51
|
Gibon Y, Bläsing OE, Palacios-Rojas N, Pankovic D, Hendriks JHM, Fisahn J, Höhne M, Günther M, Stitt M. Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:847-62. [PMID: 15341628 DOI: 10.1111/j.1365-313x.2004.02173.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A larger proportion of the fixed carbon is retained as starch in the leaf in short days, providing a larger store to support metabolism and carbon export during the long night. The mechanisms that facilitate this adjustment of the sink-source balance are unknown. Starchless pgm mutants were analysed to discover responses that are triggered when diurnal starch turnover is disturbed. Sugars accumulated to high levels during the day, and fell to very low levels by the middle of the night. Sugars rose rapidly in the roots and rosette after illumination, and decreased later in the light period. Global transcript profiling revealed only small differences between pgm and Col0 at the end of the day but large differences at the end of the night, when pgm resembled Col0 after a 4-6 h prolongation of the night and many genes required for biosynthesis and growth were repressed [Plant J. 37 (2004) 914]. It is concluded that transient sugar depletion at the end of the night inhibits carbon utilization at the start of the ensuing light period. A second set of experiments investigated the stimulation of starch synthesis in response to short days in wild-type Col0. In short days, sugars were very low in the roots and rosette at the end of the dark period, and after illumination accumulated rapidly in both organs to levels that were higher than in long days. The response resembles pgm, except that carbohydrate accumulated in the leaf as starch instead of sugars. A similar response was found after transfer from long to short days. Inclusion of sugar in the rooting medium attenuated the stimulation of starch synthesis. Post-translational activation of ADP-glucose pyrophosphorylase (AGPase) was increased in pgm, and in Col0 in short days. It is concluded that starch synthesis is stimulated in short day conditions because sugar depletion at the end of the night triggers a temporary inhibition of growth and carbohydrate utilization in the first part of the light period, leading to transient accumulation of sugar and activation of AGPase.
Collapse
Affiliation(s)
- Yves Gibon
- Max Planck Institute of Molecular Plant Physiology, Science Park Golm, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Sakamoto H, Landais S, Evrin C, Laurent-Winter C, Bârzu O, Kelln RA. Structure–function relationships of UMP kinases from pyrH mutants of Gram-negative bacteria. Microbiology (Reading) 2004; 150:2153-2159. [PMID: 15256558 DOI: 10.1099/mic.0.26996-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial uridine monophosphate (UMP) kinases are essential enzymes encoded bypyrHgenes, and conditional-lethal or otherpyrHmutants were analysed with respect to structure–function relationships. A set of thermosensitivepyrHmutants fromEscherichia coliwas generated and studied, along with already describedpyrHmutants fromSalmonella entericaserovar Typhimurium. It is shown that Arg-11 and Gly-232 are key residues for thermodynamic stability of the enzyme, and that Asp-201 is important for both catalysis and allosteric regulation. A comparison of the amino acid sequence of UMP kinases from several prokaryotes showed that these were conserved residues. Discussion on the enzyme activity level in relation to bacterial viability is also presented.
