51
|
El-Kimary EI, Allam AN, Khafagy ES, Hegazy WAH. Analytical Methodologies for the Estimation of Oxazolidinone Antibiotics as Key Members of anti-MRSA Arsenal: A Decade in Review. Crit Rev Anal Chem 2023:1-30. [PMID: 37378883 DOI: 10.1080/10408347.2023.2228902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Gram-positive bacterial infections are among the most serious diseases related with high mortality rates and huge healthcare costs especially with the rise of antibiotic-resistant strains that limits treatment options. Thus, development of new antibiotics combating these multi-drug resistant bacteria is crucial. Oxazolidinone antibiotics are the only totally synthetic group of antibiotics that showed activity against multi-drug resistant Gram positive bacteria including MRSA because of their unique mechanism of action in targeting protein synthesis. This group include approved marketed members (tedizolid, linezolid and contezolid) or those under development (delpazlolid, radezolid and sutezolid). Due to the significant impact of this class, larger number of analytical methods were required to meet the needs of both clinical and industrial studies. Analyzing these drugs either alone or with other antimicrobial agents commonly used in ICU, in the presence of pharmaceutical or endogenous biological interferences, or in the presence of matrix impurities as metabolites and degradation products poses a big analytical challenge. This review highlights current analytical approaches published in the last decade (2012-2022) that dealt with the determination of these drugs in different matrices and discusses their advantages and disadvantages. Various techniques have been described for their determination including chromatographic, spectroscopic, capillary electrophoretic and electroanalytical methods. The review comprises six sections (one for each drug) with their related tables that depict critical figures of merit and some experimental conditions for the reviewed methods. Furthermore, future perspectives about the analytical methodologies that can be developed in the near future for determination of these drugs are suggested.
Collapse
Affiliation(s)
- Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences (Chemistry), Oman College of Health Sciences, Muscat, Oman
| | - Ahmed N Allam
- Faculty of Pharmacy, Department of Pharmaceutics, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat, Oman
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences (Microbiology and Immunology), Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
52
|
Li Y, Wang S, Zhao Y, Li Y, Wang P, Xie H, Zhao P, Li Y, Liu Q, Wei Q. Design of a Double-Photoelectrode Sensing System with a Metal-Organic Framework-Based Antenna-like Strategy for Highly Sensitive Detection of PD-L1. Anal Chem 2023; 95:8720-8727. [PMID: 37224306 DOI: 10.1021/acs.analchem.3c01516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Currently, the construction of heterojunctions as a method to enhance photoelectrochemical (PEC) activity has shown prospective applications in the analytical field. Restricted by carrier separation at the interface, developing a heterojunction sensing platform with high sensitivity remains challenging. Here, a double-photoelectrode PEC sensing platform was fabricated based on an antenna-like strategy by integrating MIL-68(In)-NH2, a p-type metal-organic framework (MOF) photocatalyst, as a photocathode with the type-II heterojunction of CdSe/MgIn2S4 as a photoanode synchronously. According to the ligand-to-metal charge transition (LMCT), the photo-generated carriers of MIL-68(In)-NH2 transferred from the organic ligand to the metal cluster, which provides an efficient antenna-like transfer path for the charge at the heterojunction interface. In addition, the sufficient Fermi energy difference between the double photoelectrode provides the continuous internal driving force required for rapid carrier separation at the anode detection interface, significantly improving the photoelectric conversion efficiency. Hence, compared with the traditional heterojunction single electrode, the photocurrent response of the double-photoelectrode PEC sensing platform developed using the antenna-like strategy is 2.5 times stronger. Based on this strategy, we constructed a PEC biosensor for the detection of programed death-ligand 1 (PD-L1). The elaborated PD-L1 biosensor exhibited sensitive and precise detection capability with a detection range of 1 × 10-5 to 1 × 103 ng/mL and a lower detection limit of 3.26 × 10-6 ng/mL and demonstrated the feasibility of serum sample detection, providing a novel and viable approach for the unmet clinical need of PD-L1 quantification. More importantly, the charge separation mechanism at the heterojunction interface proposed in this study provides new creative inspiration for designing sensors with high-sensitivity PEC performance.
Collapse
Affiliation(s)
- Yamei Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Yan Zhao
- Zibo Central Hospital, Zibo 255036, P. R. China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | | | | | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
53
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
54
|
Lv J, Wu M, Fan M, Zhang Q, Chang Z, Wang X, Zhou Q, Wang L, Chong R, Zhang L. Insights into the multirole CoAl layered double hydroxide on boosting photoelectrochemical activity of hematite: Application to hydrogen peroxide sensing. Talanta 2023; 262:124681. [PMID: 37224575 DOI: 10.1016/j.talanta.2023.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
As an important compound in many industrial and biological processes, hydrogen peroxide (H2O2) would cause harmfulness to human health at high concentration level. It thus is urgent to develop highly sensitive and selective sensors for practical H2O2 detection in the fields of water monitoring, food quality control, and so on. In this work, CoAl layered double hydroxide ultrathin nanosheets decorated hematite (CoAl-LDH/α-Fe2O3) photoelectrode was successfully fabricated by a facile hydrothermal process. CoAl-LDH/α-Fe2O3 displays the relatively wide linear range from 1 to 2000 μM with a high sensitivity of 132.0 μA mM-1 cm-2 and a low detection limit of 0.04 μM (S/N ≥ 3) for PEC detection of H2O2, which is superior to other similar α-Fe2O3-based sensors in literatures. The (photo)electrochemical characterizations, such as electrochemical impedance spectroscopy, Mott-Schottky plot, cyclic voltammetry, open circuit potential and intensity modulated photocurrent spectroscopy, were used to investigate the roles of CoAl-LDH on the improved PEC response of α-Fe2O3 toward H2O2. It revealed that, CoAl-LDH could not only passivate the surface states and enlarge the band bending of α-Fe2O3, but also could act as trapping centers for holes and followed by as active sites for H2O2 oxidation, thus facilitated the charge separation and transfer. The strategy for boosting PEC response would be help for the further development of semiconductor-based PEC sensors.
