrel.2021.09.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
The multidisciplinary field of photodynamic therapy (PDT) is a combination of photochemistry and photophysics sciences, which has shown tremendous potential for cancer therapy application. PDT employs a photosensitizing agent (PS) and light to form cytotoxic reactive oxygen species and subsequently oxidize light-exposed tissue. Despite numerous advantages of PDT and enormous progress in this field, common PSs are still far from ideal treatment because of their poor permeability, non-specific phototoxicity, side effects, hydrophobicity, weak bioavailability, and tendency to self-aggregation. To circumvent these limitations, PS can be encapsulated in liposomes, an advanced drug delivery system that has demonstrated the ability to enhance drug permeability into biological membranes and loading both hydrophobic and lipophilic agents. Moreover, liposomes can also be coated by targeting agents to improve delivery efficiency. The present review aims to summarize the principles of PDT, various PS generations, PS-loaded nanoparticles, liposomes, and their impact on PDT, then discuss recent photodynamic cancer therapy strategies using liposomes as PS-loaded vectors, and highlight future possibilities and perspectives.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Olivier Feron
- Pôle de Pharmacologie et thérapeutique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
77
|
Lin L, Song X, Dong X, Li B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102597. [PMID: 34699982 DOI: 10.1016/j.pdpdt.2021.102597] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) utilizes photosensitizers (PSs) together with irradiation light of specific wavelength interacting with oxygen to generate cytotoxic reactive oxygen species (ROS), which could trigger apoptosis and/or necrosis-induced cell death in target tissues. During the past two decades, multifunctional nano-PSs employing nanotechnology and nanomedicine developed, which present not only photosensitizing properties but additionally accurate drug release abilities, efficient response to optical stimuli and hypoxia resistance. Further, nano-PSs have been developed to enhance PDT efficacy by improving the ROS yield. In addition, nano-PSs with additive or synergistic therapies are significant for both currently preclinical study and future clinical practice, given their capability of considerable higher therapeutic efficacy under safer systemic drug dosage. In this review, nano-PSs that allow precise drug delivery for efficient absorption by target cells are introduced. Nano-PSs boosting sensitivity and conversion efficiency to PDT-activating stimuli are highlighted. Nano-PSs developed to address the challenging hypoxia conditions during PDT of deep-sited tumors are summarized. Specifically, PSs capable of synergistic therapy and the emerging novel types with higher ROS yield that further enhance PDT efficacy are presented. Finally, future demands for ideal nano-PSs, emphasizing clinical translation and application are discussed.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, China
| | - Xiaocheng Dong
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, China
| | - Buhong Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
78
|
Cao D, Zuo H, Jiang M, Huang Y, Li L, Lin F, Liu Y. Development of a multi-arm polyrotaxanes modified mesoporous silica-coated gold nanoplatform for protecting endothelial progenitor cells against high glucose environment. J Biomater Appl 2021; 36:1087-1097. [PMID: 34463189 DOI: 10.1177/08853282211041210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent study reported that endothelial progenitor cells (EPCs) have potential to treat diabetic macroangiopathy. High glucose environment of diabetes can affect the adhesion of EPCs by decreasing the expression of CXC chemokine receptor 4 (CXCR4) and affect the proliferation of EPCs by decreasing the expression of miR-126. The results showed that the cytotoxicity of GNR@MSNs@PEI to EPCs was significantly lower than PEI; the temperature of GNR@MSNs@PEI solution can be controlled between 38-40°C under 808 nm laser irradiation. 25.67 µg of pcDNA3.1-GFP-CXCR4 and 5.36 µg of FITC-miR-126 could be loaded in 1 mg of GNR@MSNs@PEI; GNR@MSNs@PEI has gene transfection almost the same as Lipofectamine 3000. Subsequent in vitro studies showed that pcDNA3.1-GFP-CXCR4 and miR-126 loaded GNR@MSNs@PEI can significantly increase the adhesion and proliferation and decrease the apoptosis of EPCs treated with high glucose under 808 nm laser irradiation. In conclusion, nano-carriers (GNR@MSNs@PEI) with high pcDNA3.1-CXCR4 and miR-126 loading capacity, high biocompatibility, well cell internalization, and controllable release ability were constructed to transfer CXCR4 expression plasmid (pcDNA3.1-CXCR4) and miR-126 into EPCs efficiently. Further in vitro studies indicated that pcDNA3.1-CXCR4 and miR-126-loaded GNR@MSNs@PEI could protect EPCs against high glucose-induced injury.