Collapse
Affiliation(s)
- Hiroshi Sakamoto
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Stéphanie Landais
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Cécile Evrin
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | - Octavian Bârzu
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Rod A Kelln
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| |
Collapse
|
53
|
Gagyi C, Bucurenci N, Sîrbu O, Labesse G, Ionescu M, Ofiteru A, Assairi L, Landais S, Danchin A, Bârzu O, Gilles AM. UMP kinase from the Gram-positive bacterium Bacillus subtilis is strongly dependent on GTP for optimal activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3196-204. [PMID: 12869195 DOI: 10.1046/j.1432-1033.2003.03702.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding Bacillus subtilis UMP kinase (pyrH/smbA) is transcribed in vivo into a functional enzyme, which represents approximately 0.1% of total soluble proteins. The specific activity of the purified enzyme under optimal conditions is 25 units.mg-1 of protein. In the absence of GTP, the activity of B. subtilis enzyme is less than 10% of its maximum activity. Only dGTP and 3'-anthraniloyl-2'-deoxyguanosine-5'-triphosphate (Ant-dGTP) can increase catalysis significantly. Binding of Ant-dGTP to B. subtilis UMP kinase increased the quantum yield of the fluorescent analogue by a factor of more than three. UTP and GTP completely displaced Ant-dGTP, whereas GMP and UMP were ineffective. UTP inhibits UMP kinase of B. subtilis with a lower affinity than that shown towards the Escherichia coli enzyme. Among nucleoside monophosphates, 5-fluoro-UMP (5F-UMP) and 6-aza-UMP were actively phosphorylated by B. subtilis UMP kinase, explaining the cytotoxicity of the corresponding nucleosides towards this bacterium. A structural model of UMP kinase, based on the conservation of the fold of carbamate kinase and N-acetylglutamate kinase (whose crystals were recently resolved), was analysed in the light of physicochemical and kinetic differences between B. subtilis and E. coli enzymes.
Collapse
Affiliation(s)
- Cristina Gagyi
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
|
55
|
Labesse G, Bucurenci N, Douguet D, Sakamoto H, Landais S, Gagyi C, Gilles AM, Bârzu O. Comparative modelling and immunochemical reactivity of Escherichia coli UMP kinase. Biochem Biophys Res Commun 2002; 294:173-9. [PMID: 12054759 DOI: 10.1016/s0006-291x(02)00450-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacterial UMP kinases do not exhibit any sequence homology with other nucleoside monophosphate kinases described so far, and appear under oligomeric forms, submitted to complex regulation by nucleotides. We propose here a structural model of UMP kinase from Escherichia coli based on the conservation of the fold of carbamate kinase whose crystal structure was recently solved. Despite sequence identity of only 18% over 203 amino acids, alignment of UMP kinase from E. coli with carbamate kinase from Enterococcus faecalis by hydrophobic cluster analysis and threading suggested the conservation of the overall structure, except for a small subdomain (absent in UMP kinase). The modelled dimer suggested conservation of the dimer interface observed in carbamate kinase while interaction of UMP kinase with a monoclonal antibody (Mab 44-2) suggests a three in-plane dimer subunit arrangement. The model was analyzed in light of various modified forms of UMP kinase obtained by site-directed mutagenesis.
Collapse
Affiliation(s)
- Gilles Labesse
- Centre de Biochimie Structurale, Faculté de Pharmacie, Université de Montpellier I, 34000 Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Moffatt BA, Ashihara H. Purine and pyrimidine nucleotide synthesis and metabolism. THE ARABIDOPSIS BOOK 2002; 1:e0018. [PMID: 22303196 PMCID: PMC3243375 DOI: 10.1199/tab.0018] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Barbara A. Moffatt
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Corresponding author,
, phone: 519-888-4567 ext 2517, fax: 519-746-0614
| | - Hiroshi Ashihara
- Department of Biology, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
57
|
Ramón-Maiques S, Marina A, Gil-Ortiz F, Fita I, Rubio V. Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure 2002; 10:329-42. [PMID: 12005432 DOI: 10.1016/s0969-2126(02)00721-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
N-Acetyl-L-glutamate kinase (NAGK), a member of the amino acid kinase family, catalyzes the second and frequently controlling step of arginine synthesis. The Escherichia coli NAGK crystal structure to 1.5 A resolution reveals a 258-residue subunit homodimer nucleated by a central 16-stranded molecular open beta sheet sandwiched between alpha helices. In each subunit, AMPPNP, as an alphabetagamma-phosphate-Mg2+ complex, binds along the sheet C edge, and N-acetyl-L-glutamate binds near the dyadic axis with its gamma-COO- aligned at short distance from the gamma-phosphoryl, indicating associative phosphoryl transfer assisted by: (1) Mg2+ complexation; (2) the positive charges on Lys8, Lys217, and on two helix dipoles; and (3) by hydrogen bonding with the y-phosphate. The structural resemblance with carbamate kinase and the alignment of the sequences suggest that NAGK is a structural and functional prototype for the amino acid kinase family, which differs from other acylphosphate-making devices represented by phosphoglycerate kinase, acetate kinase, and biotin carboxylase.
