51
|
Rochat B, Waridel P, Barblan J, Sottas PE, Quadroni M. Robust and sensitive peptidomics workflow for plasma based on specific extraction, lipid removal, capillary LC setup and multinozzle ESI emitter. Talanta 2021; 223:121617. [PMID: 33303132 DOI: 10.1016/j.talanta.2020.121617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
We present a new workflow for the LC-MS determination of native peptides in plasma at picomolar levels. Collected whole blood was quickly diluted with an ice-cold solution in order to stop protease activity. Diluted plasma samples were extracted by protein denaturation followed by solid-phase-extraction with a polymeric stationary phase that removed most proteins and lipids. Using a specific LC-MS setup with 3 pumps, 240 μL of extracts were injected without drying-reconstitution, a step known to cause peptide losses. After an 18-fold dilution on-line, peptides were trapped on a 1 × 10 mm C8 column, back-flushed and resolved on a 0.3 × 100 mm C18 column. Extract reproducibility, robustness (column clogging), extraction yields, matrix effects, calibration curves and limits of detection were evaluated with plasma extracts and spiked-in standards. The sensitivity and applicability of 3 electrospray sources were evaluated at capillary flow rates (10 μL/min). We show that ionization sources must have a spray angle with the MS orifice when "real" extracts are injected and that a multinozzle emitter can improve very significantly peptide detection. Finally, using our workflow, we have performed a peptidomics study on dried-blood-spots collected over 65 h in a healthy volunteer and discovered 5 fragments (2.9-3.8 KDa) of the protein statherin showing circadian oscillations. This is the first time that statherin is observed in blood where its role clearly deserves further investigations. Our peptidomic protocol shows low picomolar limits of detection and can be readily applied with or without minor modifications for most peptide determinations in various biomatrices.
Collapse
Affiliation(s)
- Bertrand Rochat
- Protein Analysis Facility, University of Lausanne, Switzerland; University Hospital of Lausanne, 1015, Lausanne, Switzerland.
| | - Patrice Waridel
- Protein Analysis Facility, University of Lausanne, Switzerland.
| | - Jachen Barblan
- Protein Analysis Facility, University of Lausanne, Switzerland.
| | | | | |
Collapse
|
52
|
Pinto MEF, Chan LY, Koehbach J, Devi S, Gründemann C, Gruber CW, Gomes M, Bolzani VS, Cilli EM, Craik DJ. Cyclotides from Brazilian Palicourea sessilis and Their Effects on Human Lymphocytes. JOURNAL OF NATURAL PRODUCTS 2021; 84:81-90. [PMID: 33397096 PMCID: PMC7836058 DOI: 10.1021/acs.jnatprod.0c01069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 05/05/2023]
Abstract
Cyclotides are plant-derived peptides found within five families of flowering plants (Violaceae, Rubiaceae, Fabaceae, Solanaceae, and Poaceae) that have a cyclic backbone and six conserved cysteine residues linked by disulfide bonds. Their presence within the Violaceae species seems ubiquitous, yet not all members of other families produce these macrocyclic peptides. The genus Palicourea Aubl. (Rubiaceae) contains hundreds of neotropical species of shrubs and small trees; however, only a few cyclotides have been discovered hitherto. Herein, five previously uncharacterized Möbius cyclotides within Palicourea sessilis and their pharmacological activities are described. Cyclotides were isolated from leaves and stems of this plant and identified as pase A-E, as well as the known peptide kalata S. Cyclotides were de novo sequenced by MALDI-TOF/TOF mass spectrometry, and their structures were solved by NMR spectroscopy. Because some cyclotides have been reported to modulate immune cells, pase A-D were assayed for cell proliferation of human primary activated T lymphocytes, and the results showed a dose-dependent antiproliferative function. The toxicity on other nonimmune cells was also assessed. This study reveals that pase cyclotides have potential for applications as immunosuppressants and in immune-related disorders.
Collapse
Affiliation(s)
- Meri Emili F. Pinto
- Institute
of Chemistry, São Paulo State University−UNESP, Araraquara, 14800-060 SP, Brazil
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Lai Yue Chan
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Johannes Koehbach
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Seema Devi
- Institute
for Infection Prevention and Hospital Epidemiology, Center for Complementary
Medicine, University of Freiburg, 79111 Freiburg, Germany
| | - Carsten Gründemann
- Translational
Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Mario Gomes
- Rio
de Janeiro
Botanic Garden Research Institute−JBRJ, Rio de Janeiro, 22470-180 RJ, Brazil
| | - Vanderlan S. Bolzani
- Institute
of Chemistry, São Paulo State University−UNESP, Araraquara, 14800-060 SP, Brazil
| | - Eduardo Maffud Cilli
- Institute
of Chemistry, São Paulo State University−UNESP, Araraquara, 14800-060 SP, Brazil
| | - David J. Craik
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
53
|
Grover T, Mishra R, Gulati P, Mohanty A. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides 2021; 135:170430. [PMID: 33096195 DOI: 10.1016/j.peptides.2020.170430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
Cyclotides are plant-derived mini-proteins of 28 - 37 amino acids. They have a characteristic head-to-tail cyclic backbone and three disulfide cross-linkages formed by six highly conserved cysteine residues, creating a unique knotted ring structure, known as a cyclic cystine knot (CCK) motif. The CCK topology confers immense stability to cyclotides with resistance to thermal and enzymatic degradation. Native cyclotides are of interest due to their multiple biological activities with several potential applications in agricultural (e.g. biopesticides, antifungal) and pharmaceutical (e.g. anti-HIV, cytotoxic to tumor cells) sectors. The most recent application of insecticidal activity of cyclotides is the commercially available biopesticidal spray known as 'Sero X' for cotton crops. Cyclotides have a general mode of action and their potency of bioactivity is determined through their binding ability, pore formation and disruption of the target biological membranes. Keeping in view the important potential applications of biological activities of cyclotides and the lack of an extensive and analytical compilation of bioactive cyclotides, the present review systematically describes eight major biological activities of the native cyclotides from four angiosperm families viz. Fabaceae, Poaceae, Rubiaceae, Violaceae. The bioactivities of 94 cytotoxic, 57 antibacterial, 44 hemolytic, 25 antifungal, 21 anti-HIV, 20 nematocidal, 10 insecticidal and 5 molluscicidal cyclotides have been comprehensively elaborated. Further, their distribution in angiosperm families, mode of action and future prospects have also been discussed.
Collapse
Affiliation(s)
- Tripti Grover
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India
| | - Reema Mishra
- Department of Botany, Gargi College, University of Delhi, India
| | - Pooja Gulati
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India.
| |
Collapse
|
54
|
Du Q, Huang YH, Bajpai A, Frosig-Jorgensen M, Zhao G, Craik DJ. Evaluation of the in Vivo Aphrodisiac Activity of a Cyclotide Extract from Hybanthus enneaspermus. JOURNAL OF NATURAL PRODUCTS 2020; 83:3736-3743. [PMID: 33296204 DOI: 10.1021/acs.jnatprod.0c01045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybanthus enneaspermus is an Indian folk medicinal herb that has been widely used as a libido enhancer. This plant belongs to the Violaceae plant family, which ubiquitously contains disulfide-rich cyclic peptides named cyclotides. Cyclotides are an expanding plant-derived peptide family with numerous interesting bioactivities, and their unusual stability against proteolysis has attracted much attention in drug design applications. Recently, H. enneaspermus has been reported to be a rich source of cyclotides, and hence, it was of interest to investigate whether cyclotides contribute to its aphrodisiac activity. In this study, we evaluated the in vivo aphrodisiac activity of the herbal powder, extract, and the most abundant cyclotide, hyen D, extracted from H. enneaspermus on rats in a single dose regimen. After dosing, the sexual behaviors of male rats were observed, recorded, analyzed, and compared with those of the vehicle group. The results show that the extract and hyen D significantly decreased the intromission latency of sexually naïve male rats and the extract improved a range of other measured sexual parameters. The results suggest that the extract could enhance libido as well as facilitate erectile function in male rats and that the cyclotide hyen D could contribute to the libido-enhancing activity of this ethnomedicinal herb.