Collapse
Affiliation(s)
- Jiaqi Lv
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Mingwei Wu
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ming Fan
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Qinqin Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan Province, 475000, China
| | - Zhixian Chang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Xinshou Wang
- College of Science, Henan Kaifeng College of Science Technology and Communication, Kaifeng, 475004, China
| | - Qian Zhou
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Li Wang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ruifeng Chong
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Ling Zhang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
55
|
Wen L, Du X, Liu T, Meng W, Li T, Li M, Zhang M. Colorimetric Aptasensor for the Visual and Microplate Determination of Clusterin in Human Urine Based on Aggregation Characteristics of Gold Nanoparticles. ACS OMEGA 2023; 8:16000-16008. [PMID: 37179603 PMCID: PMC10173331 DOI: 10.1021/acsomega.2c08040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Clusterin has the potential to become the biomarker of multiple diseases, but its clinical quantitative detection methods are limited, which restricts its research progress as a biomarker. A rapid and visible colorimetric sensor for clusterin detection based on sodium chloride-induced aggregation characteristic of gold nanoparticles (AuNPs) was successfully constructed. Unlike the existing methods based on antigen-antibody recognition reactions, the aptamer of clusterin was used as the sensing recognition element. The aptamer could protect AuNPs from aggregation caused by sodium chloride, but clusterin bound with aptamer detached it from AuNPs, thereby inducing aggregation again. Simultaneously, the color change from red in the dispersed state to purple gray in the aggregated state made it possible to preliminarily judge the concentration of clusterin by observation. This biosensor showed a linear range of 0.02-2 ng/mL and good sensitivity with a detection limit of 5.37 pg/mL. The test results of clusterin in spiked human urine confirmed that the recovery rate was satisfactory. The proposed strategy is helpful for the development of label-free point-of-care testing equipment for clinical testing of clusterin, which is cost-effective and feasible.
Collapse
Affiliation(s)
- Lina Wen
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Department
of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian
District, Beijing 100038, China
| | - Xiaoyu Du
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Peking University Ninth
School of Clinical Medicine, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Tianci Liu
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Wen Meng
- Department
of Infection Prevention and Control, Peking
University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Tao Li
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Mengjie Li
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Peking University Ninth
School of Clinical Medicine, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Man Zhang
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Peking University Ninth
School of Clinical Medicine, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| |
Collapse
|
56
|
Wang Y, Peng Y, Li S, Han D, Ren S, Qin K, Zhou H, Han T, Gao Z. The development of a fluorescence/colorimetric biosensor based on the cleavage activity of CRISPR-Cas12a for the detection of non-nucleic acid targets. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131044. [PMID: 36821893 DOI: 10.1016/j.jhazmat.2023.131044] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Nano-biosensors are of great significance for the analysis and detection of important biological targets. Surprisingly, the CRISPR-Cas12a system not only provides us with excellent gene editing capabilities, it also plays an important role in biosensing due to its high base resolution and high levels of sensitivity. However, most CRISPR-Cas12a-based sensors are limited by their recognition and output modes, are therefore only utilized for the detection of nucleic acids using fluorescence as an output signal. In the present study, we further explored the potential application of CRISPR-Cas12a and developed a CRISPR-Cas12a-based fluorescence/colorimetric biosensor (UCNPs-Cas12a/hydrogel-MOF-Cas12a) that provides an efficient targeting system for small molecules and protein targets. These two sensors yield multiple types of signal outputs by converting the target molecule into a deoxyribonucleic acid (DNA) signal input system using aptamers, amplifying the DNA signal by catalyzed hairpin assembly (CHA), and then combining CRISPR-Cas12a with various nanomaterials. UCNPs-Cas12a/hydrogel-MOF-Cas12a exhibited prominent sensitivity and stability for the detection of estradiol (E2) and prostate-specific antigen (PSA), and was successfully applied for the detection of these targets in milk and serum samples. A major advantage of the hydrogel-MOF-Cas12a system is that the signal output can be observed directly. When combined with aptamers and nanomaterials, CRISPR-Cas12a can be used to target multiple targets, with a diverse array of signal outputs. Our findings create a foundation for the development of CRISPR-Cas12a-based technologies for application in the fields of food safety, environmental monitoring, and clinical diagnosis.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China.
| |
Collapse
|
57
|
Liu N, Zhao S, Li Y, Li M, Guo Y, Luo X. Gold nanoparticles-decorated peptide hydrogel for antifouling electrochemical dopamine determination. Mikrochim Acta 2023; 190:199. [PMID: 37140766 DOI: 10.1007/s00604-023-05785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
A reliable and brief ultralow fouling electrochemical sensing system capable of monitoring targets in complex biological media was constructed and validated based on gold nanoparticles-peptide hydrogel-modified screen-printed electrode. The self-assembled zwitterionic peptide hydrogel was prepared by a newly designed peptide sequence of Phe-Phe-Cys-Cys-(Glu-Lys)3 with the N-terminal modified with a fluorene methoxycarbonyl group. The thiol groups on cysteine of the designed peptide are able to self-assemble with AuNPs to form a three-dimensional nanonetwork structure, which showed satisfactory antifouling capability in complex biological media (human serum). The developed gold nanoparticles-peptide hydrogel-based electrochemical sensing platform displayed notably sensing properties for dopamine determination, with a wide linear range (from 0.2 nM to 1.9 μM), a low limit of detection (0.12 nM), and an excellent selectivity. This highly sensitive and ultralow fouling electrochemical sensor was fabricated via simple preparation with concise components that avoid the accumulation of layers with single functional material and complex activation processes. This ultralow fouling and highly sensitive strategy based on the gold nanoparticles-peptide hydrogel with a three-dimensional nanonetwork offers a solution to the current situation of various low-fouling sensing systems facing impaired sensitivity and provides a potential path for the practical application of electrochemical sensors.
