51
|
Li S, Chen Q, Yang J, Zhang J. Palladium‐Catalyzed Enantioselective γ‐Arylation of β,γ‐Unsaturated Butenolides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanliang Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qiaoyu Chen
- Academy for Engineering and Technology Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junfeng Yang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
52
|
Salameh N, Anastasiou I, Ferlin F, Minio F, Chen S, Santoro S, Liu P, Gu Y, Vaccaro L. Heterogeneous palladium-catalysed intramolecular C(sp3) H α-arylation for the green synthesis of oxindoles. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
Yao H, Zhong X, Wang B, Lin S, Yan Z. Cyanomethylation of the Benzene Rings and Pyridine Rings via Direct Oxidative Cross-Dehydrogenative Coupling with Acetonitrile. Org Lett 2022; 24:2030-2034. [PMID: 35261234 DOI: 10.1021/acs.orglett.2c00498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel and efficient approach for the amine-directed dehydrogenative C(sp2)-C(sp3) coupling of arylamines with acetonitrile was reported by using FeCl2 as the catalyst. Substituted anilines, aminopyridines, naphthylamines, and some nitrogen-containing heterocyclic arylamines react with inactive acetonitrile to form the corresponding arylacetonitriles in moderate to good yields. This protocol features nontoxic iron catalysis, efficient atom economy, nonprefunctionalized starting materials, good regioselectivity, and excellent compatibility of functional groups and aromatic rings, providing a novel, straightforward, and green approach toward arylacetonitriles.
Collapse
Affiliation(s)
- Hua Yao
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Xiaoyang Zhong
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Bingqing Wang
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Sen Lin
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Zhaohua Yan
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| |
Collapse
|
54
|
Babu SA, Aggarwal Y, Patel P, Tomar R. Diastereoselective palladium-catalyzed functionalization of prochiral C(sp 3)-H bonds of aliphatic and alicyclic compounds. Chem Commun (Camb) 2022; 58:2612-2633. [PMID: 35113087 DOI: 10.1039/d1cc05649b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the reported developments of the palladium-catalyzed C-H activation and functionalization of the inactive/unreactive prochiral C(sp3)-H bonds of aliphatic and alicyclic compounds. There exist numerous classical methods for generating contiguous stereogenic centers in a compound with a high degree of stereocontrol. Along similar lines, the Pd(II)-catalyzed, directing group-aided functionalization of inactive prochiral/diastereotopic C(sp3)-H bonds have been exploited to accomplish the stereoselective construction of stereo-arrays in organic compounds. We present a concise discussion on how specific strategies consisting of Pd(II)-catalyzed, directing group-aided C(sp3)-H functionalization have been utilized to generate two or more stereogenic centers in aliphatic and alicyclic compounds.
Collapse
Affiliation(s)
- Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Yashika Aggarwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Pooja Patel
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
55
|
Oku N, Murakami M, Miura T. Photoassisted Cross-Coupling Reaction of α-Chlorocarbonyl Compounds with Arylboronic Acids. Org Lett 2022; 24:1616-1619. [PMID: 35191697 DOI: 10.1021/acs.orglett.2c00121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Suzuki-Miyaura cross-coupling reaction of α-chloroacetates or α-chloroacetamides with arylboronic acids is made possible by visible-light irradiation. This reaction provides a useful method for the synthesis of α-arylacetates and α-arylacetamides from chlorides under mild reaction conditions. An indole-3-acetic acid derivative that is the key intermediate of the plant hormone auxin can be synthesized from 1-Boc-indole in two steps by combining an iridium-catalyzed C-H borylation and a palladium-catalyzed cross-coupling reaction.
Collapse
Affiliation(s)
- Naoki Oku
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Tomoya Miura
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
56
|
Luo F, Zhou H, Chen XB, Liu XJ, Chen XD, Qian PF, Wu XP, Wang W, Zhang SL. Synthesis of α-Aryl Primary Amides from α-Silyl Nitriles and Aryl Sulfoxides through [3,3]-Sigmatropic Rearrangement. Org Lett 2022; 24:1700-1705. [DOI: 10.1021/acs.orglett.2c00334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fan Luo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Bei Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xue-Jun Liu
- Shanghai Neutan Pharmaceutical Company, Ltd., Building 26, No. 555 Huanqiao Road, Pudong New Area, Shanghai 200131, P. R. China
| | - Xiao-Dong Chen
- Shanghai Neutan Pharmaceutical Company, Ltd., Building 26, No. 555 Huanqiao Road, Pudong New Area, Shanghai 200131, P. R. China
| | - Peng-Fei Qian
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721-0207, United States
| | - Shi-Lei Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
57
|
Luo H, Li Y, Zhang Y, Lu Q, An Q, Xu M, Li S, Li J, Li B. Nucleophilic Aromatic Substitution of 5-Bromo-1,2,3-triazines with Phenols. J Org Chem 2022; 87:2590-2600. [PMID: 35166528 DOI: 10.1021/acs.joc.1c02543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleophilic aromatic substitution (SNAr) reaction in classic textbook is a stepwise mechanism, and few examples of concerted reactions have been reported. Herein, we developed a concerted SNAr reaction of 5-bromo-1,2,3-triazines with phenols in which the nonclassic mechanism of this reaction could be revealed by calculation. Furthermore, the resulting 5-aryloxy-1,2,3-triazines could be used as convenient precursors to access biologically important 3-aryloxy-pyridines in one-pot manner.