Collapse
Affiliation(s)
- Qingdan Du
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abhishek Bajpai
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Majbrit Frosig-Jorgensen
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guangzu Zhao
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
55
|
González-Castro R, Gómez-Lim MA, Plisson F. Cysteine-Rich Peptides: Hyperstable Scaffolds for Protein Engineering. Chembiochem 2020; 22:961-973. [PMID: 33095969 DOI: 10.1002/cbic.202000634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Cysteine-rich peptides (CRPs) are small proteins of less than 100 amino acids in length characterized by the presence of disulfide bridges and common end-to-end macrocyclization. These properties confer hyperstability against high temperatures, salt concentration, serum presence, and protease degradation to CRPs. Moreover, their intercysteine domains (loops) are susceptible to residue hypervariability. CRPs have been successfully applied as stable scaffolds for molecular grafting, a protein engineering process in which cysteine-rich structures provide higher thermodynamic and metabolic stability to an epitope and acquire new biological function(s). This review describes the successes and limitations of seven cysteine-rich scaffolds, their bioactive epitopes, and the resulting grafted peptides.
Collapse
Affiliation(s)
- Rafael González-Castro
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, México.,Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato, Guanajuato, 36824, México
| | - Miguel A Gómez-Lim
- Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato, Guanajuato, 36824, México
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, México
| |
Collapse
|
56
|
Grahl MVC, Lopes FC, Martinelli AHS, Carlini CR, Fruttero LL. Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases. Molecules 2020; 25:molecules25225338. [PMID: 33207637 PMCID: PMC7696265 DOI: 10.3390/molecules25225338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) do not have a stable 3D structure but still have important biological activities. Jaburetox is a recombinant peptide derived from the jack bean (Canavalia ensiformis) urease and presents entomotoxic and antimicrobial actions. The structure of Jaburetox was elucidated using nuclear magnetic resonance which reveals it is an IDP with small amounts of secondary structure. Different approaches have demonstrated that Jaburetox acquires certain folding upon interaction with lipid membranes, a characteristic commonly found in other IDPs and usually important for their biological functions. Soyuretox, a recombinant peptide derived from the soybean (Glycine max) ubiquitous urease and homologous to Jaburetox, was also characterized for its biological activities and structural properties. Soyuretox is also an IDP, presenting more secondary structure in comparison with Jaburetox and similar entomotoxic and fungitoxic effects. Moreover, Soyuretox was found to be nontoxic to zebra fish, while Jaburetox was innocuous to mice and rats. This profile of toxicity affecting detrimental species without damaging mammals or the environment qualified them to be used in biotechnological applications. Both peptides were employed to develop transgenic crops and these plants were active against insects and nematodes, unveiling their immense potentiality for field applications.
Collapse
Affiliation(s)
- Matheus V. Coste Grahl
- Graduate Program in Medicine and Health Sciences, Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, Brazil;
| | - Fernanda Cortez Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Building 43431, Porto Alegre CEP 91501-970, RS, Brazil;
| | - Anne H. Souza Martinelli
- Department of Biophysics & Deparment of Molecular Biology and Biotechnology-Biosciences Institute (IB), Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil;
| | - Celia R. Carlini
- Graduate Program in Medicine and Health Sciences, Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, Brazil;
- Brain Institute and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
- Correspondence: (C.R.C.); (L.L.F.); Tel.: +55-51-3320-3485 (C.R.C.); +54-351-535-3850 (L.L.F.)
| | - Leonardo L. Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba CP 5000, Argentina
- Correspondence: (C.R.C.); (L.L.F.); Tel.: +55-51-3320-3485 (C.R.C.); +54-351-535-3850 (L.L.F.)
| |
Collapse
|
57
|
Slazak B, Haugmo T, Badyra B, Göransson U. The life cycle of cyclotides: biosynthesis and turnover in plant cells. PLANT CELL REPORTS 2020; 39:1359-1367. [PMID: 32719893 PMCID: PMC7497429 DOI: 10.1007/s00299-020-02569-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
Turnover rates have implications for understanding cyclotide biology and improving plant cell culture-based production systems. Cyclotides are a family of polypeptides recognized for a broad spectrum of bioactivities. The cyclic, cystine knot structural motif imparts these peptides with resistance to temperature, chemicals and proteolysis. Cyclotides are found widely distributed across the Violaceae and in five other plant families, where their presumed biological role is host defense. Violets produce mixtures of different cyclotides that vary depending on the organ, tissue or influence of environmental factors. In the present study, we investigated the biosynthesis and turnover of cyclotides in plant cells. Viola uliginosa suspension cultures were grown in media where all nitrogen containing salts were replaced with their 15N counterparts. This approach combined with LC-MS analysis allowed to separately observe the production of 15N-labelled peptides and decomposition of 14N cyclotides present in the cells when switching the media. Additionally, we investigated changes in cyclotide content in V. odorata germinating seeds. In the suspension cultures, the degradation rates varied for individual cyclotides and the highest was noted for cyO13. Rapid increase in production of 15N peptides was observed until day 19 and subsequently, a plateau of production, indicating an equilibrium between biosynthesis and turnover. The developing seedling appeared to consume cyclotides present in the seed endosperm. We show that degradation processes shape the cyclotide pattern present in different tissues and environments. The results indicate that individual cyclotides play different roles-some in defense and others as storage proteins. The turnover of cyclotides should be accounted to improve cell culture production systems.
Collapse
Affiliation(s)
- Blazej Slazak
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre (BMC), Uppsala University, Box 574, 751 23, Uppsala, Sweden.
- W. Szafer Institute of Botany, Polish Academy of Sciences, 46 Lubicz St., 31-512, Cracow, Poland.
| | - Tobias Haugmo
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre (BMC), Uppsala University, Box 574, 751 23, Uppsala, Sweden
| | - Bogna Badyra
- W. Szafer Institute of Botany, Polish Academy of Sciences, 46 Lubicz St., 31-512, Cracow, Poland
| | - Ulf Göransson
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre (BMC), Uppsala University, Box 574, 751 23, Uppsala, Sweden
| |
Collapse
|
58
|
Handley TNG, Wang CK, Harvey PJ, Lawrence N, Craik DJ. Cyclotide Structures Revealed by NMR, with a Little Help from X‐ray Crystallography. Chembiochem 2020; 21:3463-3475. [DOI: 10.1002/cbic.202000315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/08/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Thomas N. G. Handley
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland 4072 Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland 4072 Australia
| | - Peta J. Harvey
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland 4072 Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
59
|
Muratspahić E, Koehbach J, Gruber CW, Craik DJ. Harnessing cyclotides to design and develop novel peptide GPCR ligands. RSC Chem Biol 2020; 1:177-191. [PMID: 34458757 PMCID: PMC8341132 DOI: 10.1039/d0cb00062k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclotides are plant-derived cyclic, disulfide-rich peptides with a unique cyclic cystine knot topology that confers them with remarkable structural stability and resistance to proteolytic degradation. Recently, cyclotides have emerged as promising scaffold molecules for designing peptide-based therapeutics. Here, we provide examples of how engineering cyclotides using molecular grafting may lead to the development of novel peptide ligands of G protein-coupled receptors (GPCRs), today's most exploited drug targets. Integrating bioactive epitopes into stable cyclotide scaffolds can lead to improved pharmacokinetics and oral activity as well as selectivity and high enzymatic stability. We also discuss and highlight the importance of engineered cyclotides as novel tools to study GPCR signaling.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
60
|
Rubin GM, Ding Y. Recent advances in the biosynthesis of RiPPs from multicore-containing precursor peptides. J Ind Microbiol Biotechnol 2020; 47:659-674. [PMID: 32617877 PMCID: PMC7666021 DOI: 10.1007/s10295-020-02289-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) compose a large structurally and functionally diverse family of natural products. The biosynthesis system of RiPPs typically involves a precursor peptide comprising of a leader and core motif and nearby processing enzymes that recognize the leader and act on the core for producing modified peptides. Interest in RiPPs has increased substantially in recent years as improvements in genome mining techniques have dramatically improved access to these peptides and biochemical and engineering studies have supported their applications. A less understood, intriguing feature in the RiPPs biosynthesis is the precursor peptides of multiple RiPPs families produced by bacteria, fungi and plants carrying multiple core motifs, which we term "multicore". Herein, we present the prevalence of the multicore systems, their biosynthesis and engineering for applications.