Collapse
Affiliation(s)
- Duanwen Cao
- 117970Clinical Trials Research Centre, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Huihua Zuo
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Mingjin Jiang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Yiteng Huang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Liang Li
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China
| | - Fengxia Lin
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China
| | - Yue Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
79
|
Xu M, Yim W, Zhou J, Zhou J, Jin Z, Moore C, Borum R, Jorns A, Jokerst JV. The Application of Organic Nanomaterials for Bioimaging, Drug Delivery, and Therapy: Spanning Various Domains. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
80
|
He X, Yang L, Su H, Lin S, Qi D, Chen H, Qu Y, Liu L, Feng X. Clickable amino acid derivative tuned self-assembly of antigen and adjuvant for cancer immunotherapy. J Control Release 2021; 337:306-316. [PMID: 34311025 DOI: 10.1016/j.jconrel.2021.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Amino acid-tuned self-assembly has become an attractive strategy for constructing various functional materials. Here, a series of dibenzocyclooctyne (DIBO) functionalized amphiphilic amino acid derivatives are designed and screened as building blocks of functional supramolecular self-assembly nanoparticles for cancer immunotherapy. One top-performing supramolecular self-assembly material (named DA6C1) is identified through combinatorial screening, and spherical nanoparticles can be easily prepared by this material tuned multicomponent synergistic self-assembly of ovalbumin (OVA) and CpG oligonucleotide. DA6C1 based nanovaccine can significantly enhance the cellular uptake of OVA and CpG into the same bone marrow derived dendritic cells (BMDCs) and greatly improve the activation of DCs. Moreover, after subcutaneous injection, this nanovaccine flows rapidly to the lymph nodes and elicits strong immune responses to achieve effective prophylactic and therapeutic effect. Therefore, our work highlights the great potential of clickable amino acid derivatives as a convenient and powerful tool to construct nanovaccine for effective immunotherapy.
Collapse
Affiliation(s)
- Xiao He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hang Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shan Lin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Dongmei Qi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Yunfei Qu
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing 404000, China.
| | - Libing Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
81
|
Živojević K, Mladenović M, Djisalov M, Mundzic M, Ruiz-Hernandez E, Gadjanski I, Knežević NŽ. Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications. J Control Release 2021; 337:193-211. [PMID: 34293320 DOI: 10.1016/j.jconrel.2021.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment.
Collapse
Affiliation(s)
- Kristina Živojević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Minja Mladenović
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Mila Djisalov
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Mirjana Mundzic
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Nikola Ž Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
82
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
83
|
Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. NANO TODAY 2021; 38:101146. [PMID: 33897805 PMCID: PMC8059603 DOI: 10.1016/j.nantod.2021.101146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Porous nanomaterials with high surface area, tunable porosity, and large mesopores have recently received particular attention in cancer therapy and imaging. Introduction of additional pores to nanostructures not only endows the tunability of optoelectronic and optical features optimal for tumor treatment, but also modulates the loading capacity and controlled release of therapeutic agents. In recognition, increasing efforts have been made to fabricate various porous nanomaterials and explore their potentials in oncology applications. Thus, a systematic and comprehensive summary is necessary to overview the recent progress, especially in last ten years, on the development of various mesoporous nanomaterials for cancer treatment as theranostic agents. While outlining their individual synthetic mechanisms after a brief introduction of the structures and properties of porous nanomaterials, the current review highlighted the representative applications of three main categories of porous nanostructures (organic, inorganic, and organic-inorganic nanomaterials). In each category, the synthesis, representative examples, and interactions with tumors were further detailed. The review was concluded with deliberations on the key challenges and future outlooks of porous nanostructures in cancer theranostics.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| |