Collapse
Affiliation(s)
- Nianzu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Shuju Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yanxin Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Mingxuan Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
58
|
Yang HY, Wei JJ, Zheng JY, Ai QY, Wang AJ, Feng JJ. Integration of CuS/ZnIn 2S 4 flower-like heterojunctions and (MnCo)Fe 2O 4 nanozyme for signal amplification and their application to ultrasensitive PEC aptasensing of cancer biomarker. Talanta 2023; 260:124631. [PMID: 37163924 DOI: 10.1016/j.talanta.2023.124631] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Vascular endothelial growth factor 165 (VEGF165) is a crucial regulator of angiogenesis and works as a major protein biomarker of cancer metastasis. Therefore, its quantitative detection is pivotal in clinic. In this work, CuS/ZnIn2S4 flower-like heterojunctions had strong and stable photocurrents, which behaved as photoactive material to construct a photoelectrochemical (PEC) aptasensor for detecting VEGF165, combined by home-prepared (MnCo)Fe2O4 nanozyme-mediated signal amplification. The interfacial photo-induced electron transfer mechanism was chiefly discussed by UV-vis diffuse reflectance spectroscopy in details. Specifically, the (MnCo)Fe2O4 modified VEGF165 aptamer was released from the PEC aptasensing platform for its highly specific affinity to target VEGF165, which terminated the color precipitation reaction, ultimately recovering the PEC signals. The developed sensor displayed a wider linear range from 1 × 10-2 to 1 × 104 pg mL-1 with a smaller limit of detection (LOD) of 0.1 fg mL-1. This study provides some valuable insights for building other ultrasensitive aptasensors for clinical assays of cancer biomarkers in practice.
Collapse
Affiliation(s)
- Hong-Ying Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing-Jing Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jia-Ying Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Qing-Ying Ai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
59
|
Yang R, Zhao L, Wang X, Kong W, Luan Y. Recent progress in aptamer and CRISPR-Cas12a based systems for non-nucleic target detection. Crit Rev Anal Chem 2023; 54:2670-2687. [PMID: 37029907 DOI: 10.1080/10408347.2023.2197062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Efficient and sensitive detection of targets is one of the motivations for constant development and innovation of various biosensors. CRISPR-Cas12a, a new generation of gene editing tools, has shown excellent application potential in biosensor design and construction. By combining with the specific recognition element-aptamer, a single-stranded oligonucleotide obtained by systematic evolution of ligands by exponential enrichment (SELEX) in vitro screening, CRISPR-Cas12a also shows superior performance non-nucleic acid targets detection, such as small molecules, proteins, virus and pathogenic bacteria. However, aptamer and CRISPR-Cas12a (CRISPR-Cas12a/Apt) still face some problems in non-nucleic acid target detection, such as single signal response mode and narrow linear range. The development of diverse CRISPR-Cas12a/Apt biosensors is necessary to meet the needs of various detection environments. In this review, the working principle of CRISPR-Cas12a/Apt was introduced and recent progress in CRISPR-Cas12a/Apt in the application of non-nucleic acid target detection was summarized. Moreover, the requirements of critical parameters such as crRNA sequence, activator sequence, and reaction system in the design of CRISPR-Cas12a/Apt biosensors were discussed, which could provide the reference for the design of efficient and sensitive novel non-nucleic acid target biosensors. In addition, the challenges and prospects of CRISPR-Cas12a/Apt-based biosensor were further presented.
Collapse
Affiliation(s)
- Ruiqi Yang
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Zhao
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| | - Xinjie Wang
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| | - Weijun Kong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yunxia Luan
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| |
Collapse
|
60
|
Xiong X, Yin K, Bai J, Zhu P, Fan J, Zhang X, Shi Q, Guo Y, Wang Z, Ma D, Han J. Ordered Assembly of DNA on Topological Insulator Bi 2Se 3 and Octadecylamine for a Sensitive Biosensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4466-4474. [PMID: 36929878 DOI: 10.1021/acs.langmuir.3c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controlling the assembly of DNA in order on a suitable electrode surface is of great significance for biosensors and disease diagnosis, but it is full of challenges. In this work, we creatively assembled DNA on the surface of octadecylamine (ODA)-modified topological insulator (Tls) Bi2Se3 and developed an electrochemical biosensor to detect biomarker DNA of coronavirus disease 2019 (COVID-19). A high-quality Bi2Se3 sheet was obtained from a single crystal synthesized in our lab. A uniform ODA layer was coated in argon by chemical vapor deposition (CVD). We observed and analyzed the assembly and mechanism of single-strand DNA (ssDNA) and double-strand DNA (dsDNA) on the Bi2Se3 surface through atomic force microscopy (AFM) and molecular dynamics (MD) simulations. The electrochemical signal revealed that the biosensor based on the DNA/ODA/Bi2Se3 electrode has a wide linear detection range from 1.0 × 10-12 to 1.0 × 10-8 M, with the limit of detection as low as 5 × 10-13 M. Bi2Se3 has robust surface states and improves the electrochemical signal-to-noise ratio, while the uniform ODA layer guides high-density ordered DNA, enhancing the sensitivity of the biosensor. Our work demonstrates that the ordered DNA/ODA/Bi2Se3 electrode surface has great application potential in the field of biosensing and disease diagnosis.
Collapse
Affiliation(s)
- Xiaolu Xiong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China
| | - Kangjie Yin
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangyue Bai
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Zhu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Fan
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xu Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Qingfan Shi
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Guo
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiwei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Dashuai Ma
- Institute for Structure and Function & Department of Physics, Chongqing University, Chongqing 400044, China
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China
| |
Collapse
|
61
|
Jiang W, Li Z, Yang Q, Hou X. Integration of Metallic Nanomaterials and Recognition Elements for the Specifically Monitoring of Pesticides in Electrochemical Sensing. Crit Rev Anal Chem 2023; 54:2636-2657. [PMID: 36971430 DOI: 10.1080/10408347.2023.2189955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Although all countries have been controlling the excessive use of pesticides, incidents of pesticide residues still existed. Electrochemical biosensors are extensively applied detection techniques to monitor pesticides with the help of different types of biorecognition components mainly including, antibodies, aptamers, enzymes (i.e., acetylcholinesterase, organophosphorus hydrolase, etc.), and synthetic molecularly imprinted polymers. Besides, the electrode materials mainly affected the sensitivity of electrochemical biosensors. Metallic nanomaterials with various structures and excellent electrical conductivity were desirable choice to construct electrochemical platforms to achieve the detection with high sensitivity and good specificity toward the target. This work reviewed the developed metallic materials including monometallic nanoparticles, bimetallic nanomaterials, metal atoms, metal oxides, metal molybdates, metal-organic frameworks, MXene, etc. Integration of recognition elements endowed the electrode materials with higher specificity toward the target pesticide. Besides, future challenges of metallic nanomaterials-based electrochemical biosensors for the detection of pesticides are also discussed and described.