Collapse
Affiliation(s)
- Garret M Rubin
- Department of Medicinal Chemistry, and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
61
|
Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, Hesham AEL, Sharma GD, Sharma M, Bhargava A. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother Res 2020; 35:256-277. [PMID: 32940412 DOI: 10.1002/ptr.6823] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
There has been a spurt in the spread of microbial resistance to antibiotics due to indiscriminate use of antimicrobial agents in human medicine, agriculture, and animal husbandry. It has been realized that conventional antibiotic therapy would be less effective in the coming decades and more emphasis should be given for the development of novel antiinfective therapies. Cysteine rich peptides (CRPs) are broad-spectrum antimicrobial agents that modulate the innate immune system of different life forms such as bacteria, protozoans, fungi, plants, insects, and animals. These are also expressed in several plant tissues in response to invasion by pathogens, and play a crucial role in the regulation of plant growth and development. The present work explores the importance of CRPs as potent antimicrobial agents, which can supplement and/or replace the conventional antibiotics. Different plant parts of diverse plant species showed the presence of antimicrobial peptides (AMPs), which had significant structural and functional diversity. The plant-derived AMPs exhibited potent activity toward a range of plant and animal pathogens, protozoans, insects, and even against cancer cells. The cysteine-rich AMPs have opened new avenues for the use of plants as biofactories for the production of antimicrobials and can be considered as promising antimicrobial drugs in biotherapeutics.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Keshav Lalit Ameta
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | | | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development (IBD), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
62
|
Kalmankar NV, Venkatesan R, Balaram P, Sowdhamini R. Transcriptomic profiling of the medicinal plant Clitoria ternatea: identification of potential genes in cyclotide biosynthesis. Sci Rep 2020; 10:12658. [PMID: 32728092 PMCID: PMC7391643 DOI: 10.1038/s41598-020-69452-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023] Open
Abstract
Clitoria ternatea a perennial climber of the Fabaceae family, is well known for its agricultural and medical applications. It is also currently the only known member of the Fabaceae family that produces abundant amounts of the ultra-stable macrocyclic peptides, cyclotides, across all tissues. Cyclotides are a class of gene-encoded, disulphide-rich, macrocyclic peptides (26–37 residues) acting as defensive metabolites in several plant species. Previous transcriptomic studies have demonstrated the genetic origin of cyclotides from the Fabaceae plant family to be embedded in the albumin-1 genes, unlike its counterparts in other plant families. However, the complete mechanism of its biosynthesis and the repertoire of enzymes involved in cyclotide folding and processing remains to be understood. In this study, using RNA-Seq data and de novo transcriptome assembly of Clitoria ternatea, we have identified 71 precursor genes of cyclotides. Out of 71 unique cyclotide precursor genes obtained, 51 sequences display unique cyclotide domains, of which 26 are novel cyclotide sequences, arising from four individual tissues. MALDI-TOF mass spectrometry analysis of fractions from different tissue extracts, coupled with precursor protein sequences obtained from transcriptomic data, established the cyclotide diversity in this plant species. Special focus in this study has also been on identifying possible enzymes responsible for proper folding and processing of cyclotides in the cell. Transcriptomic mining for oxidative folding enzymes such as protein-disulphide isomerases (PDI), ER oxidoreductin-1 (ERO1) and peptidylprolyl cis-trans isomerases (PPIases)/cyclophilins, and their levels of expression are also reported. In particular, it was observed that the CtPDI genes formed plant-specific clusters among PDI genes as compared to those from other plant species. Collectively, this work provides insights into the biogenesis of the medicinally important cyclotides and establishes the expression of certain key enzymes participating in peptide biosynthesis. Also, several novel cyclotide sequences are reported and precursor sequences are analysed in detail. In the absence of a published reference genome, a comprehensive transcriptomics approach was adopted to provide an overview of diverse properties and constituents of C. ternatea.
Collapse
Affiliation(s)
- Neha V Kalmankar
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), #74/2, Jarakabande Kaval, Post Attur, Via Yelahanka, Bangalore, Karnataka, 560064, India
| | - Radhika Venkatesan
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,Department of Biological Sciences, Indian Institute of Science, Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
63
|
Hemu X, El Sahili A, Hu S, Zhang X, Serra A, Goh BC, Darwis DA, Chen MW, Sze SK, Liu CF, Lescar J, Tam JP. Turning an Asparaginyl Endopeptidase into a Peptide Ligase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02078] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinya Hemu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Abbas El Sahili
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Side Hu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Xiaohong Zhang
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Aida Serra
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- IMDEA Food Research Institute, Carr. de Canto Blanco, 8, Madrid 28049, Spain
| | - Boon Chong Goh
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
- Antimicrobial Resistance Interdisciplinary Research Group, SMART, 1 CREATE Way, Singapore 138602
| | - Dina A. Darwis
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Ming Wei Chen
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Chuan-fa Liu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Julien Lescar
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - James P. Tam
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
64
|
Dang TT, Chan LY, Huang YH, Nguyen LTT, Kaas Q, Huynh T, Craik DJ. Exploring the Sequence Diversity of Cyclotides from Vietnamese Viola Species. JOURNAL OF NATURAL PRODUCTS 2020; 83:1817-1828. [PMID: 32437150 DOI: 10.1021/acs.jnatprod.9b01218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Viola is the largest genus in the Violaceae plant family and is known for its ubiquitous natural production of cyclotides. Many Viola species are used as medicinal herbs across Asia and are often consumed by humans in teas for the treatment of diseases, including ulcers and asthma. Previous studies reported the isolation of cyclotides from Viola species in many countries in the hope of discovering novel compounds with anti-cancer activities; however, Viola species from Vietnam have not been investigated to date. Here, the discovery of cyclotides from three Viola species (V. arcuata, V. tonkinensis, and V. austrosinensis) collected in the northern mountainous region of Vietnam is reported. Ten cyclotides were isolated from these three Viola species: four are novel and six were previously reported to be expressed in other plants. The structures of three of the new bracelet cyclotides are similar to that of cycloviolacin O2. Because cycloviolacin O2 has previously been shown to have potent activity against a wide range of cancer cell lines including HeLa (human cervical cancer cells) and PC-3 (human prostate cancer cells), the cancer cytotoxicity of the cyclotides isolated from V. arcuata was assessed. All tested cyclotides were cytotoxic against cancer cells, albeit to varying degrees. The sequences discovered in this study significantly expand the understanding of cyclotide diversity, especially in comparison with other cyclotides found in plants from the Asian region.