Collapse
Affiliation(s)
- Santiago Ramón-Maiques
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Spain
| | | | | | | | | |
Collapse
|
58
|
Munier-Lehmann H, Chaffotte A, Pochet S, Labesse G. Thymidylate kinase of Mycobacterium tuberculosis: a chimera sharing properties common to eukaryotic and bacterial enzymes. Protein Sci 2001; 10:1195-205. [PMID: 11369858 PMCID: PMC2374024 DOI: 10.1110/ps.45701] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
We have overexpressed in Escherichia coli the thymidylate kinase of Mycobacterium tuberculosis (TMPKmt). Biochemical and physico-chemical characterization of TMPKmt revealed distinct structural and catalytic features when compared to its counterpart from yeast (TMPKy) or E. coli (TMPKec). Denaturation of the dimeric TMPKmt by urea under equilibrium conditions was studied by intrinsic fluorescence and circular dichroism (CD) spectroscopy. It suggested a three-state unfolding mechanism with a monomeric intermediate. On the other hand, 3'-azido-3'-deoxythymidine monophosphate (AZT-MP), which is substrate for TMPKy and TMPKec acts as a potent competitive inhibitor for TMPKMT: We propose a structural model of TMPKmt in which the overall fold described in TMPKy and TMPKec is conserved and slight differences at the level of primary and 3D-structure explain strong variations in the phosphorylation rate of substrate analogs. According to the model, we synthesized dTMP analogs acting either as substrates or specific inhibitors of TMPKMT: This approach based on slight structural differences among similar proteins could be applied to other essential enzymes for the design of new species-specific antimicrobials.
Collapse
Affiliation(s)
- H Munier-Lehmann
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
59
|
Wadskov-Hansen SL, Martinussen J, Hammer K. The pyrH gene of Lactococcus lactis subsp. cremoris encoding UMP kinase is transcribed as part of an operon including the frr1 gene encoding ribosomal recycling factor 1. Gene 2000; 241:157-66. [PMID: 10607910 DOI: 10.1016/s0378-1119(99)00452-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pyrH gene of Lactococcus lactis subsp. cremoris MG1363, encoding UMP kinase, has been sequenced and cloned. It encodes a polypeptide of 239 amino acid residues (deduced molecular weight of 25951), which was shown to complement a temperature sensitive pyrH mutation in Escherichia coli, thus establishing the ability of the encoded protein to synthesize UDP. The pyrH gene in L. lactis is flanked downstream by frr1 encoding ribosomal recycling factor 1 and upstream by an open reading frame, orfA, of unknown function. The three genes were shown to constitute an operon transcribed in the direction orfA-pyrH-frr1 from a promoter immediately in front of orfA. This operon belongs to an evolutionary highly conserved gene cluster, since the organization of pyrH on the chromosomal level in L. lactis shows a high resemblance to that found in Bacillus subtilis as well as in Escherichia coli and several other prokaryotes
Collapse
Affiliation(s)
- S L Wadskov-Hansen
- Department of Microbiology, Building 301, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | | | | |
Collapse
|
60
|
Munier-Lehmann H, Burlacu-Miron S, Craescu CT, Mantsch HH, Schultz CP. A new subfamily of short bacterial adenylate kinases with theMycobacteriumtuberculosis enzyme as a model: A predictive and experimental study. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19990801)36:2<238::aid-prot9>3.0.co;2-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
61
|
Yan H, Tsai MD. Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1999; 73:103-34, x. [PMID: 10218107 DOI: 10.1002/9780470123195.ch4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The catalytic mechanisms of adenylate kinase, guanylate kinase, uridylate kinase, and cytidylate kinase are reviewed in terms of kinetic and structural information that has been obtained in recent years. All four kinases share a highly related tertiary structure, characterized by a central five-stranded parallel beta-sheet with helices on both sides, as well as the three regions designated as the CORE, NMPbind, and LID domains. The catalytic mechanism continues to be refined to higher levels of resolution by iterative structure-function studies, and the strengths and limitations of site-directed mutagenesis are well illustrated in the case of adenylate kinase. The identity and roles of active site residues now appear to be resolved, and this review describes how specific site substitutions with unnatural amino acid side-chains have proven to be a major advance. Likewise, there is mounting evidence that phosphoryl transfer occurs by an associative transition state, based on (a) the stereochemical course of phosphoryl transfer, (b) geometric considerations, (c) examination of likely electronic distributions, (d) the orientation of the phosphoryl acceptor relative to the phosphoryl being transferred, (e) the most likely role of magnesium ion, (f) the lack of restricted access of solvent water, and (g) the results of oxygen-18 kinetic isotope. effect experiments.