Collapse
|
84
|
Liu Z, Xie Z, Li W, Wu X, Jiang X, Li G, Cao L, Zhang D, Wang Q, Xue P, Zhang H. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. J Nanobiotechnology 2021; 19:160. [PMID: 34051801 PMCID: PMC8164771 DOI: 10.1186/s12951-021-00903-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive or minimally-invasive treatment which applies photosensitizers (PSs) to create reactive oxygen species (ROS) exposed to light trigger to destroy cancer cells. PDT can activate host anti-tumor immune responses but not powerful enough to kill metastatic tumors. Because of its carrier advantage, imaging, and therapeutic function together with enhanced permeability and retention (EPR) effect, nano-materials have already been used in photo-immunotherapy. Herein, photodynamic immunotherapy (PDIT) based on nanotechnology seems to be a hopeful new form of cancer therapy. In this article, we firstly summarize the recent development in photodynamic immunotherapy based on nanotechnology. ![]()
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhongjian Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China
| | - Wenting Li
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xinqiang Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiwen Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China. .,Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
85
|
Xuan Y, Guan M, Zhang S. Tumor immunotherapy and multi-mode therapies mediated by medical imaging of nanoprobes. Theranostics 2021; 11:7360-7378. [PMID: 34158855 PMCID: PMC8210602 DOI: 10.7150/thno.58413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is an effective tumor treatment strategy that has several advantages over conventional methods such as surgery, radiotherapy and chemotherapy. Studies show that multifunctional nanoprobes can achieve multi-mode image-guided multiple tumor treatment modes. The tumor cells killed by chemotherapies or phototherapies release antigens that trigger an immune response and augment the effects of tumor immunotherapy. Thus, combining immunotherapy and multifunctional nanoprobes can achieve early cancer diagnosis and treatment. In this review, we have summarized the current research on the applications of multifunctional nanoprobes in image-guided immunotherapy. In addition, image-guided synergistic chemotherapy/photothermal therapy/photodynamic therapy and immunotherapy have also been discussed. Furthermore, the application potential and clinical prospects of multifunctional nanoprobes in combination with immunotherapy have been assessed.
Collapse
Affiliation(s)
| | | | - Shubiao Zhang
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, 116600, China
| |
Collapse
|
86
|
Yang L, He X, Zeng Z, Tang J, Qi D, Ma H, Chen H, Ning X, Feng X. Clickable amino acid tuned self-assembly of a nucleus-selective multi-component nanoplatform for synergistic cancer therapy. Chem Sci 2021; 12:8394-8400. [PMID: 34221320 PMCID: PMC8221198 DOI: 10.1039/d1sc01073e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Nucleus-targeted therapy holds great promise in cancer treatment; however, a lack of effective nucleus-specific delivery significantly limits its application potential. Here, we report a nucleus-targeted synergistic chemo-photodynamic therapy based on the self-assembly of chlorin e6 (Ce6) and doxorubicin (DOX) tuned by clickable dibenzocyclooctyne (DIBO) functionalized lysine (D-K) and subsequent reaction with crosslinkers. The assembled nanodrugs with high loading efficiency and long-term stability show enhanced cellular uptake and accumulation in the nucleus, resulting in greatly improved in vitro and in vivo chemo-photodynamic efficacy. Notably, D-K can promote the rapid self-assembly of Ce6 and DOX in aqueous solution, avoiding the introduction of organic solvents or tedious preparations. In addition, the introduction of the DIBO group can effectively expand the types of self-assembly material and enhance the self-assembly behaviour through a copper-free click reaction. Therefore, we present an effective nucleus-targeted combination drug delivery strategy, which has great potential in the treatment of many diseases.