Collapse
Affiliation(s)
- Tien T Dang
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lai Y Chan
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yen-Hua Huang
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Linh T T Nguyen
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tien Huynh
- Department of Biosciences and Food Technology, RMIT University, Victoria 3001, Australia
| | - David J Craik
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
65
|
Liénard R, De Winter J, Coulembier O. Cyclic polymers: Advances in their synthesis, properties, and biomedical applications. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200236] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Romain Liénard
- Laboratory of Polymeric and Composite Materials (LPCM) Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons Mons Belgium
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs) Interdisciplinary Center for Mass Spectrometry (CISMa), University of Mons Mons Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs) Interdisciplinary Center for Mass Spectrometry (CISMa), University of Mons Mons Belgium
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM) Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons Mons Belgium
| |
Collapse
|
66
|
Du Q, Chan LY, Gilding EK, Henriques ST, Condon ND, Ravipati AS, Kaas Q, Huang YH, Craik DJ. Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. J Biol Chem 2020; 295:10911-10925. [PMID: 32414842 DOI: 10.1074/jbc.ra120.012627] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclotides are plant-derived peptides characterized by an ∼30-amino acid-long cyclic backbone and a cystine knot motif. Cyclotides have diverse bioactivities, and their cytotoxicity has attracted significant attention for its potential anticancer applications. Hybanthus enneaspermus (Linn) F. Muell is a medicinal herb widely used in India as a libido enhancer, and a previous study has reported that it may contain cyclotides. In the current study, we isolated 11 novel cyclotides and 1 known cyclotide (cycloviolacin O2) from H. enneaspermus and used tandem MS to determine their amino acid sequences. We found that among these cyclotides, hyen C comprises a unique sequence in loops 1, 2, 3, 4, and 6 compared with known cyclotides. The most abundant cyclotide in this plant, hyen D, had anticancer activity comparable to that of cycloviolacin O2, one of the most cytotoxic known cyclotides. We also provide mechanistic insights into how these novel cyclotides interact with and permeabilize cell membranes. Results from surface plasmon resonance experiments revealed that hyen D, E, L, and M and cycloviolacin O2 preferentially interact with model lipid membranes that contain phospholipids with phosphatidyl-ethanolamine headgroups. The results of a lactate dehydrogenase assay indicated that exposure to these cyclotides compromises cell membrane integrity. Using live-cell imaging, we show that hyen D induces rapid membrane blebbing and cell necrosis. Cyclotide-membrane interactions correlated with the observed cytotoxicity, suggesting that membrane permeabilization and disintegration underpin cyclotide cytotoxicity. These findings broaden our knowledge on the indigenous Indian herb H. enneaspermus and have uncovered cyclotides with potential anticancer activity.
Collapse
Affiliation(s)
- Qingdan Du
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lai Y Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Institute of Health & Biomedical Innovation and Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Anjaneya S Ravipati
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
67
|
Jacobowitz JR, Weng JK. Exploring Uncharted Territories of Plant Specialized Metabolism in the Postgenomic Era. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:631-658. [PMID: 32176525 DOI: 10.1146/annurev-arplant-081519-035634] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
For millennia, humans have used plants for food, raw materials, and medicines, but only within the past two centuries have we begun to connect particular plant metabolites with specific properties and utilities. Since the utility of classical molecular genetics beyond model species is limited, the vast specialized metabolic systems present in the Earth's flora remain largely unstudied. With an explosion in genomics resources and a rapidly expanding toolbox over the past decade, exploration of plant specialized metabolism in nonmodel species is becoming more feasible than ever before. We review the state-of-the-art tools that have enabled this rapid progress. We present recent examples of de novo biosynthetic pathway discovery that employ various innovative approaches. We also draw attention to the higher-order organization of plant specialized metabolism at subcellular, cellular, tissue, interorgan, and interspecies levels, which will have important implications for the future design of comprehensive metabolic engineering strategies.
Collapse
Affiliation(s)
- Joseph R Jacobowitz
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
68
|
Fisher MF, Zhang J, Berkowitz O, Whelan J, Mylne JS. Cyclic Peptides in Seed of Annona muricata Are Ribosomally Synthesized. JOURNAL OF NATURAL PRODUCTS 2020; 83:1167-1173. [PMID: 32239926 DOI: 10.1021/acs.jnatprod.9b01209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Small, cyclic peptides are reported to have many bioactivities. In bacteria and fungi, they can be made by nonribosomal peptide synthetases, but in plants they are exclusively ribosomal. Cyclic peptides from the Annona genus possess cytotoxic and anti-inflammatory activities, but their biosynthesis is unknown. The medicinal soursop plant, Annona muricata, contains annomuricatins A (cyclo-PGFVSA) and B (cyclo-PNAWLGT). Here, using de novo transcriptomics and tandem mass spectrometry, we identify a suite of short transcripts for precursor proteins for 10 validated annomuricatins, 9 of which are novel. In their precursors, annomuricatins are preceded by an absolutely conserved Glu and each peptide sequence has a conserved proto-C-terminal Pro, revealing parallels with the segetalin orbitides from the seed of Vaccaria hispanica, which are processed through ligation by a prolyl oligopeptidase in a transpeptidation reaction.
Collapse
Affiliation(s)
- Mark F Fisher
- The University of Western Australia, School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Jingjing Zhang
- The University of Western Australia, School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Sciences & ARC Industrial Transformation Research Hub in Medicinal Agriculture, AgriBio building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences & ARC Industrial Transformation Research Hub in Medicinal Agriculture, AgriBio building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
69
|
Haque FM, Grayson SM. The synthesis, properties and potential applications of cyclic polymers. Nat Chem 2020; 12:433-444. [DOI: 10.1038/s41557-020-0440-5] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 02/14/2020] [Indexed: 11/09/2022]
|
70
|
Mehta L, Dhankhar R, Gulati P, Kapoor RK, Mohanty A, Kumar S. Natural and grafted cyclotides in cancer therapy: An insight. J Pept Sci 2020; 26:e3246. [DOI: 10.1002/psc.3246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Lovekesh Mehta
- Medical Microbiology and Bioprocess Laboratory, Department of MicrobiologyMaharshi Dayanand University Rohtak India
| | - Rakhi Dhankhar
- Medical Microbiology and Bioprocess Laboratory, Department of MicrobiologyMaharshi Dayanand University Rohtak India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Laboratory, Department of MicrobiologyMaharshi Dayanand University Rohtak India
| | - Rajeev Kumar Kapoor
- Medical Microbiology and Bioprocess Laboratory, Department of MicrobiologyMaharshi Dayanand University Rohtak India
| | - Aparajita Mohanty
- Department of Botany, Gargi CollegeUniversity of Delhi New Delhi India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Laboratory, Department of MicrobiologyMaharshi Dayanand University Rohtak India
| |
Collapse
|
71
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
72
|
Suppressive role of Viola odorata extract on malignant characters of mammosphere-derived breast cancer stem cells. Clin Transl Oncol 2020; 22:1619-1634. [DOI: 10.1007/s12094-020-02307-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
|
73
|
Targeting Tumors Using Peptides. Molecules 2020; 25:molecules25040808. [PMID: 32069856 PMCID: PMC7070747 DOI: 10.3390/molecules25040808] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
To penetrate solid tumors, low molecular weight (Mw < 10 KDa) compounds have an edge over antibodies: their higher penetration because of their small size. Because of the dense stroma and high interstitial fluid pressure of solid tumors, the penetration of higher Mw compounds is unfavored and being small thus becomes an advantage. This review covers a wide range of peptidic ligands—linear, cyclic, macrocyclic and cyclotidic peptides—to target tumors: We describe the main tools to identify peptides experimentally, such as phage display, and the possible chemical modifications to enhance the properties of the identified peptides. We also review in silico identification of peptides and the most salient non-peptidic ligands in clinical stages. We later focus the attention on the current validated ligands available to target different tumor compartments: blood vessels, extracelullar matrix, and tumor associated macrophages. The clinical advances and failures of these ligands and their therapeutic conjugates will be discussed. We aim to present the reader with the state-of-the-art in targeting tumors, by using low Mw molecules, and the tools to identify new ligands.