Collapse
Affiliation(s)
- Han Luo
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Yumeng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Yuan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Qixing Lu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Qiaoyu An
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Mingchuan Xu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Shanshan Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| |
Collapse
|
58
|
Cao T, Zhu L, Huang J, Yang Z. Palladium-Catalyzed Intramolecular Diarylation of 1,3-Diketone in Total Synthesis of (±)-Spiroaxillarone A. Org Lett 2022; 24:1491-1495. [DOI: 10.1021/acs.orglett.2c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingting Cao
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Chongqing 200038, China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
59
|
He L, Liang C, Ouyang Y, Li L, Guo Y, Zhang P, Li W. α-Functionalization of ketones promoted by sunlight and heterogeneous catalysis in the aqueous phase. Org Biomol Chem 2022; 20:790-795. [PMID: 34994749 DOI: 10.1039/d1ob02249k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a protocol that combines heterogeneous catalysis and solar photocatalysis for the regioselective α-substitution of asymmetric ketones with quinoxalinones has been reported. The result indicates that the reaction is more likely to occur on the α-carbon. This strategy provides a green and efficient way for the α-functionalization of ketones. A singlet oxygen involved mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Chenfeng Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yani Ouyang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yirui Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
60
|
Zhou P, Liu Y, Xu Y, Wang D. Electrochemical synthesis for α-arylation of ketones using enol acetates and aryl diazonium salts. Org Chem Front 2022. [DOI: 10.1039/d1qo01765a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, an electrochemical method has been developed to achieve the α-arylation of ketones by reacting aryl diazonium salts with enol acetates. The broad scope of the reaction toward...
Collapse
|
61
|
Majumder A, Naskar R, Phukan SJ, Maity R. Bimetallic Pd II complexes with NHC/Py/PCy 3 donor set ligands: applications in α-arylation, Suzuki–Miyaura and Sonogashira coupling reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01852g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic PdII complexes bearing mixed NHC/Py/PCy3 donor set ligands are presented. A complex with a mixed NHC/PCy3 donor set ligands shows superior activity compared to the PEPPSI type complexes in α-arylation and Sonogashira coupling reactions.
Collapse
Affiliation(s)
- Adhir Majumder
- Department of Chemistry, University of Calcutta, Kolkata, West Bengal, 700009, India
| | - Rajat Naskar
- Department of Chemistry, University of Calcutta, Kolkata, West Bengal, 700009, India
| | - Shankab J. Phukan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221 005, India
| | - Ramananda Maity
- Department of Chemistry, University of Calcutta, Kolkata, West Bengal, 700009, India
| |
Collapse
|
62
|
Gu Y, Zhang Z, Wang YE, Dai Z, Yuan Y, Xiong D, Li J, Walsh PJ, Mao J. Benzylic Aroylation of Toluenes Mediated by a LiN(SiMe 3) 2/Cs + System. J Org Chem 2021; 87:406-418. [PMID: 34958592 DOI: 10.1021/acs.joc.1c02446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemoselective deprotonative functionalization of benzylic C-H bonds is challenging, because the arene ring contains multiple aromatic C(sp2)-H bonds, which can be competitively deprotonated and lead to selectivity issues. Recently it was found that bimetallic [MN(SiMe3)2 M = Li, Na]/Cs+ combinations exhibit excellent benzylic selectivity. Herein, is reported the first deprotonative addition of toluenes to Weinreb amides mediated by LiN(SiMe3)2/CsF for the synthesis of a diverse array of 2-arylacetophenones. Surprisingly, simple methyl benzoates also react with toluenes under similar conditions to form 2-arylacetophenones without double addition to give tertiary alcohol products. This finding greatly increases the practicality and impact of this chemistry. Some challenging substrates with respect to benzylic deprotonations, such as fluoro and methoxy substituted toluenes, are selectively transformed to 2-aryl acetophenones. The value of benzylic deprotonation of 3-fluorotoluene is demonstrated by the synthesis of a key intermediate in the preparation of Polmacoxib.
Collapse
Affiliation(s)
- Yuanyun Gu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhen Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ziteng Dai
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yaqi Yuan
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jie Li
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
63
|
Qin F, Wang H, Cao T, Liu Q, Xu Q, Zheng H, Zhu M, Li T, Liu Y, Wei W. Metal‐free Radical Cyclization of Olefinic 1,3‐Dicarbonyls and Olefinic Amides with Nitrile C(sp
3
)−H Bonds in Aqueous Media. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fu‐Hua Qin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Hui‐Zhi Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Ting‐Ting Cao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Qi‐Li Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials School of Chemistry and Chemical Engineering Liaocheng University Liaocheng, Shandong 252059 P. R. China
| | - Meiling Zhu
- College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 P. R. China
| | - Yi‐Lin Liu
- College of Chemistry and Materials Engineering Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material Huaihua University Huaihua, Hunan 418008 P. R. China
| | - Wen‐Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| |
Collapse
|
64
|
Bächle F, Link A, Amgoune A, Tlili A. From Academia to the Market - Air-stable Ni( ii)/Josiphos Catalysts. Chimia (Aarau) 2021; 75:943-947. [PMID: 34798916 DOI: 10.2533/chimia.2021.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The design, synthesis, commercialization and application of air-stable Ni(II)/Josiphos complexes has been realized in a collaboration between Solvias and ICBMS (University Lyon 1). The Ni-complexes are utilized as versatile precatalysts for diverse cross-coupling reactions. Apart from being active in established C-C and C-N couplings at low catalyst loadings, the novel Ni-precatalysts enabled the development of the challenging monoarylation of ammonia, ammonia surrogates and even alkylammonium chlorides with aryl carbamates. Finally, the α-arylation of acetone with aryl chlorides, carbamates and pivalates was demonstrated using the Ni(II)/Josiphos precatalysts.