Collapse
Affiliation(s)
- Lan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Xiao He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Zhiying Zeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Jiakun Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Dongmei Qi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Huijie Ma
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| |
Collapse
|
87
|
Chen Y, Ma H, Wang W, Zhang M. A size-tunable nanoplatform: enhanced MMP2-activated chemo-photodynamic immunotherapy based on biodegradable mesoporous silica nanoparticles. Biomater Sci 2021; 9:917-929. [PMID: 33284292 DOI: 10.1039/d0bm01452d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although immunotherapy is emerging as a revolutionary strategy for cancer therapy, its clinical effect is severely impaired by adaptive immune evasion and inefficient activation of antitumor immune response. Photodynamic therapy and chemotherapy have been shown to efficiently enhance the therapeutic effect of PD-L1 immunotherapy via different mechanisms. However, the lack of a precise drug delivery system seriously impedes the clinical application of combination therapy. To address these restrictions, a matrix metalloproteinases-2 (MMP2)-activated shrinkable nanosystem was developed to potentiate the antitumor efficacy of anti-PD-L1 antibody (aPDL1) delivered along with a chemo-photodynamic therapy. The nanosystem maintains its structure to accelerate tumor accumulation and shrinks down to a smaller size to facilitate tumor penetration and cellular uptake upon arriving in the tumor microenvironment. The exposure of aPDL1 on the surface of the biodegradable mesoporous silica cores (bMSNs) blocks the PD-1/PD-L1 interaction between tumor cells and T cells. Meanwhile, photosensitizer chlorin e6 (Ce6) and paclitaxel (PTX) loaded bMSNs effectively enter tumor cells and induce chemo-photodynamic therapy. The nanosystem elicits a chemo-photodynamic-induced immune response and improves the therapeutic effect of PD-L1 blockade mediated by aPDL1. Furthermore, the nanosystem displays a sustained prohibitive effect on tumor metastasis to distant sites. Our work presents a promising strategy for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Chen
- Department of Pharmacy, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao 266034, China
| | - He Ma
- Institute of Biomedical Materials and Engineering, College of Materials Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Wenli Wang
- Institute of Biomedical Materials and Engineering, College of Materials Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Min Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
88
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
89
|
Landry MR, Walker JM, Sun C. Exploiting Phagocytic Checkpoints in Nanomedicine: Applications in Imaging and Combination Therapies. Front Chem 2021; 9:642530. [PMID: 33748077 PMCID: PMC7966415 DOI: 10.3389/fchem.2021.642530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Recent interest in cancer immunotherapy has largely been focused on the adaptive immune system, particularly adoptive T-cell therapy and immune checkpoint blockade (ICB). Despite improvements in overall survival and progression-free survival across multiple cancer types, neither cell-based therapies nor ICB results in durable disease control in the majority of patients. A critical component of antitumor immunity is the mononuclear phagocyte system and its role in both innate and adaptive immunity. The phagocytic functions of these cells have been shown to be modulated through multiple pathways, including the CD47-SIRPα axis, which is manipulated by cancer cells for immune evasion. In addition to CD47, tumors express a variety of other “don’t eat me” signals, including beta-2-microglobulin and CD24, and “eat me” signals, including calreticulin and phosphatidylserine. Therapies targeting these signals can lead to increased phagocytosis of cancer cells; however, because “don’t eat me” signals are markers of “self” on normal cells, treatment can result in negative off-target effects, such as anemia and B-cell depletion. Recent preclinical research has demonstrated the potential of nanocarriers to synergize with prophagocytic therapies, address the off-target effects, improve pharmacokinetics, and codeliver chemotherapeutics. The high surface area-to-volume ratio of nanoparticles paired with preferential size for passive targeting allows for greater accumulation of therapeutic cargo. In addition, nanomaterials hold promise as molecular imaging agents for the detection of phagocytic markers. This mini review highlights the unique capabilities of nanotechnology to expand the application and efficacy of immunotherapy through recently discovered phagocytotic checkpoint therapies.
Collapse
Affiliation(s)
- Madeleine R Landry
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, United States
| | - Joshua M Walker
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Cell, Developmental, and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, United States.,Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
90
|
Das M, Solanki A, Ganesh A, Thakore S. Emerging hybrid biomaterials for oxidative stress induced photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 34:102259. [PMID: 33737219 DOI: 10.1016/j.pdpdt.2021.102259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/17/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Cancer therapy has undergone tremendous advancements in the past few years. The drawbacks of most of these therapies have encouraged researchers to obtain further insight into the complex chemical, biochemical and biological processes ongoing in the evolving cancer cells. These studies have led to an advent of reactive oxygen species mediated therapies to target and disrupt the cancer pathology. Photodynamic therapy (PDT) has emerged as a potent candidate for oxidative stress mediated non-invasive technique for rapid diagnosis and treatment of cancer. Towards this, biomacromolecules derived hybrid nanomaterials have contributed largely in the development of various therapeutics and theranostics for efficacious cancer management that can assist PDT. This review summarizes various hybrid biomaterials and advanced techniques that have been explored widely in the past few years for PDT application. The article also mentions some of the important in-vitro and in-vivo developments and observations explored by employing these materials for PDT application. The article also describes the interactions of these materials at the biological interface and the probable mechanism that assist in generation of oxidative stress and subsequent cell death.