Collapse
Affiliation(s)
- Wenpeng Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
62
|
Shen B, Li L, Liu C, Li X, Li X, Cheng X, Wu H, Yang T, Cheng W, Ding S. Mesoporous Nanozyme-Enhanced DNA Tetrahedron Electrochemiluminescent Biosensor with Three-Dimensional Walking Nanomotor-Mediated CRISPR/Cas12a for Ultrasensitive Detection of Exosomal microRNA. Anal Chem 2023; 95:4486-4495. [PMID: 36802524 DOI: 10.1021/acs.analchem.2c05217] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Exosomal microRNAs (exomiRNAs) have emerged as ideal biomarkers for early clinical diagnostics. The accurate detection of exomiRNAs plays a crucial role in facilitating clinical applications. Herein, an ultrasensitive electrochemiluminescent (ECL) biosensor was constructed using three-dimensional (3D) walking nanomotor-mediated CRISPR/Cas12a and tetrahedral DNA nanostructures (TDNs)-modified nanoemitters (TCPP-Fe@HMUiO@Au-ABEI) for exomiR-155 detection. Initially, the 3D walking nanomotor-mediated CRISPR/Cas12a strategy could effectively convert the target exomiR-155 into amplified biological signals for improving the sensitivity and specificity. Then, TCPP-Fe@HMUiO@Au nanozymes with excellent catalytic performance were used to amplify ECL signals because of the enhanced mass transfer and increased catalytic active sites, originating from its high surface areas (601.83 m2/g), average pore size (3.46 nm), and large pore volumes (0.52 cm3/g). Meanwhile, the TDNs as the scaffold to fabricate "bottom-up" anchor bioprobes could improve the trans-cleavage efficiency of Cas12a. Consequently, this biosensor achieved the limit of detection down to 273.20 aM ranging from 1.0 fM to 1.0 nM. Furthermore, the biosensor could discriminate breast cancer patients evidently by analyzing exomiR-155, and these results conformed to that of qRT-PCR. Thus, this work provides a promising tool for early clinical diagnostics.
Collapse
Affiliation(s)
- Bo Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, P. R. China
| | - Li Li
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing 401147, P. R. China
| | - Changjin Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing 400062, P. R. China
| | - Xinmin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, P. R. China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiaoxue Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
63
|
Chi L, Wang X, Chen H, Tang D, Xue F. Paper-based photoelectrochemical immunoassay for ultrasensitive screening of carcinoembryonic antigen on hollow CdS/CdMoO 4-functionalized photoanode. Talanta 2023; 254:124176. [PMID: 36495772 DOI: 10.1016/j.talanta.2022.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Lab-based testing systems utilizing photoelectrochemical (PEC) biosensing methodologies for the ultrasensitive carcinoembryonic antigen (CEA) have been developed, although the majority have shown complicated operating procedures and dependence on precise apparatus. Herein, a portable photoelectrochemical split diagnostic platform based on a hollow CdS/CdMoO4 (h-CdS@CdMoO4) shell-shell structured photoanode system was developed for ultrasensitive detection of CEA. Using a small LED flashlight as the excitation light source and a digital multimeter (DMM) as the signal readout device, real-time CEA on a paper-based printed screen electrode developed in-house was quickly detected. The composite h-CdS@CdMoO4 featured a special hollow shell-shell heterojunction structure that optimizes photon usage in the bulk phase on the one hand, and facilitates directed separation of the electrons and holes therein on the other. A split-sandwich immunoassay and detection antibodies for modified glucose oxidase were introduced into the paper-based photoanode test system, and the signals were displayed with a DMM to realize a point-of-care test for CEA. Under optimized conditions, the constructed portable PEC sensing system was sensitive to the target CEA from 0.02 to 50.0 ng mL-1 with a detection limit of 11.3 pg mL-1. Interferent experiments and stability test evaluations demonstrate the specificity and robustness of the constructed paper-based portable PEC sensor. The portable, paper-based PEC immunoassay system developed offers a fresh way of exploring affordable, approachable sensors to satisfy both the relevant community medical testing demands and hospital objectives for quick testing.
Collapse
Affiliation(s)
- Liangjie Chi
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China; Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China; Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China; Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China.
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China; Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China.
| |
Collapse
|
64
|
Khuda N, Somasundaram S, Urgunde AB, Easley CJ. Ionic Strength and Hybridization Position near Gold Electrodes Can Significantly Improve Kinetics in DNA-Based Electrochemical Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5019-5027. [PMID: 36661270 PMCID: PMC10370289 DOI: 10.1021/acsami.2c22741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A variety of electrochemical (EC) biosensors play critical roles in disease diagnostics. More recently, DNA-based EC sensors have been established as promising for detecting a wide range of analyte classes. Since most of these sensors rely on the high specificity of DNA hybridization for analyte binding or structural control, it is crucial to understand the kinetics of hybridization at the electrode surface. In this work, we have used methylene blue-labeled DNA strands to monitor the kinetics of DNA hybridization at the electrode surface with square-wave voltammetry. By varying the position of the double-stranded DNA segment relative to the electrode surface as well as the bulk solution's ionic strength (0.125-1.00 M), we observed significant interferences with DNA hybridization closer to the surface, with more substantial interference at lower ionic strength. As a demonstration of the effect, toehold-mediated strand displacement reactions were slowed and diminished close to the surface, while strategic placement of the DNA binding site improved reaction rates and yields. This work manifests that both the salt concentration and DNA hybridization site relative to the electrode are important factors to consider when designing DNA-based EC sensors that measure hybridization directly at the electrode surface.
Collapse
Affiliation(s)
- Niamat Khuda
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | | - Ajay B. Urgunde
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
65
|
Zeng R, Xu J, Liang T, Li M, Tang D. Photocurrent-Polarity-Switching Photoelectrochemical Biosensor for Switching Spatial Distance Electroactive Tags. ACS Sens 2023; 8:317-325. [PMID: 36617728 DOI: 10.1021/acssensors.2c02314] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This work presents a photocurrent-polarity-switching-based photoelectrochemical (PEC) biosensing platform for ultrasensitive detection of microRNA-21 (miR-21) through target-triggered catalytic hairpin assembly (CHA) for modulation of methylene blue (MB) and ferrocene (Fc) positional configurations using double-shelled Cu-doped ZnS nanocages (NCs)-Au nanoparticles (NPs) as photoactive materials. In the presence of miR-21, the assembly of MB-labeled HP1 and Fc-labeled HP2 leads to the generation of a large amount of double-stranded DNA (HP1-HP2), which pushes MB away from the electrode surface and brings Fc close to the electrode surface, resulting in effectively quenching the enhanced PEC signal to activate the photocurrent-polarity-switching system. Benefiting from the distance-controllable strategy, the designed PEC bioanalysis can effectively eliminate false-positive and false-negative signals due to the change of different signal expression patterns (from traditional the "signal-on" mode to the photocurrent-polarity-switching mode), thereby significantly improving the sensing specificity and sensitivity. The proposed PEC sensing system exhibited satisfying photocurrent responses toward target miR-21 within the working range from 1.0 fM to 1 nM at a low limit of detection (LOD) of 0.58 fM. More importantly, we demonstrated the successful integration of the proposed PEC biosensor with a handheld wireless device for instant detection of miR-21 concentrations in practical samples.