Collapse
Affiliation(s)
- H Yan
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
62
|
Hu CA, Lin WW, Obie C, Valle D. Molecular enzymology of mammalian Delta1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J Biol Chem 1999; 274:6754-62. [PMID: 10037775 DOI: 10.1074/jbc.274.10.6754] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Delta1-Pyrroline-5-carboxylate synthase (P5CS; EC not assigned), a mitochondrial inner membrane, ATP- and NADPH-dependent, bifunctional enzyme, catalyzes the reduction of glutamate to Delta1-pyrroline-5-carboxylate, a critical step in the de novo biosynthesis of proline and ornithine. We utilized published plant P5CS sequence to search the expressed sequence tag data base and cloned two full-length human P5CS cDNAs differing in length by 6 base pairs (bp) in the open reading frame. The short cDNA has a 2379-bp open reading frame encoding a protein of 793 residues; the long cDNA, generated by "exon sliding," a form of alternative splicing, contains an additional 6-bp insert following bp +711 of the short form resulting in inclusion of two additional amino acids in the region predicted to be the gamma-glutamyl kinase active site of P5CS. The long form predominates in all tissues examined except gut. We also isolated the corresponding long and short murine P5CS transcripts. To confirm the identity of the putative P5CS cDNAs, we expressed both human forms in gamma-glutamyl kinase- and gamma-glutamyl phosphate reductase-deficient strains of Saccharomyces cerevisiae and showed that they conferred the proline prototrophy. Additionally, we found expression of the murine putative P5CS cDNAs conferred proline prototrophy to P5CS-deficient Chinese hamster ovary cells (CHO-K1). We utilized stable CHO-K1 cell transformants to compare the biochemical characteristics of the long and short murine P5CS isoforms. We found that both confer P5CS activity and that the short isoform is inhibited by L-ornithine with a Ki of approximately 0.25 mM. Surprisingly, the long isoform is insensitive to ornithine inhibition. Thus, the two amino acid insert in the long isoform abolishes feedback inhibition of P5CS activity by L-ornithine.
Collapse
Affiliation(s)
- C A Hu
- Howard Hughes Medical Institute, Department of Pediatrics and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
63
|
Landais S, Gounon P, Laurent-Winter C, Mazié JC, Danchin A, Bârzu O, Sakamoto H. Immunochemical analysis of UMP kinase from Escherichia coli. J Bacteriol 1999; 181:833-40. [PMID: 9922246 PMCID: PMC93449 DOI: 10.1128/jb.181.3.833-840.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mono- and polyclonal antibodies directed against UMP kinase from Escherichia coli were tested with the intact protein or with fragments obtained by deletion mutagenesis. As detected in enzyme-linked immunosorbent assay tests, the carboxy-terminal quarter of UMP kinase is immunodominant. Polyclonal antibodies inhibited the enzyme activity with partial or total loss of allosteric effects exerted by UTP and GTP, respectively. These data indicate that the UTP and GTP binding sites in UMP kinase are only partially overlapping. One monoclonal antibody (44-2) recognized a linear epitope in UMP kinase between residues 171 and 180. A single substitution (D174N) in this segment of the enzyme abolished its interaction with the monoclonal antibody (44-2). Polyclonal antisera were used to identify UMP kinase in the bacterial proteome. The enzyme appears as a single spot on two-dimensional electrophoresis at a pI of 7.24 and an apparent molecular mass of 26 kDa. Immunogold labeling of UMP kinase in whole E. coli cells shows a localization of the protein near the bacterial membranes. Because the protein does not contain sequences usually required for compartmentalization, the aggregation properties of UMP kinase observed in vitro might play a role in this phenomenon. The specific localization of UMP kinase might also be related to its putative role in cell division.