Collapse
Affiliation(s)
- Florian Bächle
- Solvias AG, Römerpark 2, CH-4303 Kaiseraugst, Switzerland
| | - Achim Link
- Solvias AG, Römerpark 2, CH-4303 Kaiseraugst, Switzerland;,
| | - Abderrahmane Amgoune
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France;,
| |
Collapse
|
65
|
Kang QQ, Liu Y, Wu SP, Ge GP, Zheng H, Zhang JQ, Wei WT. Selective divergent radical cyclization of 1,6-dienes with alkyl nitriles. Org Biomol Chem 2021; 19:9501-9505. [PMID: 34709283 DOI: 10.1039/d1ob01620b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient, selective, and step economical radical cyclization of 1,6-dienes with alkyl nitriles initiated by α-C(sp3)-H functionalization under the Sc(OTf)3 and Ag2CO3 system is described here. The selective divergent cyclization relies on the substitution effect at the α-position of the acrylamide moiety and nitriles, which is terminated by hydrogen abstraction, direct cyclization with the aryl ring, or further cyclization with the CN bond and hydrolysis, respectively.
Collapse
Affiliation(s)
- Qing-Qing Kang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yi Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shi-Ping Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Guo-Ping Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
66
|
Venkatesh R, Singh AK, Lee YR, Kandasamy J. Palladium-catalyzed synthesis of α-aryl acetophenones from styryl ethers and aryl diazonium salts via regioselective Heck arylation at room temperature. Org Biomol Chem 2021; 19:7832-7837. [PMID: 34549234 DOI: 10.1039/d1ob01503f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preparation of α-aryl acetophenones from styryl ethers and aryldiazonium salts is described. The reaction is catalyzed by palladium acetate at room temperature in the absence of ligand and base. The developed method is highly attractive in terms of reaction conditions, substrate scope, functional group tolerance and yields. Synthetic applications of the present method are demonstrated by preparing α-aryl indoles and 3-aryl isocoumarin from styryl ethers.
Collapse
Affiliation(s)
- Rapelly Venkatesh
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005.
| | - Adesh Kumar Singh
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541 Republic of Korea
| | - Jeyakumar Kandasamy
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005.
| |
Collapse
|
67
|
Zhou C, Lv J, Xu W, Lu H, Kato T, Liu Y, Maruoka K. Highly Selective Monoalkylation of Active Methylene and Related Derivatives using Alkylsilyl Peroxides by a Catalytic CuI‐DMAP System. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Canhua Zhou
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jiamin Lv
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Weiping Xu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Hanbin Lu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
68
|
Al-Zoubi RM, Al-Jammal WK, Ferguson MJ, Murphy GK. Domino C-C/C-O bond formation: palladium-catalyzed regioselective synthesis of 7-iodobenzo[ b]furans using 1,2,3-triiodobenzenes and benzylketones. RSC Adv 2021; 11:30069-30077. [PMID: 35493993 PMCID: PMC9040925 DOI: 10.1039/d1ra05730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022] Open
Abstract
A facile and efficient synthesis of 7-iodobenzo[b]furan derivatives via a highly regioselective tandem α-arylation/intramolecular O-arylation of 5-substituted-1,2,3-triiodobenzenes and benzylketones is described. Remarkably, the α-arylation coupling reactions initiate exclusively at the least sterically-hindered position of the triiodoarene, which results in a highly chemoselective transformation. The highest yields were observed in reactions between electron-poor 1,2,3-triiodoarenes and electron-rich benzylketones, yet the optimized reaction conditions were found to be tolerant to a wide range of different functional groups. This unprecedent synthesis of 7-iodobenzo[b]furans from 1,2,3-triiodobenzenes is scalable, general in scope, and provides easy access to valuable precursors for other chemical transformations.
Collapse
Affiliation(s)
- Raed M Al-Zoubi
- Department of Chemistry, Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan +962-2-7201071 +962-2-7201000 ext. 23651
| | - Walid K Al-Jammal
- Department of Chemistry, Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan +962-2-7201071 +962-2-7201000 ext. 23651
| | - Michael J Ferguson
- Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta Edmonton Alberta T6G2G2 Canada
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo Waterloo Ontario N2L3G1 Canada
| |
Collapse
|
69
|
Tamizharasan N, Hallur G, Suresh P. Palladium-Catalyzed Direct α-Arylation of Indane-1,3-dione to 2-Substituted Indene-1,3-diones. J Org Chem 2021; 86:12318-12325. [PMID: 34406781 DOI: 10.1021/acs.joc.1c01149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A straightforward and feasible palladium-catalyzed direct α-arylation of indane-1,3-dione to 2-substituted aryl/heteroaryl indene-1,3-diones has been disclosed for the first time. Optimization of reaction conditions identified tBu-XPhos as a preferred ligand for the bis(acetonitrile)dichloropalladium(II) catalyst. A broad spectrum of aryl iodides and aryl triflates containing electron-donating, electron-withdrawing, and sterically hindered substituents gave an excellent yield for the quick access α-arylated 1,3-diones library.
Collapse
Affiliation(s)
- Natarajan Tamizharasan
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, Tamil Nadu, India.,Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore - 560022, Karnataka, India
| | - Gurulingappa Hallur
- Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore - 560022, Karnataka, India
| | - Palaniswamy Suresh
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, Tamil Nadu, India
| |
Collapse
|
70
|
Li B, Luo B, Blakemore CA, Smith AC, Widlicka DW, Berritt S, Tang W. Synthesis of α-Heteroaryl Propionic Esters by Palladium-Catalyzed α-Heteroarylation of Silyl Ketene Acetals. Org Lett 2021; 23:6439-6443. [PMID: 34369790 DOI: 10.1021/acs.orglett.1c02257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical and efficient synthesis of α-heteroaryl propionic esters is developed by employing palladium-catalyzed α-heteroarylation of silyl ketene acetals, forming a wide variety of α-heteroaryl propionic esters with various substituents and functionalities in high yields. The success of this transformation is credited to the development of the bulky P,P═O ligand. The method has provided an efficient synthesis of α-heteroaryl propionic acids.