Collapse
|
74
|
Tammineni R, Gulati P, Kumar S, Mohanty A. An overview of acyclotides: Past, present and future. PHYTOCHEMISTRY 2020; 170:112215. [PMID: 31812106 DOI: 10.1016/j.phytochem.2019.112215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Acyclotides are plant-based, acyclic miniproteins with cystine knot motif formed by three conserved disulfide linkages and lack head to tail ligation. Acyclotides may not necessarily be less stable, even though they lack cyclic backbone, as the conserved cystine knot feature provides the required stability. Violacin A was the first acyclotide, isolated from Viola odorata in 2006. Until now, acyclotides have been reported from five dicot families (Violaceae, Rubiaceae, Cucurbitaceae, Solanaceae, Fabaceae) and one monocot family (Poaceae). In Poaceae, only acyclotides have been found whereas in dicot families both cyclotides and acyclotides have been isolated. In last 15 years, several acyclotides with antimicrobial, cytotoxic and hemolytic bioactivities have been discovered. Thus, although many naturally expressed acyclotides do exhibit bioactivities, the linearization of the cyclic peptides may result in loss of bioactivities. Although, bioactivities of acyclotides are comparable to their cyclic counterparts, the numbers of isolated acyclotides are still few. Further, those discovered, have the scope to be screened for agriculturally important activities (insecticidal, anti-helminthic, molluscicidal) and pharmaceutical properties (anticancer, anti-HIV, immuno-stimulant). The feasibility of application of acyclotides is because of their relatively less complex biological synthesis compared to cyclotides, as the cyclization step is not needed. This attribute facilitates the production of transgenic crops and/or its expression in heterologous organisms, lacking cyclization machinery. Keeping in view the bioactivities and the wide array of emerging potential applications of acyclotides, the present review discusses their distribution in plants, gene and protein structure, biosynthesis, bioactivities and mechanism of action. Further, their potential applications and future perspectives to exploit them in agriculture and pharmaceutical industries have been highlighted.
Collapse
Affiliation(s)
- Ramya Tammineni
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India
| | - Pooja Gulati
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sanjay Kumar
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | | |
Collapse
|
75
|
Abstract
Cyclotides are naturally occurring microproteins (≈30 residues long) present in several families of plants. All cyclotides share a unique head-to-tail circular knotted topology containing three disulfide bridges forming a cystine knot topology. Cyclotides possess high stability to chemical, physical, and biological degradation and have been reported to cross cellular membranes. In addition, naturally occurring and engineered cyclotides have shown to possess various pharmacologically relevant activities. These unique features make the cyclotide scaffold an excellent tool for the design of novel peptide-based therapeutics by using molecular evolution and/or peptide epitope grafting techniques. In this chapter, we provide protocols to recombinantly produce a natively folded cyclotide making use of a standard bacterial expression system in combination with an intein-mediated backbone cyclization with concomitant oxidative folding.
Collapse
Affiliation(s)
- Maria Jose Campbell
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Jingtan Su
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
76
|
Zhao Z, Metanis N. Utilizing Copper-Mediated Deprotection of Selenazolidine for Cyclic Peptide Synthesis. J Org Chem 2019; 85:1731-1739. [DOI: 10.1021/acs.joc.9b02644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhenguang Zhao
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
77
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
78
|
Foreman DJ, Parsley NC, Lawler JT, Aryal UK, Hicks LM, McLuckey SA. Gas-Phase Sequencing of Cyclotides: Introduction of Selective Ring Opening at Dehydroalanine via Ion/Ion Reaction. Anal Chem 2019; 91:15608-15616. [PMID: 31746593 DOI: 10.1021/acs.analchem.9b03671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The gas-phase linearization of cyclotides via site-selective ring opening at dehydroalanine residues and its application to cyclotide sequencing is presented. This strategy relies on the ability to incorporate dehydroalanine into macrocyclic peptide ions, which is easily accomplished through an ion/ion reaction. Triply protonated cyclotide cations are transformed into radical cations via ion/ion reaction with the sulfate radical anion. Subsequent activation of the cyclotide radical cation generates dehydroalanine at a single cysteine residue, which is easily identified by the odd-electron loss of ·SCH2CONH2. The presence of dehydroalanine in cyclotides provides a site-selective ring-opening pathway that, in turn, generates linear cyclotide analogues in the gas phase. Unlike cyclic variants, product ions derived from the linear peptides provide rich sequence information. The sequencing capability of this strategy is demonstrated with four known cyclotides found in Viola inconspicua, where, in each case, greater than 93% sequence coverage was observed. Furthermore, the utility of this method is highlighted by the partial de novo sequencing of an unknown cyclotide with much greater sequence coverage than that obtained with a conventional Glu-C digestion approach. This method is particularly well-suited for cyclotide species that are not abundant enough to characterize with traditional methods.
Collapse
Affiliation(s)
| | - Nicole C Parsley
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27514 , United States
| | | | | | - Leslie M Hicks
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27514 , United States
| | | |
Collapse
|
79
|
|
80
|
Huang YH, Du Q, Craik DJ. Cyclotides: Disulfide-rich peptide toxins in plants. Toxicon 2019; 172:33-44. [DOI: 10.1016/j.toxicon.2019.10.244] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022]
|
81
|
Parsley NC, Sadecki PW, Hartmann CJ, Hicks LM. Viola " inconspicua" No More: An Analysis of Antibacterial Cyclotides. JOURNAL OF NATURAL PRODUCTS 2019; 82:2537-2543. [PMID: 31464123 PMCID: PMC6873112 DOI: 10.1021/acs.jnatprod.9b00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The emergence of rapidly evolving multidrug-resistant pathogens and a deficit of new compounds entering the clinical pipeline necessitate the exploration of alternative sources of antimicrobial therapeutics. Cyclotides revealed in Viola spp. are a class of highly stable, cyclic, and disulfide-bound peptides with diverse intrinsic bioactivities. Herein we have identified a novel complement of 42 putative cyclotide masses in the plant species Viola inconspicua. Cyclotide-containing fractions of a V. inconspicua peptide library revealed potent bioactivities against the Gram-negative bacteria Escherichia coli ATCC 25922 and the highly virulent and multidrug-resistant Klebsiella pneumoniae VK148. As such, six previously uncharacterized cyclotides, cycloviolacins I1-6 (cyI1-cyI6), were prioritized for molecular characterization. Cyclotides cyI3-cyI6 contain a novel "TLNGNPGA" motif in the highly variable loop six region, expanding the already substantial sequence diversity of this peptide class. Library fractions comprised of cyclotides cyI3-cyI6 exhibited MIC values of 18 and 35 μM against E. coli and K. pneumoniae, respectively, whereas isolated cyI3 killed ∼50% of E. coli at 60 μM and isolated cyI4 demonstrated no killing at concentrations >60 μM against both pathogens. This work expands the repertoire of bioactive cyclotides found in Viola spp. and highlights the potential of these antibacterial cyclic peptides.
Collapse
Affiliation(s)
- Nicole C. Parsley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Conrad J. Hartmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
82
|
Ojeda PG, Cardoso MH, Franco OL. Pharmaceutical applications of cyclotides. Drug Discov Today 2019; 24:2152-2161. [PMID: 31541712 DOI: 10.1016/j.drudis.2019.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Cyclotides are cyclic peptides, present in several plant families, that show diverse biological properties. Structurally, cyclotides share a distinctive head-to-tail circular knotted topology of three disulfide bonds. This framework provides cyclotides with extraordinary resistance to thermal and chemical denaturation. There is increasing interest in the therapeutic potential of cyclotides, which combine several promising pharmaceutical properties, including binding affinity, target selectivity, and low toxicity towards healthy mammalian cells. Recently, cyclotides have been reported to be orally bioavailable and have proved to be amenable to modifications. Here, we provide an overview of the structure, properties, and pharmaceutical applications of cyclotides.