Collapse
Affiliation(s)
- S Landais
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
64
|
|
65
|
Zhou L, Thornburg R. Site-specific mutations of conserved residues in the phosphate-binding loop of the Arabidopsis UMP/CMP kinase alter ATP and UMP binding. Arch Biochem Biophys 1998; 358:297-302. [PMID: 9784243 DOI: 10.1006/abbi.1998.0874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All eukaryotic UMP/CMP kinases contain a glycine-rich sequence GGPG(S/A)GK at the N-terminus. This sequence is homologous to the conserved sequence GXXGXGK found in other ATP-binding proteins. To study the role of this conserved sequence in Arabidopsis UMP/CMP kinase, five conserved residues were mutated by site-directed mutagenesis to generate seven mutant enzymes: G21A, G22A, G24A, G26A, K27R, K27M, and K27E. The G21A and G26A mutants were degraded during the purification phase and were thus unable to be purified. Kinetic studies on the other mutants, when compared to studies on the wild-type enzyme, revealed that this sequence is important for ATP binding and enzyme catalysis. All mutants had a decreased kcat/KATPm value. The G22A and G24A mutants had about half of the kcat value of wildtype and 3.9-fold and 3.3-fold increases in KATPm values, respectively. The kcat/KATPm values in the K27M and K27E mutants were changed significantly and decreased by 1000-fold and 2600-fold, respectively. The removal of the terminal positive charge of Lys27 in the K27M and K27E mutants resulted in 20% of the kcat value of wildtype. However, both mutants had a remarkable increase in KATPm value by 241-fold and 552-fold, respectively. Therefore, the positive charge of Lys27 plays an important role on both ATP binding and enzyme catalysis. Interestingly, the results also showed that the mutations that affected ATP binding also had an effect on UMP binding.
Collapse
Affiliation(s)
- L Zhou
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa, 50011, USA
| | | |
Collapse
|
66
|
Tourneux L, Bucurenci N, Lascu I, Sakamoto H, Briand G, Gilles AM. Substitution of an alanine residue for glycine 146 in TMP kinase from Escherichia coli is responsible for bacterial hypersensitivity to bromodeoxyuridine. J Bacteriol 1998; 180:4291-3. [PMID: 9696781 PMCID: PMC107429 DOI: 10.1128/jb.180.16.4291-4293.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wild-type TMP kinases from Escherichia coli and from a strain hypersensitive to 5-bromo-2'-deoxyuridine were characterized comparatively. The mutation at codon 146 causes the substitution of an alanine residue for glycine in the enzyme, which is accompanied by changes in the relative affinities for 5-Br-UMP and TMP compared to those of the wild-type TMP kinase. Plasmids carrying the wild-type tmk gene from Escherichia coli or Bacillus subtilis, but not the defective tmk gene, restored the resistance to bromodeoxyuridine of an E. coli mutant strain.