Collapse
Affiliation(s)
- Manita Das
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India
| | - Archana Solanki
- Research and Development Centre, Gujarat Narmada Valley Fertilizers and Chemicals Ltd, Bharuch, 392015, India
| | - Ashwini Ganesh
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India; Institute of Interdisciplinary Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 3960002, India.
| |
Collapse
|
91
|
Nam J, Son S, Park KS, Moon JJ. Modularly Programmable Nanoparticle Vaccine Based on Polyethyleneimine for Personalized Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002577. [PMID: 33717838 PMCID: PMC7927624 DOI: 10.1002/advs.202002577] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/30/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticles (NPs) can serve as a promising vaccine delivery platform for improving pharmacological property and codelivery of antigens and adjuvants. However, NP-based vaccines are generally associated with complex synthesis and postmodification procedures, which pose technical and manufacturing challenges for tailor-made vaccine production. Here, modularly programmed, polyethyleneimine (PEI)-based NP vaccines are reported for simple production of personalized cancer vaccines. Briefly, PEI is conjugated with neoantigens by facile coupling chemistry, followed by electrostatic assembly with CpG adjuvants, leading to the self-assembly of nontoxic, sub-50 nm PEI NPs. Importantly, PEI NPs promote activation and antigen cross-presentation of antigen-presenting cells and cross-priming of neoantigen-specific CD8+ T cells. Surprisingly, after only a single intratumoral injection, PEI NPs with optimal PEGylation elicit as high as ≈30% neoantigen-specific CD8+ T cell response in the systemic circulation and sustain elevated CD8+ T cell response over 3 weeks. PEI-based nanovaccines exert potent antitumor efficacy against pre-established local tumors as well as highly aggressive metastatic tumors. PEI engineering for modular incorporation of neoantigens and adjuvants offers a promising strategy for rapid and facile production of personalized cancer vaccines.
Collapse
Affiliation(s)
- Jutaek Nam
- Department of Pharmaceutical SciencesBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Sejin Son
- Department of Pharmaceutical SciencesBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Kyung Soo Park
- Department of Biomedical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - James J. Moon
- Department of Pharmaceutical SciencesDepartment of Biomedical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
92
|
Brouillard A, Deshpande N, Kulkarni AA. Engineered Multifunctional Nano- and Biological Materials for Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2001680. [PMID: 33448159 DOI: 10.1002/adhm.202001680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy is set to emerge as the future of cancer therapy. However, recent immunotherapy trials in different cancers have yielded sub-optimal results, with durable responses seen in only a small fraction of patients. Engineered multifunctional nanomaterials and biological materials are versatile platforms that can elicit strong immune responses and improve anti-cancer efficacy when applied to cancer immunotherapy. While there are traditional systems such as polymer- and lipid-based nanoparticles, there is a wide variety of other materials with inherent and additive properties that can allow for more potent activation of the immune system. By synthesizing and applying multifunctional strategies, it allows for a more extensive and more effective repertoire of tools to use in the wide variety of situations that cancer presents itself. Here, several types of nanoscale and biological material strategies and platforms that provide their inherent benefits for targeting and activating multiple aspects of the immune system are discussed. Overall, this review aims to provide a comprehensive understanding of recent advances in the field of multifunctional cancer immunotherapy and trends that pave the way for more diverse and tactical regression of tumors through soliciting responses by either the adaptive or innate immune system, and even both simultaneously.