Collapse
Affiliation(s)
- Paola G Ojeda
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3480112, Chile
| | - Marlon H Cardoso
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil; 3S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil; 3S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
83
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
84
|
Koehbach J, Craik DJ. The Vast Structural Diversity of Antimicrobial Peptides. Trends Pharmacol Sci 2019; 40:517-528. [DOI: 10.1016/j.tips.2019.04.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
|
85
|
Synthesis and Preclinical Evaluation of the Fibrin-Binding Cyclic Peptide 18F-iCREKA: Comparison with Its Contrasted Linear Peptide. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:6315954. [PMID: 31346326 PMCID: PMC6620859 DOI: 10.1155/2019/6315954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Purpose Cys-Arg-Glu-Lys-Ala (CREKA) is a pentapeptide which can target fibrin-fibronectin complexes. Our previous study has built a probe called iCREKA which was based on CREKA and has proved the feasibility and specificity of iCREKA by the fluorescence experiment. The purpose of this study is to achieve the 18F-labeled iCREKA and make preclinical evaluation of the 18F-iCREKA with comparison of its contrasted linear peptide (LP). Methods CREKA, LP, and iCREKA were labeled by the Al18F labeling method, respectively. These 18F-labeled peptides were evaluated by the radiochemistry, binding affinity, in vitro stability, in vivo stability, micro-PET imaging, and biodistribution tests. Results 18F-NOTA-iCREKA was stable both in vitro and in vivo. However, 18F-NOTA-CREKA and 18F-NOTA-LP were both unstable. The FITC or 18F-labeled iCREKA could be abundantly discovered only in matrix metalloproteinases- (MMPs-) 2/9 highly expressed U87MG cells, while the FITC or 18F-labeled LP could also be abundantly discovered in MMP-2/9 lowly expressed Caov3 cells. Biodistribution and micropositron emission tomography (PET) imaging revealed that the U87MG xenografts showed a higher uptake of 18F-NOTA-iCREKA than 18F-NOTA-LP while the Caov3 xenografts showed very low uptake of both 18F-NOTA-iCREKA and 18F-NOTA-LP. The tumor-to-muscle (T/M) ratio of 18F-NOTA-iCREKA (9.93 ± 0.42) was obviously higher than 18F-NOTA-LP (2.69 ± 0.35) in U87MG xenografts. Conclusions The novel CREKA-based probe 18F-NOTA-iCREKA could get a high uptake in U87MG cells and high T/M ratio in U87MG mice. It was more stable and specific than the 18F-NOTA-LP.
Collapse
|
86
|
Poth AG, Huang YH, Le TT, Kan MW, Craik DJ. Pharmacokinetic characterization of kalata B1 and related therapeutics built on the cyclotide scaffold. Int J Pharm 2019; 565:437-446. [DOI: 10.1016/j.ijpharm.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
|
87
|
Camarero JA, Campbell MJ. The Potential of the Cyclotide Scaffold for Drug Development. Biomedicines 2019; 7:biomedicines7020031. [PMID: 31010257 PMCID: PMC6631875 DOI: 10.3390/biomedicines7020031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclotides are a novel class of micro-proteins (≈30-40 residues long) with a unique topology containing a head-to-tail cyclized backbone structure further stabilized by three disulfide bonds that form a cystine knot. This unique molecular framework makes them exceptionally stable to physical, chemical, and biological degradation compared to linear peptides of similar size. The cyclotides are also highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot, and are orally bioavailable and able to cross cellular membranes to modulate intracellular protein-protein interactions (PPIs), both in vitro and in vivo. These unique properties make them ideal scaffolds for many biotechnological applications, including drug discovery. This review provides an overview of the properties of cyclotides and their potential for the development of novel peptide-based therapeutics. The selective disruption of PPIs still remains a very challenging task, as the interacting surfaces are relatively large and flat. The use of the cell-permeable highly constrained polypeptide molecular frameworks, such as the cyclotide scaffold, has shown great promise, as it provides unique pharmacological properties. The use of molecular techniques, such as epitope grafting, and molecular evolution have shown to be highly effective for the selection of bioactive cyclotides. However, despite successes in employing cyclotides to target PPIs, some of the challenges to move them into the clinic still remain.
Collapse
Affiliation(s)
- Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA 9033, USA.
| | - Maria Jose Campbell
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
| |
Collapse
|
88
|
Luo S, Dong SH. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products. Molecules 2019; 24:molecules24081541. [PMID: 31003555 PMCID: PMC6514808 DOI: 10.3390/molecules24081541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Natural products have played indispensable roles in drug development and biomedical research. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a group of fast-expanding natural products attribute to genome mining efforts in recent years. Most RiPP natural products were discovered from bacteria, yet many eukaryotic cyclic peptides turned out to be of RiPP origin. This review article presents recent advances in the discovery of eukaryotic RiPP natural products, the elucidation of their biosynthetic pathways, and the molecular basis for their biosynthetic enzyme catalysis.
Collapse
Affiliation(s)
- Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
89
|
Using backbone-cyclized Cys-rich polypeptides as molecular scaffolds to target protein-protein interactions. Biochem J 2019; 476:67-83. [PMID: 30635453 DOI: 10.1042/bcj20180792] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022]
Abstract
The use of disulfide-rich backbone-cyclized polypeptides, as molecular scaffolds to design a new generation of bioimaging tools and drugs that are potent and specific, and thus might have fewer side effects than traditional small-molecule drugs, is gaining increasing interest among the scientific and in the pharmaceutical industries. Highly constrained macrocyclic polypeptides are exceptionally more stable to chemical, thermal and biological degradation and show better biological activity when compared with their linear counterparts. Many of these relatively new scaffolds have been also found to be highly tolerant to sequence variability, aside from the conserved residues forming the disulfide bonds, able to cross cellular membranes and modulate intracellular protein-protein interactions both in vitro and in vivo These properties make them ideal tools for many biotechnological applications. The present study provides an overview of the new developments on the use of several disulfide-rich backbone-cyclized polypeptides, including cyclotides, θ-defensins and sunflower trypsin inhibitor peptides, in the development of novel bioimaging reagents and therapeutic leads.
Collapse
|
90
|
Niyomploy P, Chan LY, Harvey PJ, Poth AG, Colgrave ML, Craik DJ. Discovery and Characterization of Cyclotides from Rinorea Species. JOURNAL OF NATURAL PRODUCTS 2018; 81:2512-2520. [PMID: 30387611 DOI: 10.1021/acs.jnatprod.8b00572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclotides are macrocyclic cystine-knotted peptides most commonly found in the Violaceae plant family. Although Rinorea is the second-largest genera within the Violaceae family, few studies have examined whether or not they contain cyclotides. To further our understanding of cyclotide diversity and evolution, we examined the cyclotide content of two Rinorea species found in Southeast Asia: R. virgata and R. bengalensis. Seven cyclotides were isolated from R. virgata (named Rivi1-7), and a known cyclotide (cT10) was found in R. bengalensis. Loops 2, 5, and 6 of Rivi1-4 contained sequences not previously seen in corresponding loops of known cyclotides, thereby expanding our understanding of the diversity of cyclotides. In addition, the sequence of loop 2 of Rivi3 and Rivi4 were identical to some related noncyclic "acyclotides" from the Poaceae plant family. As only acyclotides, but not cyclotides, have been reported in monocotyledons thus far, our findings support an evolutionary link between monocotyledon-derived ancestral cyclotide precursors and dicotyledon-derived cyclotides. Furthermore, Rivi2 and Rivi3 had comparable cytotoxic activities to the most cytotoxic cyclotide known to date: cycloviolacin O2 from Viola odorata; yet, unlike cycloviolacin O2, they did not show hemolytic activity. Therefore, these cyclotides represent novel scaffolds for use in future anticancer drug design.