Collapse
Affiliation(s)
- L Tourneux
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
67
|
Kholti A, Charlier D, Gigot D, Huysveld N, Roovers M, Glansdorff N. pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. J Mol Biol 1998; 280:571-82. [PMID: 9677289 DOI: 10.1006/jmbi.1998.1910] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carAB operon of the enterics Escherichia coli K-12 and Salmonella typhimurium LT2, encoding the sole carbamoylphosphate synthetase (CPSase) of these organisms, is transcribed from two promoters in tandem, carP1 upstream and carP2 downstream, repressed respectively by pyrimidines and arginine. We present evidence that the pyrH gene product (the hexameric UMP-kinase) directly participates in the pyrimidine-specific control of carP1 activity. Indeed, we have isolated in E. coli a particular type of pyrH mutation (pyrH41) that retains a quasi-normal UMP-kinase activity, but yet is impaired in the pyrimidine-specific repression of the P1 promoter of the carAB operon of E. coli and of S. typhimurium. Moreover, the pyrimidine-dependent inhibition of in vivo Dam methylase modification of adenine -106 upstream of the carP1 promoter is altered in this pyrH mutant. The recessive pyrH41 allele bears a single C-G to A-T transversion that converts alanine 94 into glutamic acid (A94E). Although overexpression of pyrH41 results in UMP-kinase levels far above that of a wild-type strain, pyrimidine-specific repression of the carAB operon is not restored under these conditions. Similarly, overexpression of the UMP-CMP-kinase gene of Dictyostelium discoideum in the pyrH41 mutant does not restore pyrimidine-mediated control of carP1 promoter activity, in spite of the elevated UMP-kinase activity measured in such transformants. These results indicate that besides its catalytic function in the de novo pyrimidine biosynthesis, E. coli UMP-kinase fulfils an additional, but previously unrecognized role in the regulation of the carAB operon. UMP-kinase might function as the real sensor of the internal pyrimidine nucleotide pool and act in concert with the integration host factor (IHF) and aminopeptidase A (PepA alias CarP and XerB) in the elaboration of the complex nucleoprotein structure required for pyrimidine-specific repression of carP1 promoter activity.
Collapse
Affiliation(s)
- A Kholti
- Laboratoire de Microbiologie, Université Libre de Bruxelles, 1-av. E. Gryson, Brussels, B-1070, Belgium
| | | | | | | | | | | |
Collapse
|
68
|
Zhou L, Lacroute F, Thornburg R. Cloning, expression in Escherichia coli, and characterization of Arabidopsis thaliana UMP/CMP kinase. PLANT PHYSIOLOGY 1998; 117:245-54. [PMID: 9576794 PMCID: PMC35009 DOI: 10.1104/pp.117.1.245] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Accepted: 02/10/1998] [Indexed: 05/18/2023]
Abstract
A cDNA encoding the Arabidopsis thaliana uridine 5'-monophosphate (UMP)/cytidine 5'-monophosphate (CMP) kinase was isolated by complementation of a Saccharomyces cerevisiae ura6 mutant. The deduced amino acid sequence of the plant UMP/CMP kinase has 50% identity with other eukaryotic UMP/CMP kinase proteins. The cDNA was subcloned into pGEX-4T-3 and expressed as a glutathione S-transferase fusion protein in Escherichia coli. Following proteolytic digestion, the plant UMP/CMP kinase was purified and analyzed for its structural and kinetic properties. The mass, N-terminal sequence, and total amino acid composition agreed with the sequence and composition predicted from the cDNA sequence. Kinetic analysis revealed that the UMP/CMP kinase preferentially uses ATP (Michaelis constant [Km] = 29 microM when UMP is the other substrate and Km = 292 microM when CMP is the other substrate) as a phosphate donor. However, both UMP (Km = 153 microM) and CMP (Km = 266 microM) were equally acceptable as the phosphate acceptor. The optimal pH for the enzyme is 6.5. P1, P5-di(adenosine-5') pentaphosphate was found to be a competitive inhibitor of both ATP and UMP.