Collapse
Affiliation(s)
- Bowen Li
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.,State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Bangke Luo
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Caroline A Blakemore
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Aaron C Smith
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel W Widlicka
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Simon Berritt
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Wenjun Tang
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.,State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| |
Collapse
|
71
|
Ence CC, Martinez EE, Himes SR, Nazari SH, Moreno MR, Matu MF, Larsen SG, Gassaway KJ, Valdivia-Berroeta GA, Smith SJ, Ess DH, Michaelis DJ. Experiment and Theory of Bimetallic Pd-Catalyzed α-Arylation and Annulation for Naphthalene Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chloe C. Ence
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Erin E. Martinez
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel R. Himes
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S. Hadi Nazari
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Mariur Rodriguez Moreno
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Manase F. Matu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Samantha G. Larsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kyle J. Gassaway
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | | | - Stacey J. Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - David J. Michaelis
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
72
|
Kalkman ED, Hartwig JF. Direct Observation of Diastereomeric α-C-Bound Enolates during Enantioselective α-Arylations: Synthesis, Characterization, and Reactivity of Arylpalladium Fluorooxindole Complexes. J Am Chem Soc 2021; 143:11741-11750. [PMID: 34308646 DOI: 10.1021/jacs.1c05346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Pd-catalyzed asymmetric α-arylation of carbonyl compounds is a valuable strategy to form benzylic stereocenters. However, the origin of the stereoselectivity of these reactions is poorly understood, and little is known about the reactivity of the putative diastereomeric arylpalladium enolate intermediates. To this end, we report the synthesis and characterization of a series of diphosphine-ligated arylpalladium fluoroenolate complexes, including complexes bearing a metal-bound, stereogenic carbon and an enantioenriched chiral diphosphine ligand. These complexes reductively eliminate to form chiral α-aryl-α-fluorooxindoles with enantioselectivities and rates that are relevant to those of the catalytic process with SEGPHOS as the ancillary ligand. Kinetic studies showed that the rate of reductive elimination is slightly slower than the rate of epimerization of the intermediate, causing the reductive elimination step to impart the greatest influence on the enantioselectivity. DFT calculations of these processes are consistent with these experimental rates and suggest that the minor diastereomer forms the major enantiomer of the product. The rates of reductive elimination from complexes containing a variety of electronically varied aryl ligands revealed the unusual trend that complexes bearing more electron-rich aryl ligands react faster than those bearing more electron-poor aryl ligands. Noncovalent Interaction (NCI) and Natural Bond Orbital (NBO) analyses of the transition-state structures for reductive elimination from the SEGPHOS-ligated complexes revealed key donor-acceptor interactions between the Pd center and the fluoroenolate fragment. These interactions stabilize the pathway to the major product enantiomer more strongly than they stabilize that to the minor enantiomer.
Collapse
Affiliation(s)
- Eric D Kalkman
- Department of Chemistry, University of California, Berkeley, California 94702, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94702, United States
| |
Collapse
|
73
|
Jud W, Sommer F, Kappe CO, Cantillo D. Electrochemical α-Arylation of Ketones via Anodic Oxidation of In Situ Generated Silyl Enol Ethers. J Org Chem 2021; 86:16026-16034. [PMID: 34343004 DOI: 10.1021/acs.joc.1c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An electrochemical procedure for the α-arylation of ketones has been developed. The method is based on the generation and one-pot anodic oxidation of silyl enol ethers in the presence of the arene. This strategy avoids isolation of the silyl enol intermediate and the utilization of external supporting electrolytes. Intermolecular arylations, which had not been reported so far, are possible when electron-rich arenes are utilized as coupling partners. The method has been demonstrated for a wide variety of aryl ketones and activated arenes, with moderate to good yields (up to 69%) obtained. Mechanistic insights and a theoretical rationale that explains the ketone α-arylation versus dimerization selectivity are also presented.
Collapse
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Florian Sommer
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - David Cantillo
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
74
|
Wang M, Wang W, Li D, Wang WJ, Zhan R, Shao LD. α-C(sp 3)-H Arylation of Cyclic Carbonyl Compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:379-404. [PMID: 34097248 PMCID: PMC8275813 DOI: 10.1007/s13659-021-00312-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
α-C(sp3)-H arylation is an important type of C-H functionalization. Various biologically significant natural products, chemical intermediates, and drugs have been effectively prepared via C-H functionalization. Cyclic carbonyl compounds comprise of cyclic ketones, enones, lactones, and lactams. The α-C(sp3)-H arylation of these compounds have been exhibited high efficiency in forming C(sp3)-C(sp2) bonds, played a crucial role in organic synthesis, and attracted majority of interests from organic and medicinal communities. This review focused on the most significant advances including methods, mechanism, and applications in total synthesis of natural products in the field of α-C(sp3)-H arylations of cyclic carbonyl compounds in recent years.
Collapse
Affiliation(s)
- Mei Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Wei Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Dashan Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Wen-Jing Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Rui Zhan
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650050, China.
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China.
| |
Collapse
|
75
|
Mills LR, Edjoc RK, Rousseaux SAL. Design of an Electron-Withdrawing Benzonitrile Ligand for Ni-Catalyzed Cross-Coupling Involving Tertiary Nucleophiles. J Am Chem Soc 2021; 143:10422-10428. [PMID: 34197103 DOI: 10.1021/jacs.1c05281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The design of new ligands for cross-coupling is essential for developing new catalytic reactions that access valuable products such as pharmaceuticals. In this report, we exploit the reactivity of nitrile-containing additives in Ni catalysis to design a benzonitrile-containing ligand for cross-coupling involving tertiary nucleophiles. Kinetic and Hammett studies are used to elucidate the role of the optimized ligand, which demonstrate that the benzonitrile moiety acts as an electron-acceptor to promote reductive elimination over β-hydride elimination and stabilize low-valent Ni. With these conditions, a protocol for decyanation-metalation and Ni-catalyzed arylation is conducted, enabling access to quaternary α-arylnitriles from disubstituted malononitriles.