Collapse
Affiliation(s)
- Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jianhui Xu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tikai Liang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
66
|
Integrated slip valve-assisted fluidic chip coupling with CRISPR/Cas12a system for nucleic acid analysis. Anal Chim Acta 2023; 1239:340670. [PMID: 36628703 DOI: 10.1016/j.aca.2022.340670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022]
Abstract
Currently, some on-site nucleic acid detection platforms have been developed. However, these platforms still need to be improved in device integration and multiple detection capability. In this work, an integrated dual nucleic acid analysis platform was developed by slip valve-assisted fluidic chip coupled with CRISPR/Cas12a system. All the reagents, including nucleic acid extraction, air-dried loop-mediated isothermal amplification (LAMP) and CRISPR/Cas12a detection reagents, were preloaded on the fluidic chip. Liquids transfer and stirring could be controlled by a slip valve and a syringe. By combining duplex LAMP reaction with two CRISPR detection units, CRISPR/Cas12a-based dual nucleic acid analysis was successfully constructed. Benefiting from high-quality nucleic acid extraction on the chip, as low as 30 copies/reaction of Vibrio parahaemolyticus (V. parahaemolyticus) and 20 copies/reaction of Salmonella typhimurium (S. typhimurium) could be simultaneously detected. Detection results could be observed by the naked eye under a portable ultraviolet lamp. The whole detection procedure was finished within 60 min. This method with integrated nucleic acid analysis, dual detection capability and fluorescence visualized results provides a new solution for on-site nucleic acid analysis.
Collapse
|
67
|
Wu T, Du Y, Gao Z, Xu K, Dai L, Liu L, Li F, Wei Q, Ju H. Dual Direct Z-Scheme Heterojunction with Stable Electron Supply to a Au/PANI Photocathode for Ultrasensitive Photoelectrochemical and Electrochromic Visualization Detection of Ofloxacin in a Microfluidic Sensing Platform. Anal Chem 2023; 95:1627-1634. [PMID: 36574294 DOI: 10.1021/acs.analchem.2c04740] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A novel dual-mode microfluidic analytical device integrating self-powered photoelectrochemical (PEC) sensing with electrochromic visualization analysis was developed for ultrasensitive ofloxacin (OFL) detection. First, an advanced dual direct Z-scheme BiVO4@Ni-ZnIn2S4/Bi2S3 (BVZIS) heterojunction was designed as a photoanode matrix to steadily provide electrons. The dual Z-scheme structure formed in photoactive BVZIS composites greatly accelerated the migration of electrons. In addition, the doping of Ni in ZnIn2S4 markedly enhanced the optical absorption and promoted the separation of the photocarrier. Second, electrochromic material polyaniline-modified Au (Au/PANI) was first electrodeposited on the photocathode for immobilizing aptamers and realizing visualized readout. On the one hand, Au/PANI with excellent conductivity could receive electrons from the photoanode without external energy supply. On the other hand, PANI would be rapidly reduced by the received electrons and change its color from blue to green obviously. With the increase in OFL, the increased steric hindrance resulted in the significant decline in the PEC signal and RGBgreen value. Third, wide linear ranges of PEC (0.05 pg/mL to 150 ng/mL) and electrochromic technique (0.1 pg/mL to 100 ng/mL) as well as low detection limits of PEC (18 fg/mL) and electrochromic (30 fg/mL) sensors could achieve the ultrasensitive detection of OFL in milk and river water.
Collapse
Affiliation(s)
- Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shangdong250022, P. R. China
| | - Yu Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shangdong250022, P. R. China
| | - Zhongfeng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shangdong250022, P. R. China
| | - Kun Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shangdong250022, P. R. China
| | - Li Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shangdong250022, P. R. China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shangdong250022, P. R. China
| | - Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shangdong250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shangdong250022, P. R. China.,Department of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shangdong250022, P. R. China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| |
Collapse
|
68
|
Liu Y, Wang F, Ge S, Zhang L, Zhang Z, Liu Y, Zhang Y, Ge S, Yu J. Programmable T-Junction Structure-Assisted CRISPR/Cas12a Electrochemiluminescence Biosensor for Detection of Sa-16S rDNA. ACS APPLIED MATERIALS & INTERFACES 2023; 15:617-625. [PMID: 36537539 DOI: 10.1021/acsami.2c18930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, a strand displacement amplification (SDA)-assisted CRISPR/Cas12a (LbCpf1) electrochemiluminescence (ECL) biosensor was fabricated for ultrasensitive identification of Staphylococcus aureus (Sa)-16S rDNA. A porphyrinic Zr metal-organic framework (MOF) (PCN-224) nanomaterial was prepared as the coreactant accelerator, which promoted the conversion of S2O82- and SO4*-, thus enhancing the reaction with CdS quantum dots (QDs) and amplifying the ECL emission signal. Meanwhile, with the presence of Sa-16S rDNA, the auxiliary probes and primers stimulated the SDA reaction under the action of Klenow fragment (3'-5' exo-) and Nt. BbvCI specifically recognized Sa-16S rDNA to form a defective T-junction structure and generated second primers to initiate the cycles. Such a structure transformed the input signal (Sa-16S rDNA) into substantial single-stranded DNA products (SP) through SDA. SP acted as activators and activated arbitrary side chain cleavage of CRISPR/Cas12a (trans-cleavage) and further realized effective annihilation of ECL signals. This ECL platform demonstrated desirable assay performance for Sa-16S rDNA with a wide response range of 1 fM to 10 nM, and the limit of detection was 0.437 fM (S/N = 3), showing good sensitivity and specificity. Therefore, the method not only expanded the applications of CRISPR/Cas12a but also opened up a novel strategy for clinical diagnosis.