Collapse
Affiliation(s)
- Anthony Brouillard
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Nilesh Deshpande
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
93
|
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021; 10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-targeted photodynamic therapy (Mt-PDT), which enables the photogenerated cytotoxic oxygen species with fatal oxidative damage to block mitochondrial functions, has been considered as a promising method to enhance the anticancer effectiveness. Aiming at the challenges of PDT, in the past few decades, numerous mitochondria-targeting molecular agents have been developed to boost the PDT efficacy via directly destroying the mitochondria or activating mitochondria-mediated cell death pathways. Herein, a review for recent advances of Mt-PDT is highlighted including: mitochondrial targeting design principles and strategies, therapeutic performance of mitochondria-targeted agents-mediated PDT as well as the agent-free Mt-PDT. In addition, it puts together the achievements of the combinatory mitochondria-anchoring PDT and other anticancer strategies, demonstrating the advantages provided by Mt-PDT. The existing challenges are discussed and future settlements for the development of mitochondria-specific agents are also forecasted.
Collapse
Affiliation(s)
- Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| |
Collapse
|
94
|
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20:101-124. [PMID: 33277608 PMCID: PMC7717100 DOI: 10.1038/s41573-020-0090-8] [Citation(s) in RCA: 3177] [Impact Index Per Article: 794.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers - systemic, microenvironmental and cellular - that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Pediatrics, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, The University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA.
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
95
|
Li WP, Yen CJ, Wu BS, Wong TW. Recent Advances in Photodynamic Therapy for Deep-Seated Tumors with the Aid of Nanomedicine. Biomedicines 2021; 9:69. [PMID: 33445690 PMCID: PMC7828119 DOI: 10.3390/biomedicines9010069] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) works through photoactivation of a specific photosensitizer (PS) in a tumor in the presence of oxygen. PDT is widely applied in oncology to treat various cancers as it has a minimally invasive procedure and high selectivity, does not interfere with other treatments, and can be repeated as needed. A large amount of reactive oxygen species (ROS) and singlet oxygen is generated in a cancer cell during PDT, which destroys the tumor effectively. However, the efficacy of PDT in treating a deep-seated tumor is limited due to three main reasons: Limited light penetration depth, low oxygen concentration in the hypoxic core, and poor PS accumulation inside a tumor. Thus, PDT treatments are only approved for superficial and thin tumors. With the advancement of nanotechnology, PDT to treat deep-seated or thick tumors is becoming a reachable goal. In this review, we provide an update on the strategies for improving PDT with nanomedicine using different sophisticated-design nanoparticles, including two-photon excitation, X-ray activation, targeting tumor cells with surface modification, alteration of tumor cell metabolism pathways, release of therapeutic gases, improvement of tumor hypoxia, and stimulation of host immunity. We focus on the difficult-to-treat pancreatic cancer as a model to demonstrate the influence of advanced nanomedicine in PDT. A bright future of PDT application in the treatment of deep-seated tumors is expected.
Collapse
Affiliation(s)
- Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
| | - Bo-Sheng Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
96
|
Li J, Luo Y, Pu K. Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angew Chem Int Ed Engl 2021; 60:12682-12705. [DOI: 10.1002/anie.202008386] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yu Luo
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
97
|
Moodley T, Singh M. Current Stimuli-Responsive Mesoporous Silica Nanoparticles for Cancer Therapy. Pharmaceutics 2021; 13:71. [PMID: 33430390 PMCID: PMC7827023 DOI: 10.3390/pharmaceutics13010071] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