Collapse
Affiliation(s)
- L Zhou
- Department of Biochemistry and Biophysics, Iowa State University, Ames,Iowa 50011, USA
| | | | | |
Collapse
|
69
|
Bucurenci N, Serina L, Zaharia C, Landais S, Danchin A, Bârzu O. Mutational analysis of UMP kinase from Escherichia coli. J Bacteriol 1998; 180:473-7. [PMID: 9457846 PMCID: PMC106910 DOI: 10.1128/jb.180.3.473-477.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UMP kinase from Escherichia coli is one of the four regulatory enzymes involved in the de novo biosynthetic pathway of pyrimidine nucleotides. This homohexamer, with no counterpart in eukarya, might serve as a target for new antibacterial drugs. Although the bacterial enzyme does not show sequence similarity with any other known nucleoside monophosphate kinase, two segments between amino acids 35 to 78 and 145 to 194 exhibit 28% identity with phosphoglycerate kinase and 30% identity with aspartokinase, respectively. Based on these similarities, a number of residues of E. coli UMP kinase were selected for site-directed mutagenesis experiments. Biochemical, kinetic, and spectroscopic analysis of the modified proteins identified residues essential for catalysis (Asp146), binding of UMP (Asp174), and interaction with the allosteric effectors, GTP and UTP (Arg62 and Asp77).
Collapse
|
70
|
Abstract
All enzymes are able to use alternative substrates. When these are naturally occurring metabolites, an 'underground reaction' takes place. Examples are presented in which underground metabolism of this sort produces an observable phenotype. Although biological processes can be remarkably accurate, evolution has selected error rates far from perfect. It is suggested here that a certain level of metabolic inaccuracy, in addition to saving energy, may also confer an evolutionary advantage, for example by providing metabolic plasticity. Since underground reactions are unpredictable from DNA sequence data, caution is in order when interpreting correlations between genetic disorders and pathological syndromes.
Collapse
Affiliation(s)
- R D'Ari
- Institut Jacques Monod, CNRS, Université Paris 7, France.
| | | |
Collapse
|
71
|
Zhang Y, Tao J, Zhou M, Meng Q, Zhang L, Shen L, Klein R, Miller DL. Elongation factor Ts of Chlamydia trachomatis: structure of the gene and properties of the protein. Arch Biochem Biophys 1997; 344:43-52. [PMID: 9244380 DOI: 10.1006/abbi.1997.0178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A putative structural gene cluster containing four open reading frames (ORFs) located downstream of the omp1 gene of Chlamydia trachomatis mouse pneumonitis (MoPn) was cloned and sequenced. A GenBank survey indicated that the identified cluster is similar to the rpsB-tsf-pyrH(smbA)-frr region of Escherichia coli. The second ORF was 846 bp encoding a 282-amino-acid polypeptide with a calculated M(r) 30,824. Alignment of this deduced protein sequence and E. coli elongation factor Ts (EF-Ts, product of tsf) demonstrated 34% identity and an additional 14% similarity. The putative chlamydial tsf gene was expressed in E. coli as a nonfusion protein and as a 6x His-tagged fusion protein. By SDS-PAGE analysis, the molecular weights of the nonfusion recombinant protein and a protein of chlamydial elementary bodies (EBs), which was recognized by monoclonal antibodies derived from the nonfusion recombinant protein, are 34 kDa. The purified recombinant 6x His-tagged fusion protein increased the rate of GDP exchange with both Chlamydia and E. coli elongation factor Tu (EF-Tu). These data show that the second gene of the identified cluster is tsf. Unlike EF-Ts from any other species, its activity was comparable to that of E. coli EF-Ts in exchange reaction with E. coli EF-Tu.