Collapse
Affiliation(s)
- Ploypat Niyomploy
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
- Department of Chemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Lai Yue Chan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Aaron G Poth
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
- School of Science , Edith Cowan University , 270 Joondalup Drive , Joondalup , WA 6027 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
91
|
A structural perspective of plant antimicrobial peptides. Biochem J 2018; 475:3359-3375. [PMID: 30413680 DOI: 10.1042/bcj20180213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/26/2022]
Abstract
Among the numerous strategies plants have developed to fend off enemy attack, antimicrobial peptides (AMPs) stand out as one of the most prominent defensive barriers that grant direct and durable resistance against a wide range of pests and pathogens. These small proteins are characterized by a compact structure and an overall positive charge. AMPs have an ancient origin and widespread occurrence in the plant kingdom but show an unusually high degree of variation in their amino acid sequences. Interestingly, there is a strikingly conserved topology among the plant AMP families, suggesting that the defensive properties of these peptides are not determined by their primary sequences but rather by their tridimensional structure. To explore and expand this idea, we here discuss the role of AMPs for plant defense from a structural perspective. We show how specific structural properties, such as length, charge, hydrophobicity, polar angle and conformation, are essential for plant AMPs to act as a chemical shield that hinders enemy attack. Knowledge on the topology of these peptides is facilitating the isolation, classification and even structural redesign of AMPs, thus allowing scientists to develop new peptides with multiple agronomical and pharmacological potential.
Collapse
|
92
|
Slazak B, Kapusta M, Strömstedt AA, Słomka A, Krychowiak M, Shariatgorji M, Andrén PE, Bohdanowicz J, Kuta E, Göransson U. How Does the Sweet Violet ( Viola odorata L.) Fight Pathogens and Pests - Cyclotides as a Comprehensive Plant Host Defense System. FRONTIERS IN PLANT SCIENCE 2018; 9:1296. [PMID: 30254654 PMCID: PMC6141879 DOI: 10.3389/fpls.2018.01296] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 05/03/2023]
Abstract
Cyclotides are cyclic plant polypeptides of 27-37 amino acid residues. They have been extensively studied in bioengineering and drug development contexts. However, less is known about the relevance of cyclotides for the plants producing them. The anti-insect larvae effects of kB1 and antibacterial activity of cyO2 suggest that cyclotides are a part of plant host defense. The sweet violet (Viola odorata L.) produces a wide array of cyclotides, including kB1 (kalata B1) and cyO2 (cycloviolacin O2), with distinct presumed biological roles. Here, we evaluate V. odorata cyclotides' potency against plant pathogens and their mode of action using bioassays, liposome experiments and immunogold labeling for transmission electron microscopy (TEM). We explore the link between the biological activity and distribution in plant generative, vegetative tissues and seeds, depicted by immunohistochemistry and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). Cyclotides cyO2, cyO3, cyO13, and cyO19 are shown to have potent activity against model fungal plant pathogens (Fusarium oxysporum, F. graminearum, F. culmorum, Mycosphaerella fragariae, Botrytis cinerea) and fungi isolated from violets (Colletotrichum utrechtense and Alternaria alternata), with minimal inhibitory concentrations (MICs) ranging from 0.8 μM to 25 μM. Inhibition of phytopathogenic bacteria - Pseudomonas syringae pv. syringae, Dickeya dadantii and Pectobacterium atrosepticum - is also observed with MIC = 25-100 μM. A membrane-disrupting antifungal mode of action is shown. Finding cyO2 inside the fungal spore cells in TEM images may indicate that other, intracellular targets may be involved in the mechanism of toxicity. Fungi can not break down cyclotides in the course of days. varv A (kalata S) and kB1 show little potency against pathogenic fungi when compared with the tested cycloviolacins. cyO2, cyO3, cyO19 and kB1 are differentially distributed and found in tissues vulnerable to pathogen (epidermis, rizodermis, vascular bundles, protodermis, procambium, ovary walls, outer integuments) and pest (ground tissues of leaf and petiole) attacks, respectively, indicating a link between the cyclotides' sites of accumulation and biological role. Cyclotides emerge as a comprehensive defense system in V. odorata, in which different types of peptides have specific targets that determine their distribution in plant tissues.
Collapse
Affiliation(s)
- Blazej Slazak
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Adam A. Strömstedt
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Kraków, Poland
| | - Marta Krychowiak
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Mohammadreza Shariatgorji
- Medical Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Per E. Andrén
- Medical Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jerzy Bohdanowicz
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Elżbieta Kuta
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Kraków, Poland
| | - Ulf Göransson
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
93
|
Classes, Databases, and Prediction Methods of Pharmaceutically and Commercially Important Cystine-Stabilized Peptides. Toxins (Basel) 2018; 10:toxins10060251. [PMID: 29921767 PMCID: PMC6024828 DOI: 10.3390/toxins10060251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Cystine-stabilized peptides represent a large family of peptides characterized by high structural stability and bactericidal, fungicidal, or insecticidal properties. Found throughout a wide range of taxa, this broad and functionally important family can be subclassified into distinct groups dependent upon their number and type of cystine bonding patters, tertiary structures, and/or their species of origin. Furthermore, the annotation of proteins related to the cystine-stabilized family are under-represented in the literature due to their difficulty of isolation and identification. As a result, there are several recent attempts to collate them into data resources and build analytic tools for their dynamic prediction. Ultimately, the identification and delivery of new members of this family will lead to their growing inclusion into the repertoire of commercial viable alternatives to antibiotics and environmentally safe insecticides. This review of the literature and current state of cystine-stabilized peptide biology is aimed to better describe peptide subfamilies, identify databases and analytics resources associated with specific cystine-stabilized peptides, and highlight their current commercial success.
Collapse
|
94
|
Pinto MEF, Najas JZG, Magalhães LG, Bobey AF, Mendonça JN, Lopes NP, Leme FM, Teixeira SP, Trovó M, Andricopulo AD, Koehbach J, Gruber CW, Cilli EM, Bolzani VS. Inhibition of Breast Cancer Cell Migration by Cyclotides Isolated from Pombalia calceolaria. JOURNAL OF NATURAL PRODUCTS 2018; 81:1203-1208. [PMID: 29757646 PMCID: PMC5974699 DOI: 10.1021/acs.jnatprod.7b00969] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Two new bracelet cyclotides from roots of Pombalia calceolaria with potential anticancer activity have been characterized in this work. The cyclotides Poca A and B (1 and 2) and the previously known CyO4 (3) were de novo sequenced by MALDI-TOF/TOF mass spectrometry (MS). The MS2 spectra were examined and the amino acid sequences were determined. The purified peptides were tested for their cytotoxicity and effects on cell migration of MDA-MB-231, a triple-negative breast cancer cell line. The isolated cyclotides reduced the number of cancer cells by more than 80% at 20 μM, and the concentration-related cytotoxic responses were observed with IC50 values of 1.8, 2.7, and 9.8 μM for Poca A (1), Poca B (2), and CyO4 (3), respectively. Additionally, the inhibition of cell migration (wound-healing assay) exhibited that CyO4 (3) presents an interesting activity profile, in being able to inhibit cell migration (50%) at a subtoxic concentration (2 μM). The distribution of these cyclotides in the roots was analyzed by MALDI imaging, demonstrating that all three compounds are present in the phloem and cortical parenchyma regions.