Collapse
Affiliation(s)
- L Reginald Mills
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Racquel K Edjoc
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
76
|
Guin S, Majee D, Samanta S. Recent Advances in Visible‐Light‐Driven Photocatalyzed γ‐Cyanoalkylation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soumitra Guin
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Debashis Majee
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Sampak Samanta
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| |
Collapse
|
77
|
Fragis M, Deobald JL, Dharavath S, Scott J, Magolan J. Aldehyde to Ketone Homologation Enabled by Improved Access to Thioalkyl Phosphonium Salts. Org Lett 2021; 23:4548-4552. [PMID: 34053223 DOI: 10.1021/acs.orglett.1c01189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphines were previously unusable as Pummerer-type nucleophiles due to competing redox chemistry with sulfoxides. Here we circumvent this problem to achieve a formal phosphine Pummerer reaction that offers thioalkyl phosphonium salts that, in turn, give rise to diverse vinyl sulfides via Wittig olefinations. Thirty vinyl sulfides are thus prepared from (alkylthioalkyl)triphenyl phosphonium salts and aldehydes. The hydrolysis of these vinyl sulfides offers an efficient and versatile two-step one-carbon homologation of aldehydes to ketones.
Collapse
Affiliation(s)
- Meghan Fragis
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jackson L Deobald
- Department of Chemistry, University of Idaho, Moscow, Idaho 83843, United States
| | - Srinivas Dharavath
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jeffrey Scott
- Department of Chemistry, University of Idaho, Moscow, Idaho 83843, United States
| | - Jakob Magolan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
78
|
Lv J, Xu W, Lu H, Kato T, Liu Y, Maruoka K. The copper-catalyzed selective monoalkylation of active methylene compounds with alkylsilyl peroxides. Org Biomol Chem 2021; 19:2658-2662. [PMID: 33687416 DOI: 10.1039/d1ob00075f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel method for a mild copper-catalyzed selective monoalkylation of active methylene compounds with various alkylsilyl peroxides has been developed. The reaction has a broad substrate scope and our mechanistic studies suggest the participation of radical species in this alkylation reaction.
Collapse
Affiliation(s)
- Jiamin Lv
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | | | | | | | | | | |
Collapse
|
79
|
Bartoccini F, Regni A, Retini M, Piersanti G. Concise catalytic asymmetric synthesis of (R)-4-amino Uhle's ketone. Org Biomol Chem 2021; 19:2932-2940. [PMID: 33885552 DOI: 10.1039/d1ob00353d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A practical and asymmetric synthesis of (R)-4-amino-5-oxo-1,3,4,5-tetrahydrobenz[cd]indole, an enantiopure framework shared by most ergot alkaloids, was accomplished. Our method involves a Rh(i)-catalyzed 6-exo-trig intramolecular cyclization of an appropriate 4-pinacolboronic ester d-tryptophan aldehyde followed by the oxidation of the resulting secondary benzylic alcohol with a Cu(i)-ABNO catalyst and final deprotection under acidic conditions. This new procedure offers significant advantages over previous synthetic approaches, including brevity, mild reaction conditions, preservation of chiral integrity, and high overall yield and avoids the use of stoichiometric amounts of strongly basic and pyrophoric organometallic reagents.
Collapse
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy.
| | | | | | | |
Collapse
|
80
|
Barman D, Ghosh T, Show K, Debnath S, Ghosh T, Maiti DK. NHC-Mediated Stetter-Aldol and Imino-Stetter-Aldol Domino Cyclization to Naphthalen-1(2 H)-ones and Isoquinolines. Org Lett 2021; 23:2178-2182. [PMID: 33661653 DOI: 10.1021/acs.orglett.1c00337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Heterocyclic carbene-catalyzed tandem Stetter-aldol reaction of phthalaldehyde and α,β-unsaturated ketimines has been developed to afford functionalized naphthalen-1(2H)-one derivatives as the formal [4+2] annulation product. Interestingly, the reaction of aldimines led to the formation of isoquinoline derivatives instead of the expected indanone derivatives as a [4+1] annulation product.
Collapse
Affiliation(s)
- Debabrata Barman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tanmoy Ghosh
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Krishanu Show
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Sudipto Debnath
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tapas Ghosh
- Department of Applied Science, Maulana Abul Kalam Azad University of Technology, Haringhata 741249, West Bengal, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
81
|
Hu Z, Wei XJ, Handelmann J, Seitz AK, Rodstein I, Gessner VH, Gooßen LJ. Coupling of Reformatsky Reagents with Aryl Chlorides Enabled by Ylide-Functionalized Phosphine Ligands. Angew Chem Int Ed Engl 2021; 60:6778-6783. [PMID: 33427381 PMCID: PMC7986804 DOI: 10.1002/anie.202016048] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/13/2022]
Abstract
The coupling of aryl chlorides with Reformatsky reagents is a desirable strategy for the construction of α‐aryl esters but has so far been substantially limited in the substrate scope due to many challenges posed by various possible side reactions. This limitation has now been overcome by the tailoring of ylide‐functionalized phosphines to fit the requirements of Negishi couplings. Record‐setting activities were achieved in palladium‐catalyzed arylations of organozinc reagents with aryl electrophiles using a cyclohexyl‐YPhos ligand bearing an ortho‐tolyl‐substituent in the backbone. This highly electron‐rich, bulky ligand enables the use of aryl chlorides in room temperature couplings of Reformatsky reagents. The reaction scope covers diversely functionalized arylacetic and arylpropionic acid derivatives. Aryl bromides and chlorides can be converted selectively over triflate electrophiles, which permits consecutive coupling strategies.