Collapse
Affiliation(s)
- Yaqi Liu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Fengyi Wang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Shuo Ge
- Department of Medical Laboratory, Shandong Medical College, Jinan250002, P. R. China
| | - Lu Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Zuhao Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| |
Collapse
|
69
|
An electrochemical aptasensor based on exonuclease III-assisted signal amplification coupled with CRISPR-Cas12a for ochratoxin A detection. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
70
|
Photoelectrochemical aptasensor based on cascade dual Z-scheme CdTe-polyaniline@MoS2 heterostructure for the sensitive carbendazim detection. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
71
|
Cai Q, Shi H, Sun M, Ma N, Wang R, Yang W, Qiao Z. Sensitive Detection of Salmonella Based on CRISPR-Cas12a and the Tetrahedral DNA Nanostructure-Mediated Hyperbranched Hybridization Chain Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16382-16389. [PMID: 36512680 DOI: 10.1021/acs.jafc.2c05831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Salmonella severely threatens global human health and causes financial burden. The ability to sensitively detect Salmonella in food samples is highly valuable but remains a challenge. Herein, a sensitive detection method for Salmonella was developed by coupling immunomagnetic separation with the CRISPR-Cas12a system and the tetrahedral DNA nanostructure-mediated hyperbranched hybridization chain reaction (TDN-hHCR). In the detection system, the target Salmonella was immunomagnetically separated and labeled with bio-barcode DNA-modified gold nanoparticles (AuNPs), which could transfer and magnify the signal of a bacterial cell into numerous bio-barcode DNA molecules. Afterward, the bio-barcode DNA can trigger the trans-cleavage activity of CRISPR-Cas12a to inhibit the process of the TDN-hHCR to generate a fluorescence readout. Due to the high immunomagnetic separation efficiency and the effective signal amplification of CRISPR-Cas12a and the TDN-hHCR, Salmonella as low as 8 CFU/mL could be easily detected. Meanwhile, this has been applied for practical use and showed the capability to detect 17 and 25 CFU/mL in spiked milk and egg white, respectively, indicating its potential application in real samples.
Collapse
Affiliation(s)
- Qiqi Cai
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hanxing Shi
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Mengni Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Na Ma
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Rui Wang
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200438, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Zhaohui Qiao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
72
|
Hang T, Meng X, Wu Y, Zhu XD, Li C. Ion-Exchange Reaction-Mediated Hierarchical Dual Z-Scheme Heterojunction for Split-Type Photoelectrochemical Immunoassays. Anal Chem 2022; 94:17295-17302. [PMID: 36451079 DOI: 10.1021/acs.analchem.2c04302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Photoelectrochemical (PEC) immunoassays with ultrasensitive detection abilities are highly desirable for in vitro PEC diagnosis and biological detection. In this paper, dual Z-scheme PEC immunoassays with hierarchical nanostructures (TiO2@NH2-MIL-125@CdS) are synthesized through epitaxial growth of MOF-on-MOF and further in situ derivatization. The dual Z-scheme configuration not only extends the light absorption range but also increases the redox ability due to the interface structure nanoengineering, which synergistically suppresses bulk carrier recombination and promotes the charge transfer efficiency at the electron level. Furthermore, a smart MOF-derived labeling probe (CuO@ZnO nanocube) is designed to develop a split-type PEC biosensor by using prostate-specific antigen (PSA) as a target biomarker. In the presence of PSA, the Ab2-labeled CuO@ZnO would specifically bond to the dual Z-scheme electrode. Then, the MOF-derived CuO@ZnO is dissolved by hydrochloric acid to release Cu2+, which could replace Cd2+ via an ion-exchange reaction, thus leading to the decrease of the photocurrent due to the destruction of the dual Z-scheme configuration. In typical applications, the split-type PEC immunoassay exhibits an excellent detection performance for PSA with a LOD as low as 0.025 pg·mL-1.
Collapse
Affiliation(s)
- Tianxiang Hang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Xingxing Meng
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Yueyue Wu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Xian-Dong Zhu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Chuanping Li
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
| |
Collapse
|
73
|
Deng L, Du J, Hun X. Photoelectrochemical assay based on CRISPR/Cas12a coupled with AuNP/MoS2/WS2/g-C3N4 nanoprobe for determination of hepatitis B virus. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
Esmaeilzadeh AA, Yaseen MM, Khudaynazarov U, Al-Gazally ME, Catalan Opulencia MJ, Jalil AT, Mohammed RN. Recent advances on the electrochemical and optical biosensing strategies for monitoring microRNA-21: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4449-4459. [PMID: 36330992 DOI: 10.1039/d2ay01384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The small non-coding RNA, microRNA-21 (miR-21), is dysregulated in various cancers and can be considered an appropriate target for therapeutic approaches. Therefore, the detection of miR-21 concentration is important in the diagnosis of diseases. Low specificity and the cost of materials are two necessary limitations in the traditional diagnosis method such as RT-PCR, northern blotting and microarray analysis. Biosensor technology can play an effective role in improving the quality of human life due to its capacity of rapid diagnosis, monitoring different markers, suitable sensitivity, and specificity. Moreover, bioanalytical systems have an essential role in the detection of biomolecules or miRNAs due to their critical features, including easy usage, portability, low cost and real-time analysis. Electrochemical biosensors based on novel nanomaterials and oligonucleotides can hybridize with miR-21 in different ranges. Moreover, optical biosensors and piezoelectric devices have been developed for miR-21 detection. In this study, we have evaluated different materials used in bioanalytical systems for miR-21 detection as well as various nanomaterials that offer improved electrodes for its detection.