Collapse
Affiliation(s)
- Meri Emili F. Pinto
- Institute
of Chemistry, São Paulo State University−UNESP, 14800-060, Araraquara, SP, Brazil
- Tel: 55-16-33019510. Fax: 55-16-33222308. E-mail:
| | - Jhenny Z. G. Najas
- Institute
of Chemistry, Federal University of Rio
de Janeiro−UFRJ, 21940-910, Rio de Janeiro, RJ, Brazil
| | - Luma G. Magalhães
- Computational
and Medicinal Chemistry Laboratory, Physics Institute of São
Carlos, The University of São Paulo−USP, 13563-120, São
Carlos, SP, Brazil
| | - Antonio F. Bobey
- Institute
of Chemistry, São Paulo State University−UNESP, 14800-060, Araraquara, SP, Brazil
| | - Jacqueline N. Mendonça
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto, The University of São Paulo−USP, 14040-903, Ribeirão Preto, SP, Brazil
| | - Norberto P. Lopes
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto, The University of São Paulo−USP, 14040-903, Ribeirão Preto, SP, Brazil
| | - Flávia M. Leme
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto, The University of São Paulo−USP, 14040-903, Ribeirão Preto, SP, Brazil
| | - Simone P. Teixeira
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto, The University of São Paulo−USP, 14040-903, Ribeirão Preto, SP, Brazil
| | - Marcelo Trovó
- Institute
of Chemistry, Federal University of Rio
de Janeiro−UFRJ, 21940-910, Rio de Janeiro, RJ, Brazil
| | - Adriano D. Andricopulo
- Computational
and Medicinal Chemistry Laboratory, Physics Institute of São
Carlos, The University of São Paulo−USP, 13563-120, São
Carlos, SP, Brazil
| | - Johannes Koehbach
- Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090, Vienna, Austria
- Institute
for Molecular Bioscience, The University
of Queensland, 4072, St. Lucia, Queensland, Australia
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090, Vienna, Austria
| | - Eduardo Maffud Cilli
- Institute
of Chemistry, São Paulo State University−UNESP, 14800-060, Araraquara, SP, Brazil
| | - Vanderlan S. Bolzani
- Institute
of Chemistry, São Paulo State University−UNESP, 14800-060, Araraquara, SP, Brazil
- Tel: 55-16-33019660. Fax: 55-16-33222308. E-mail:
| |
Collapse
|
95
|
Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. World J Microbiol Biotechnol 2018; 34:62. [PMID: 29651655 DOI: 10.1007/s11274-018-2444-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Antimicrobial peptides (AMPs) have been established over millennia as powerful components of the innate immune system of many organisms. Due to their broad spectrum of activity and the development of host resistance against them being unlikely, AMPs are strong candidates for controlling drug-resistant pathogenic microbial pathogens. AMPs cause cell death through several independent or cooperative mechanisms involving membrane lysis, non-lytic activity, and/or intracellular mechanisms. Biochemical determinants such as peptide length, primary sequence, charge, secondary structure, hydrophobicity, amphipathicity and host cell membrane composition together influence the biological activities of peptides. A number of biophysical techniques have been used in recent years to study the mechanisms of action of AMPs. This work appraises the molecular parameters that determine the biocidal activity of AMPs and overviews their mechanisms of actions and the diverse biochemical, biophysical and microscopy techniques utilised to elucidate these.
Collapse
|
96
|
Bernardino K, Pinto MEF, Bolzani VS, de Moura AF, Batista Junior JM. Pinpointing disulfide connectivities in cysteine-rich proteins. Chem Commun (Camb) 2018; 53:7337-7340. [PMID: 28508909 DOI: 10.1039/c7cc02333b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple MD-based protocol is presented to accurately predict both the sequence and order of disulfide bond formation in proteins containing multiple cysteine residues. It provides a detailed description of their dynamical and structural features, which can be used to perform ensemble-averaged ECD calculations. Plant cyclotides are used as model compounds.
Collapse
Affiliation(s)
- K Bernardino
- Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, SP 13565-905, Brazil.
| | | | | | | | | |
Collapse
|
97
|
Hemu X, Tam JP. Macrocyclic Antimicrobial Peptides Engineered from ω-Conotoxin. Curr Pharm Des 2018; 23:2131-2138. [PMID: 28245769 PMCID: PMC5470054 DOI: 10.2174/1381612822666161027120518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/13/2016] [Indexed: 11/22/2022]
Abstract
The potent calcium channel blocker ω-conotoxin MVIIA is a linear cystine-knot peptide with multiple basic amino acids at both termini. This work shows that macrocyclization of MVIIA linking two positive-charge terminal clusters as a contiguous segment converts a conotoxin into an antimicrobial peptide. In addition, conversion of disulfide bonds to amino butyric acids improved the antimicrobial activity of the cyclic analogs. Ten macrocyclic analogs, with or without disulfide bonds, were prepared by both Boc and Fmoc chemistry using native chemical ligation. All cyclic analogs were active against selected Gram-positive and Gram-negative bacteria with minimal inhibitory concentrations in a low μM range. In contrast, MVIIA and its linear analog were inactive at concentrations up to 0.5 mM. The cyclic analogs also showed 2 to 3-fold improved chemotactic activity against human monocytes THP-1 compared with MVIIA. Reduction of molecular stability against thermal and acid treatment due to the reduced number of disulfide crosslinks can be partly restored by backbone cyclization. Together, these results show that macrocyclization and side chain modification of a linear conopeptide lead to a gain-of-function, which brings a new perspective in designing and engineering of peptidyl therapeutics.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 03s-71, Singapore 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 03s-71, Singapore 637551, Singapore
| |
Collapse
|
98
|
Zhang RY, Thapa P, Espiritu MJ, Menon V, Bingham JP. From nature to creation: Going around in circles, the art of peptide cyclization. Bioorg Med Chem 2018; 26:1135-1150. [DOI: 10.1016/j.bmc.2017.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 02/02/2023]
|
99
|
Fisher MF, Zhang J, Taylor NL, Howard MJ, Berkowitz O, Debowski AW, Behsaz B, Whelan J, Pevzner PA, Mylne JS. A family of small, cyclic peptides buried in preproalbumin since the Eocene epoch. PLANT DIRECT 2018; 2:e00042. [PMID: 30417166 PMCID: PMC6223261 DOI: 10.1002/pld3.42] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Orbitides are cyclic ribosomally-synthesized and post-translationally modified peptides (RiPPs) from plants; they consist of standard amino acids arranged in an unbroken chain of peptide bonds. These cyclic peptides are stable and range in size and topologies making them potential scaffolds for peptide drugs; some display valuable biological activities. Recently two orbitides whose sequences were buried in those of seed storage albumin precursors were said to represent the first observable step in the evolution of larger and hydrophilic bicyclic peptides. Here, guided by transcriptome data, we investigated peptide extracts of 40 species specifically for the more hydrophobic orbitides and confirmed 44 peptides by tandem mass spectrometry, as well as obtaining solution structures for four of them by NMR. Acquiring transcriptomes from the phylogenetically important Corymboideae family confirmed the precursor genes for the peptides (called PawS1-Like or PawL1) are confined to the Asteroideae, a subfamily of the huge plant family Asteraceae. To be confined to the Asteroideae indicates these peptides arose during the Eocene epoch around 45 Mya. Unlike other orbitides, all PawL-derived Peptides contain an Asp residue, needed for processing by asparaginyl endopeptidase. This study has revealed what is likely to be a very large new family of orbitides, uniquely buried alongside albumin and processed by asparaginyl endopeptidase.
Collapse
Affiliation(s)
- Mark F. Fisher
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Jingjing Zhang
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Nicolas L. Taylor
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Mark J. Howard
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil SciencesSchool of Life Sciences & ARC Centre of Excellence in Plant Energy BiologyAgriBioThe Centre for AgriBioscienceLa Trobe UniversityBundooraVic.Australia
| | - Aleksandra W. Debowski
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- Marshall Centre for Infectious Disease Research and TrainingSchool of Biomedical SciencesThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Bahar Behsaz
- Department of Computer Science & EngineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - James Whelan
- Department of Animal, Plant and Soil SciencesSchool of Life Sciences & ARC Centre of Excellence in Plant Energy BiologyAgriBioThe Centre for AgriBioscienceLa Trobe UniversityBundooraVic.Australia
| | - Pavel A. Pevzner
- Department of Computer Science & EngineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Joshua S. Mylne
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| |
Collapse
|
100
|
|