Collapse
Affiliation(s)
- Zhiyong Hu
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Xiao-Jing Wei
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Jens Handelmann
- Chair of Inorganic Chemistry II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Ann-Katrin Seitz
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Ilja Rodstein
- Chair of Inorganic Chemistry II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Viktoria H Gessner
- Chair of Inorganic Chemistry II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Lukas J Gooßen
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
82
|
Gillaizeau-Simonian N, Barde E, Guérinot A, Cossy J. Cobalt-Catalyzed 1,4-Aryl Migration/Desulfonylation Cascade: Synthesis of α-Aryl Amides. Chemistry 2021; 27:4004-4008. [PMID: 33296109 DOI: 10.1002/chem.202005129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 11/06/2022]
Abstract
A cobalt-catalyzed 1,4-aryl migration/disulfonylation cascade applied to α-bromo N-sulfonyl amides was developed. The reaction was highly chemoselective, allowing the preparation of α-aryl amides possessing a variety of functional groups. The method was used as the key step to synthesize an alkaloid, (±)-deoxyeseroline. Mechanistic investigations suggest a radical process.
Collapse
Affiliation(s)
- Nicolas Gillaizeau-Simonian
- Molecular, Macromolecular Chemistry and Materials-UMR 7167 ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| | - Etienne Barde
- Molecular, Macromolecular Chemistry and Materials-UMR 7167 ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| | - Amandine Guérinot
- Molecular, Macromolecular Chemistry and Materials-UMR 7167 ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials-UMR 7167 ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| |
Collapse
|
83
|
Saini G, Kapur M. Palladium-catalyzed functionalizations of acidic and non-acidic C(sp 3)-H bonds - recent advances. Chem Commun (Camb) 2021; 57:1693-1714. [PMID: 33492315 DOI: 10.1039/d0cc06892f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tremendous upsurge has been seen in the recent decade for the proximal and remote functionalization of activated and unactivated substrates via palladium redox pathways. This feature article discusses some of the recent reports on direct as well as indirect C(sp3)-H functionalization via cross-coupling reactions under palladium catalysis. Activated substrates (possessing acidic C(sp3)-H) including enones, ketones, aldehydes, silylenol ethers, esters, silyl ketene acetals, amides, cyano, α-amino esters, and O-carbamates, capable of undergoing cross-coupling reactions at the α-, β-, γ-, δ- and ε-positions, will be discussed. To overcome the challenging task of achieving regioselectivity, a variety of innovative modifications have been reported. The reports of C-H activations based on directing group, and as native functionality have been illustrated at the β-, γ- and δ-positions. Substrates such as α-amino esters, carbonyls, carboxylic acids and their derivatives, afford site-selective C(sp3)-H functionalization via varied-sized reactive metallacycles and are a unique class of substrates whose C(sp3)-H functionalizations were earlier considered as very difficult.
Collapse
Affiliation(s)
- Gaurav Saini
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| |
Collapse
|
84
|
Ahmad MS, Ahmad A. Cu-catalyzed cyanomethylation of imines and α,β-alkenes with acetonitrile and its derivatives. RSC Adv 2021; 11:5427-5431. [PMID: 35423113 PMCID: PMC8694676 DOI: 10.1039/d0ra10693c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
We describe copper-catalyzed cyanomethylation of imines and α,β-alkenes with a methylnitrile source and provide an efficient route to synthesize arylacrylonitriles and β,γ-unsaturated nitriles. This method tolerates aliphatic and aromatic alkenes substituted with a variety of functional groups such as F, Cl, Br, Me, OMe, tert-Bu, NO2, NH2 and CO2H with good to excellent yields (69-98%). These systems consist of inexpensive, simple copper catalyst and acetonitrile with its derivatives (α-bromo/α-iodo-acetonitrile) and are highly applicable in the industrial production of acrylonitriles.
Collapse
Affiliation(s)
| | - Atique Ahmad
- Department of Physical Sciences, Air University, Islamabad Campus Pakistan
| |
Collapse
|
85
|
Hu Z, Wei X, Handelmann J, Seitz A, Rodstein I, Gessner VH, Gooßen LJ. Kupplung von Reformatsky‐Reagenzien und Arylchloriden ermöglicht durch Ylid‐funktionalisierte Phosphanliganden. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhiyong Hu
- Evonik Lehrstuhl für Organische Chemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Xiao‐Jing Wei
- Evonik Lehrstuhl für Organische Chemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Jens Handelmann
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstaße 150 44801 Bochum Deutschland
| | - Ann‐Katrin Seitz
- Evonik Lehrstuhl für Organische Chemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Ilja Rodstein
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstaße 150 44801 Bochum Deutschland
| | - Viktoria H. Gessner
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstaße 150 44801 Bochum Deutschland
| | - Lukas J. Gooßen
- Evonik Lehrstuhl für Organische Chemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
86
|
Nam D, Steck V, Potenzino RJ, Fasan R. A Diverse Library of Chiral Cyclopropane Scaffolds via Chemoenzymatic Assembly and Diversification of Cyclopropyl Ketones. J Am Chem Soc 2021; 143:2221-2231. [DOI: 10.1021/jacs.0c09504] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Donggeon Nam
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Viktoria Steck
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Robert J. Potenzino
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
87
|
Li Z, Peng Y, Wu T. Palladium-Catalyzed Denitrative α-Arylation of Ketones with Nitroarenes. Org Lett 2021; 23:881-885. [DOI: 10.1021/acs.orglett.0c04104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhirong Li
- The College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yonggang Peng
- The College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Tao Wu
- The College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
88
|
Becica J, Glaze OD, Hruszkewycz DP, Dobereiner GE, Leitch DC. The influence of additives on orthogonal reaction pathways in the Mizoroki–Heck arylation of vinyl ethers. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00124h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Translating microscale high-throughput screening hits into preparative scale chemistry often requires an understanding of scale-dependent factors, such as the effect of additives on catalyst activation pathways.