With increasing incidence and mortality rates, cancer remains one of the most devastating global non-communicable diseases. Restricted dosages and decreased bioavailability, often results in lower therapeutic outcomes, triggering the development of resistance to conventionally used drug/gene therapeutics. The development of novel therapeutic strategies using multimodal nanotechnology to enhance specificity, increase bioavailability and biostability of therapeutics with favorable outcomes is critical. Gated vectors that respond to endogenous or exogenous stimuli, and promote targeted tumor delivery without prematurely cargo loss are ideal. Mesoporous silica nanoparticles (MSNs) are effective delivery systems for a variety of therapeutic agents in cancer therapy. MSNs possess a rigid framework and large surface area that can incorporate supramolecular constructs and varying metal species that allow for stimuli-responsive controlled release functions. Its high interior loading capacity can incorporate combination drug/gene therapeutic agents, conferring increased bioavailability and biostability of the therapeutic cargo. Significant advances in the engineering of MSNs structural and physiochemical characteristics have since seen the development of nanodevices with promising in vivo potential. In this review, current trends of multimodal MSNs being developed and their use in stimuli-responsive passive and active targeting in cancer therapy will be discussed, focusing on light, redox, pH, and temperature stimuli.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
98
|
Li J, Luo Y, Pu K. Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yu Luo
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
99
|
Qiu Q, Li C, Yan X, Zhang H, Luo X, Gao X, Liu X, Song Y, Deng Y. Photodynamic/ photothermal therapy enhances neutrophil-mediated ibrutinib tumor delivery for potent tumor immunotherapy: More than one plus one? Biomaterials 2021; 269:120652. [PMID: 33450581 DOI: 10.1016/j.biomaterials.2021.120652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Neutrophil-mediated drug-delivery systems have gained widespread attention owing to their superior efficacy in cancer therapy. Neutrophils, the most abundant white cells in peripheral blood, are known to migrate to inflamed tumors. Here, we elaborate on a novel strategy to enhance tumor infiltration of neutrophils by photodynamic/photothermal therapy (PDT/PTT) to deliver ibrutinib (IBR) nanocomplexes for cancer immunotherapy. DiR-loading liposomes (DiR-lipos) were administered to induce acute inflammation, and sialic acid (SA) derivative-coated IBR-loading nanocomplexes (SA-2@NCs) were fabricated for targeting activated peripheral blood neutrophils (PBNs). This in vitro and in vivo attempt, therefore, proved the hypothesis that inducing acute inflammation via PDT/PTT could facilitate the migration of PBNs, which could deliver SA-2@NCs into the tumor. The enhanced tumor delivery of SA-2@NCs was accompanied by enhanced antitumor T-cell immune responses in a mouse orthotopic breast cancer model. Our findings indicate that the combination of IBR-mediated immunotherapy with DiR-mediated PDT/PTT bring together two leading novel strategies, taking advantage of their synergistic mechanisms of action for a potent anti-tumor efficacy for breast cancer therapy.
Collapse
Affiliation(s)
- Qiujun Qiu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Cong Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xinyang Yan
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Hongxia Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiang Luo
- College of Chemistry and Chemical Engineering, Shaoxing University, No. 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, PR China.
| | - Xin Gao
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
100
|
Abstract
Cancer immunotherapy, which aims to control the immune system to eradicate cancer cells and prevent their spread, needs to be personalized because anticancer immune responses can be inhibited in several ways that vary from patient to patient. Cancer immunotherapy includes pharmaceuticals such as immune checkpoint inhibitors and monoclonal antibodies (MAbs) as well as cell therapy, immunogene therapy, and vaccines. Combination of programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) drugs with other immunotherapy drugs, for example, antibody-drug conjugates, as well as combination of PD-1/PD-L1 drugs with other therapies, for example, chemotherapy and radiation therapy, are being explored. Biomarkers are important for predicting the response to immunotherapy. Molecular diagnostics and sequencing are important technologies for guiding treatment in immuno-oncology. Genomic profiling of tumor mutational burden may enhance the predictive utility of PD-L1 expression and facilitate personalized combination immunotherapy. Optimization of personalized immuno-oncology requires integration of several technologies and selection of those best suited for an individual patient. Advances in immuno-oncology are also attributed to technologies for targeted delivery of anticancer therapeutics such as antigen-capturing nanoparticles for precision targeting and selective delivery. A breakthrough in cell therapy of cancer is a chimeric antigen receptors-T cell, which combines the antigen-binding site of a MAb with the signal activating machinery of a T cell, freeing antigen recognition from major histocompatibility complex restriction. Gene-editing tools such as clustered regularly interspaced short palindromic repeats have a promising application for removing alloreactivity and decreasing immunogenicity of third-party T cells. In conclusion, personalized immuno-oncology is one of the most promising approaches to management of cancer.
Collapse
|