Collapse
Affiliation(s)
| | - Muna Mohammed Yaseen
- Basic Science Department, Dentistry of College, University of Anbar, Al-Anbar, Iraq
| | - Utkir Khudaynazarov
- Teaching Assistant, MD, Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan university of Sulaimaniya, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| |
Collapse
|
75
|
Lin Q, Huang X, Lu L, Tang D. Snowflake-like CdS@ZnIn 2S 4 heterojunction-based photocatalyst-electrolyte effect: An innovative mode for photoelectrochemical immunoassay. Biosens Bioelectron 2022; 216:114679. [PMID: 36099837 DOI: 10.1016/j.bios.2022.114679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
Exploiting innovative strategies with signal amplification in photoelectrochemical (PEC) biosensing systems to realize sensitive screening of low-abundance proteins has become one of the mainstream research orientations. Herein we reported a new strategy to amplify photocurrent signal employing a photocatalyst-electrolyte effect in alkaline media for the sensitive monitoring of prostate-specific antigen (PSA) using snowflake-liked CdS@ZnIn2S4 heterojunction as photosensitizer. In this strategy, both the band-edge position and surface redox reaction process were subtly altered by modulating the alkalinity of electrolyte. The hydroxyl anions (OH-) from NaOH could be oxidized to hydroxyl radicals (·OH) by the holes in CdS@ZnIn2S4, thus accelerating the scavenging of holes and promoting the photocurrent. Based on the above-mentioned mechanism, a sensitive split-type glucose oxidase-mediated PEC immunosensor for PSA detection was fabricated. Upon target PSA introduction, the glucose acid was generated through the sandwich-type immunoreaction to affect the alkalinity of PEC detection environment, thereby suppressing the photocurrent intensity. The CdS@ZnIn2S4-based PEC immunosensor exhibited satisfactory photocurrent responses with a good linear range of 0.04-40 ng mL-1 at a limit of detection of 14 pg mL-1. Significantly, this research not only introduces an effective strategy to detect PSA with good sensitivity and specificity, but also provides a new insight to amplify the signal by regulating the electrolyte.
Collapse
Affiliation(s)
- Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
76
|
Xing G, Shan Y, Wang X, Lin H, Chen S, Pu Q, Lin L. Multiplexed detection of foodborne pathogens using one-pot CRISPR/Cas12a combined with recombinase aided amplification on a finger-actuated microfluidic biosensor. Biosens Bioelectron 2022; 220:114885. [DOI: 10.1016/j.bios.2022.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
77
|
Liu M, Ma W, Zhou Y, Liu B, Zhang X, Zhang S. A Label-Free Photoelectrochemical Biosensor Based on CRISPR/Cas12a System Responsive Deoxyribonucleic Acid Hydrogel and "Click" Chemistry. ACS Sens 2022; 7:3153-3160. [PMID: 36219232 DOI: 10.1021/acssensors.2c01636] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel label-free photoelectrochemical (PEC) biosensor is presented in this work. As a barrier, the DNA hydrogel could block the coupling between g-C3N4 and CdS quantum dots (QDs). Therefore, extremely low photocurrent signals were obtained. The presence of target microRNA-21 can initiate the rolling circle amplification (RCA) reaction, which in turn produces many repeated sequences to activate the CRISPR/Cas12a system. The trans-cleavage activity of the CRISPR/Cas12a system led to the degradation of DNA hydrogels efficiently. As a result, the g-C3N4/CdS QDs heterojunction was formed through "click" chemistry. Through the amplification of the RCA and CRISPR/Cas12a system, the sensitivity of the PEC biosensor was improved significantly with the detection limit of 3.2 aM. The proposed sensor also showed excellent selectivity and could be used to detect actual samples. In addition, the modular design could facilitate the detection of different objects. Thus, the proposed CRISPR/Cas12a system responsive DNA hydrogel provides a simple, sensitive, and flexible way for label-free PEC analysis.
Collapse
Affiliation(s)
- Minghui Liu
- College of Chemistry and Chemical Engneering, Linyi University, Linyi 276000, P.R. China
| | - Wenxiao Ma
- College of Chemistry and Chemical Engneering, Linyi University, Linyi 276000, P.R. China
| | - Yanmei Zhou
- College of Chemistry and Chemical Engneering, Linyi University, Linyi 276000, P.R. China
| | - Bo Liu
- College of Chemistry and Chemical Engneering, Linyi University, Linyi 276000, P.R. China
| | - Xiaoru Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Shusheng Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universties of Shandong, Linyi University, Linyi 276000, P.R. China.,College of Chemistry and Chemical Engneering, Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
78
|
Maduraiveeran G. Nanomaterials-based portable electrochemical sensing and biosensing systems for clinical and biomedical applications. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMiniaturized electrochemical sensing systems are employed in day-to-day uses in the several area from public health to scientific applications. A variety of electrochemical sensor and biosensor systems may not be effectively employed in real-world diagnostic laboratories and biomedical industries due to their limitation of portability, cost, analytical period, and need of skilled trainer for operating devices. The design of smart and portable sensors with high sensitivity, good selectivity, rapid measurement, and reusable platforms is the driving strength for sensing glucose, lactate, hydrogen peroxide, nitric oxide, mRNA, etc. The enhancement of sensing abilities of such sensor devices through the incorporation of both novel sensitive nanomaterials and design of sensor strategies are evidenced. Miniaturization, cost and energy efficient, online and quantitative detection and multiple sensing ability are the beneficial of the nanostructured-material-based electrochemical sensor and biosensor systems. Owing to the discriminating catalytic action, solidity and biocompatibility for designing sensing system, nanoscale materials empowered electrochemical detection systems are accomplished of being entrenched into/combined with portable or miniaturized devices for specific applications. In this review, the advance development of portable and smart sensing/biosensing systems derived from nanoscale materials for clinical and biomedical applications is described.
Graphical Abstract
Collapse
|
79
|
Toldrà A, Ainla A, Khaliliazar S, Landin R, Chondrogiannis G, Hanze M, Réu P, Hamedi MM. Portable electroanalytical nucleic acid amplification tests using printed circuit boards and open-source electronics. Analyst 2022; 147:4249-4256. [PMID: 35993403 PMCID: PMC9511072 DOI: 10.1039/d2an00923d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 09/19/2023]
Abstract
The realization of electrochemical nucleic acid amplification tests (NAATs) at the point of care (POC) is highly desirable, but it remains a challenge given their high cost and lack of true portability/miniaturization. Here we show that mass-produced, industrial standardized, printed circuit boards (PCBs) can be repurposed to act as near-zero cost electrodes for self-assembled monolayer-based DNA biosensing, and further integration with a custom-designed and low-cost portable potentiostat. To show the analytical capability of this system, we developed a NAAT using isothermal recombinase polymerase amplification, bypassing the need of thermal cyclers, followed by an electrochemical readout relying on a sandwich hybridization assay. We used our sensor and device for analytical detection of the toxic microalgae Ostreopsis cf. ovata as a proof of concept. This work shows the potential of PCBs and open-source electronics to be used as powerful POC DNA biosensors at a low-cost.