Collapse
Affiliation(s)
- Joseph Becica
- Chemical Development
- GlaxoSmithKline
- Collegeville
- USA
- Department of Chemistry
| | - Owen D. Glaze
- Department of Chemistry
- Temple University
- Philadelphia
- USA
| | | | | | | |
Collapse
|
89
|
Rayadurgam J, Sana S, Sasikumar M, Gu Q. Palladium catalyzed C–C and C–N bond forming reactions: an update on the synthesis of pharmaceuticals from 2015–2020. Org Chem Front 2021. [DOI: 10.1039/d0qo01146k] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Some of the most prominent and promising catalysts in organic synthesis for the requisite construction of C–C and C–N bonds are palladium (Pd) catalysts, which play a pivotal role in pharmaceutical and medicinal chemistry.
Collapse
Affiliation(s)
- Jayachandra Rayadurgam
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- People's Republic of China
| | - Sravani Sana
- Alder Research Chemicals Private Limited
- CSIR-IICT
- Hyderabad
- India
| | - M. Sasikumar
- Department of Chemistry
- Indian Institute of Science Education and Research
- Tirupati
- India
| | - Qiong Gu
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- People's Republic of China
| |
Collapse
|
90
|
Shepelenko KE, Soliev SB, Galushko AS, Chernyshev VM, Ananikov VP. Different effects of metal-NHC bond cleavage on the Pd/NHC and Ni/NHC catalyzed α-arylation of ketones with aryl halides. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01411g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fundamental differences in the behavior of Pd/NHC and Ni/NHC catalytic systems in ketones α-arylation were elucidated and exploited.
Collapse
Affiliation(s)
| | | | - Alexey S. Galushko
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | | | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI)
- Russia
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
| |
Collapse
|
91
|
Vitale P, Cicco L, Perna FM, Capriati V. Introducing deep eutectic solvents in enolate chemistry: synthesis of 1-arylpropan-2-ones under aerobic conditions. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00297j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An environmentally friendly procedure for the generation of enolates from 1-arylpropan-2-ones, followed by functionalization with electrophiles and (hetero)aryl halides in deep eutectic solvents under aerobic conditions, is disclosed.
Collapse
Affiliation(s)
- Paola Vitale
- Dipartimento di Farmacia–Scienze del farmaco, Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S, Via E. Orabona 4, I-70125, Bari, Italy
| | - Luciana Cicco
- Dipartimento di Farmacia–Scienze del farmaco, Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S, Via E. Orabona 4, I-70125, Bari, Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia–Scienze del farmaco, Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S, Via E. Orabona 4, I-70125, Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia–Scienze del farmaco, Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S, Via E. Orabona 4, I-70125, Bari, Italy
| |
Collapse
|
92
|
Jiang NQ, Li HY, Cai ZJ, Ji SJ. The Mizoroki–Heck reaction initiated formal C(sp 3)–H arylation of carbonyl compounds. Org Chem Front 2021. [DOI: 10.1039/d1qo00769f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work described a Mizoroki–Heck reaction initiated formal C(sp3)–H arylation of α-methylcinnamaldehydes under phosphane-free conditions.
Collapse
Affiliation(s)
- Nan-Quan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
93
|
Yuen OY, So CM. Ligand Control of Palladium-Catalyzed Site-Selective α- and γ-Arylation of α,β-Unsaturated Ketones with (Hetero)aryl Halides. Angew Chem Int Ed Engl 2020; 59:23438-23444. [PMID: 33007134 DOI: 10.1002/anie.202010682] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/06/2020] [Indexed: 01/23/2023]
Abstract
This study describes the first palladium-catalyzed, site-selective α- and γ-arylation of α,β-unsaturated ketones with (hetero)aryl halides. A wide range of hetero(aryl)halides coupled with α,β-unsaturated ketones, and transformation into the arylated products proceeded with excellent to good yields. The site selectivity of the reaction is switchable by simply changing the phosphine ligand to access either α-arylated or γ-arylated products in good to excellent yields by using a low catalyst loading, and the method demonstrates good functional-group compatibility.
Collapse
Affiliation(s)
- On Ying Yuen
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, Hong Kong
| | - Chau Ming So
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, Hong Kong.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China
| |
Collapse
|
94
|
You LX, Zhao BB, Yao SX, Xiong G, Dragutan I, Dragutan V, Ding F, Sun YG. Engineering functional group decorated ZIFs to high-performance Pd@ZIF-92 nanocatalysts for C(sp2)-C(sp2) couplings in aqueous medium. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
95
|
A DFT investigation on aromatic nucleophilic substitution (SNAr) reaction between 4-fluoro-1-naphthaldehyde/4-fluoro-2-naphthaldehyde/1-fluoro-2-naphthaldehyde/1-fluoronaphthalene and methylthiolate ion in gas phase and in protic/aprotic solvents. Struct Chem 2020. [DOI: 10.1007/s11224-020-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
96
|
Vu CM, Le KB, Vo UN, Van VD, Nguyen AT, Phan NT, Le NT, Nguyen TT. Recyclable CuFe2O4 for the synthesis of 2,3-disubstituted indoles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
97
|
Yuen OY, So CM. Ligand Control of Palladium‐Catalyzed Site‐Selective α‐ and γ‐Arylation of α,β‐Unsaturated Ketones with (Hetero)aryl Halides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- On Ying Yuen
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery The Hong Kong Polytechnic University Hung Hom Kowloon, Hong Kong Hong Kong
| | - Chau Ming So
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery The Hong Kong Polytechnic University Hung Hom Kowloon, Hong Kong Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen P. R. China
| |
Collapse
|
98
|
Kim D, Choi G, Kim W, Kim D, Kang YK, Hong SH. The site-selectivity and mechanism of Pd-catalyzed C(sp 2)-H arylation of simple arenes. Chem Sci 2020; 12:363-373. [PMID: 34163602 PMCID: PMC8178950 DOI: 10.1039/d0sc05414c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Control over site-selectivity is a critical challenge for practical application of catalytic C–H functionalization reactions in organic synthesis. Despite the seminal breakthrough of the Pd-catalyzed C(sp2)–H arylation of simple arenes via a concerted metalation–deprotonation (CMD) pathway in 2006, understanding the site-selectivity of the reaction still remains elusive. Here, we have comprehensively investigated the scope, site-selectivity, and mechanism of the Pd-catalyzed direct C–H arylation reaction of simple arenes. Counterintuitively, electron-rich arenes preferably undergo meta-arylation without the need for a specifically designed directing group, whereas electron-deficient arenes bearing fluoro or cyano groups exhibit high ortho-selectivity and electron-deficient arenes bearing bulky electron-withdrawing groups favor the meta-product. Comprehensive mechanistic investigations through a combination of kinetic measurements and stoichiometric experiments using arylpalladium complexes have revealed that the Pd-based catalytic system works via a cooperative bimetallic mechanism, not the originally proposed monometallic CMD mechanism, regardless of the presence of a strongly coordinating L-type ligand. Notably, the transmetalation step, which is influenced by a potassium cation, is suggested as the selectivity-determining step. The transmetalation step, not the C–H activation step, is suggested as the selectivity-determining step in Pd-catalyzed C–H arylation of simple arenes.![]()
Collapse
Affiliation(s)
- Daeun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Geunho Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Weonjeong Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Youn K Kang
- Department of Chemical Energy Engineering, Sangmyung University Seoul 03016 Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
99
|
Derhamine SA, Krachko T, Monteiro N, Pilet G, Schranck J, Tlili A, Amgoune A. Nickel‐Catalyzed Mono‐Selective α‐Arylation of Acetone with Aryl Chlorides and Phenol Derivatives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sary Abou Derhamine
- Univ Lyon Université Lyon 1 Institute of Chemistry and Biochemistry (ICBMS—UMR CNRS 5246) CNRS INSA CPE-Lyon 1 Rue victor Grignard 69622 Villeurbanne France
| | - Tetiana Krachko
- Univ Lyon Université Lyon 1 Institute of Chemistry and Biochemistry (ICBMS—UMR CNRS 5246) CNRS INSA CPE-Lyon 1 Rue victor Grignard 69622 Villeurbanne France
| | - Nuno Monteiro
- Univ Lyon Université Lyon 1 Institute of Chemistry and Biochemistry (ICBMS—UMR CNRS 5246) CNRS INSA CPE-Lyon 1 Rue victor Grignard 69622 Villeurbanne France
| | - Guillaume Pilet
- Univ Lyon Université Lyon 1 Laboratoire des Multimatériaux et Interfaces (LMI) UMR 5615 CNRS Bâtiment Chevreul Avenue du 11 novembre 1918 69622 Villeurbanne cedex France
| | - Johannes Schranck
- Solvias AG Römerpark 2 4303 Kaiseraugst Switzerland
- Current address: Johnson Matthey Life Science Technologies 2001 Nolte Drive West Deptford NJ 08066 USA
| | - Anis Tlili
- Univ Lyon Université Lyon 1 Institute of Chemistry and Biochemistry (ICBMS—UMR CNRS 5246) CNRS INSA CPE-Lyon 1 Rue victor Grignard 69622 Villeurbanne France
| | - Abderrahmane Amgoune
- Univ Lyon Université Lyon 1 Institute of Chemistry and Biochemistry (ICBMS—UMR CNRS 5246) CNRS INSA CPE-Lyon 1 Rue victor Grignard 69622 Villeurbanne France
- Institut Universitaire de France IUF 1 Rue Descartes 75231 Cedex 05 Paris France
| |
Collapse
|
100
|
Zhang XW, Zhang H, Wang HC, Zhu MH, Cong H, Liu WB. Pd-catalyzed arylation/aza-Michael addition cascade to C2-spiroindolines and azabicyclo[3.2.2]nonanones. Chem Commun (Camb) 2020; 56:12013-12016. [PMID: 32901620 DOI: 10.1039/d0cc04935b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A palladium-catalyzed arylation/aza-Michael addition cascade reaction of β-substituted cyclic enones and 2-haloanilines has been reported. Using 1 mol% Pd(PPh3)4 as a catalyst, C2-spiroindolines are accessed via an intermolecular vinylogous arylation of β-alkyl cyclic enones and 2-haloanilines followed by an intramolecular aza-Michael addition. The functional group tolerance of this transformation is examined by 18 examples in up to 93% yield. In the second part, we developed an α'-arylation/aza-Michael addition cascade strategy to construct azabicyclo[3.2.2]nonanones catalyzed by Pd(MeCN)2Cl2·PPh3. This study provides a quick route to complex and useful spiro- and bridged-heterocycles from readily available starting materials in good yields with high regioselectivity.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | | | | | | | | | | |
Collapse
|