Collapse
Affiliation(s)
- Anna Toldrà
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Alar Ainla
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Shirin Khaliliazar
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Roman Landin
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Georgios Chondrogiannis
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Martin Hanze
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Pedro Réu
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Mahiar M Hamedi
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| |
Collapse
|
80
|
Lian M, Shi Y, Chen L, Qin Y, Zhang W, Zhao J, Chen D. Cell Membrane and V 2C MXene-Based Electrochemical Immunosensor with Enhanced Antifouling Capability for Detection of CD44. ACS Sens 2022; 7:2701-2709. [PMID: 36040054 DOI: 10.1021/acssensors.2c01215] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The inactive adsorption and interference of biomolecules in electrochemical biosensors is a topic of intense interest. Directly utilizing native cell membranes to endow electrochemical surfaces with antifouling and biocompatible features is a promising strategy, rather than attempting to synthetically replicate complex biological interface properties. In this study, we present a facial and sensitive sandwich-type antifouling immunoassay through platelet membrane/Au nanoparticle/delaminated V2C nanosheet (PM/AuNPs/d-V2C)-modified electrode as the substrate of sensing interface and methylene blue/aminated metal organic framework (MB@NH2-Fe-MOF-Zn) as an electrochemical signal probe. The biosensor perfectly integrates the high conductivity of AuNPs-loaded V2C MXene with the excellent loading property of NH2-Fe-MOF-Zn to improve the electrochemical sensing performance. In addition, the excellent antifouling properties of the homogeneous cell membrane can effectively prevent the non-specific adsorption of model proteins. The obtained antifouling biosensor possesses the capability of ultrasensitive detection of CD44 and CD44-positive cancer cell in complex liquids and exhibits good analytical performance for the analysis of CD44 with a linear range from 0.5 ng/mL to 500 ng/mL. This strategy of developing cell membrane-based biosensing systems with enhanced antifouling capability can be easily expanded to the construction of other complex biosensors, and the advanced biological probes and analytical methods provide a favorable means to accurately quantify biomarkers associated with tumor progression.
Collapse
Affiliation(s)
- Meiling Lian
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, P.R. China
| | - Yuqing Shi
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, P.R. China
| | - Liuxing Chen
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, P.R. China
| | - Yongji Qin
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Wei Zhang
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, P.R. China
| | - Jingbo Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, P.R. China
| | - Da Chen
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, P.R. China
| |
Collapse
|
81
|
Gao Y, Li M, Zeng Y, Liu X, Tang D. Tunable Competitive Absorption-Induced Signal-On Photoelectrochemical Immunoassay for Cardiac Troponin I Based on Z-Scheme Metal-Organic Framework Heterojunctions. Anal Chem 2022; 94:13582-13589. [PMID: 36129524 DOI: 10.1021/acs.analchem.2c03263] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently emerged Z-scheme heterostructure-based immunoassays have presented new opportunities for photoelectrochemical (PEC) biosensing development. Here, we described a tunable signal-on PEC biosensor for the detection of cardiac troponin I (cTnI), which exploited a competitive absorption effect between Cu(II) ions and a Zr metal-organic framework (Zr-MOF) constructed on TiO2 nanorods (Cu2+@Zr-MOF@TiO2 NRs). Water-stable Zr-MOF was coated onto TiO2 NRs on fluorine-doped tin oxide to form a Z-scheme heterostructure substrate (Zr-MOF@TiO2 NRs), which exhibited a high photoelectric response. Cu2+@Zr-MOF@TiO2 NRs, constructed by loading Cu(II) ions onto the architecture of Zr-MOF by electrostatic interaction, demonstrated a low background signal. After sandwich immunorecognition within a 96-well plate, H2S, generated by confined alkaline phosphatase on zeolitic imidazolate framework-8, was directed to react with Cu(II) ions to form CuS. This resulted in an in situ change in the photoelectrode and an enhanced photoelectric signal. The developed PEC biosensing platform exhibited high sensitivity and selectivity for the cTnI immunoassay with a detection limit of 8.6 pg/mL. The Z-scheme-based competition absorption modulation of photoelectrochemistry provides a new strategy for general PEC biosensing development.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
82
|
Three-Dimensional Printing and Its Potential to Develop Sensors for Cancer with Improved Performance. BIOSENSORS 2022; 12:bios12090685. [PMID: 36140070 PMCID: PMC9496342 DOI: 10.3390/bios12090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/24/2022]
Abstract
Cancer is the second leading cause of death globally and early diagnosis is the best strategy to reduce mortality risk. Biosensors to detect cancer biomarkers are based on various principles of detection, including electrochemical, optical, electrical, and mechanical measurements. Despite the advances in the identification of biomarkers and the conventional 2D manufacturing processes, detection methods for cancers still require improvements in terms of selectivity and sensitivity, especially for point-of-care diagnosis. Three-dimensional printing may offer the features to produce complex geometries in the design of high-precision, low-cost sensors. Three-dimensional printing, also known as additive manufacturing, allows for the production of sensitive, user-friendly, and semi-automated sensors, whose composition, geometry, and functionality can be controlled. This paper reviews the recent use of 3D printing in biosensors for cancer diagnosis, highlighting the main advantages and advances achieved with this technology. Additionally, the challenges in 3D printing technology for the mass production of high-performance biosensors for cancer diagnosis are addressed.
Collapse
|
83
|
Zeng R, Xu J, Lu L, Lin Q, Huang X, Huang L, Li M, Tang D. Photoelectrochemical bioanalysis of microRNA on yolk-in-shell Au@CdS based on the catalytic hairpin assembly-mediated CRISPR-Cas12a system. Chem Commun (Camb) 2022; 58:7562-7565. [PMID: 35708478 DOI: 10.1039/d2cc02821b] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports on the proof-of-concept of a photoelectrochemical (PEC) biosensor with a horseradish peroxidase-single stranded DNA-encoded magnetic bead (MB-ssDNA-HRP) signal probe cleaved by the catalytic hairpin assembly (CHA)-mediated clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a system for the quantification of microRNA (miR-21) by using yolk-in-shell Au@CdS as a photoactive material.
Collapse
Affiliation(s)
- Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Jianhui Xu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Lingting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|