Collapse
Affiliation(s)
- Y Zhang
- Maxwell Finland Laboratory for Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Schultz CP, Ylisastigui-Pons L, Serina L, Sakamoto H, Mantsch HH, Neuhard J, Bârzu O, Gilles AM. Structural and catalytic properties of CMP kinase from Bacillus subtilis: a comparative analysis with the homologous enzyme from Escherichia coli. Arch Biochem Biophys 1997; 340:144-53. [PMID: 9126287 DOI: 10.1006/abbi.1997.9888] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CMP kinases from Bacillus subtilis and from Escherichia coli are encoded by the cmk gene (formerly known as jofC in B. subtilis and as mssA in E. coli). Similar in their primary structure (43% identity and 67% similarity in amino acid sequence), the two proteins exhibit significant differences in nucleotide binding and catalysis. ATP, dATP, and GTP are equally effective as phosphate donors with E. coli CMP kinase whereas GTP is a poor substrate with B. subtilis CMP kinase. While CMP and dCMP are the best phosphate acceptors of both CMP kinases, the specific activity with these substrates and ATP as donor are 7- to 10-fold higher in the E. coli enzyme; the relative Vm values with UMP and CMP are 0.1 for the B. subtilis CMP kinase and 0.01 for the E. coli enzyme. CMP increased the affinity of E. coli CMP kinase for ATP or for the fluorescent analog 3'-anthraniloyl dATP by one order of magnitude but had no effect on the B. subtilis enzyme. The differences in the catalytic properties of B. subtilis and E. coli CMP kinases might be reflected in the structure of the two proteins as inferred from infrared spectroscopy. Whereas the spectrum of B. subtilis CMP kinase is dominated by a band at 1633 cm-1 (representing beta type structures), the spectrum of the E. coli enzyme is dominated by two bands at 1653 and 1642 cm-1 associated with alpha-helical and unordered structures, respectively. CMP induced similar spectral changes in both proteins with a rearrangement of some of the beta-structures. ATP increases the denaturation temperature of B. subtilis CMP kinase by 9.3 degrees C, whereas in the case of the E. coli enzyme, binding of ATP has only a minor effect.
Collapse
Affiliation(s)
- C P Schultz
- Institute for Biodiagnostics, National Research Council Canada, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Reynes JP, Tiraby M, Baron M, Drocourt D, Tiraby G. Escherichia coli thymidylate kinase: molecular cloning, nucleotide sequence, and genetic organization of the corresponding tmk locus. J Bacteriol 1996; 178:2804-12. [PMID: 8631667 PMCID: PMC178014 DOI: 10.1128/jb.178.10.2804-2812.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thymidylate kinase (dTMP kinase; EC 2.7.4.9) catalyzes the phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis. The nucleotide sequence of the tmk gene encoding this essential Escherichia coli enzyme is the last one among all the E. coli nucleoside and nucleotide kinase genes which has not yet been reported. By subcloning the 24.0-min region where the tmk gene has been previously mapped from the lambda phage 236 (E9G1) of the Kohara E. coli genomic library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987), we precisely located tmk between acpP and holB genes. Here we report the nucleotide sequence of tmk, including the end portion of an upstream open reading frame (ORF 340) of unknown function that may be cotranscribed with the pabC gene. The tmk gene was located clockwise of and just upstream of the holB gene. Our sequencing data allowed the filling in of the unsequenced gap between the acpP and holB genes within the 24-min region of the E. coli chromosome. Identification of this region as the E. coli tmk gene was confirmed by functional complementation of a yeast dTMP kinase temperature-sensitive mutant and by in vitro enzyme assay of the thymidylate kinase activity in cell extracts of E. coli by use of tmk-overproducing plasmids. The deduced amino acid sequence of the E. coli tmk gene showed significant similarity to the sequences of the thymidylate kinases of vertebrates, yeasts, and viruses as well as two uncharacterized proteins of bacteria belonging to Bacillus and Haemophilus species.
Collapse
|
74
|
Bucurenci N, Sakamoto H, Briozzo P, Palibroda N, Serina L, Sarfati RS, Labesse G, Briand G, Danchin A, Bărzu O, Gilles AM. CMP kinase from Escherichia coli is structurally related to other nucleoside monophosphate kinases. J Biol Chem 1996; 271:2856-62. [PMID: 8576266 DOI: 10.1074/jbc.271.5.2856] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CMP kinase from Escherichia coli is a monomeric protein of 225 amino acid residues. The protein exhibits little overall sequence similarities with other known NMP kinases. However, residues involved in binding of substrates and/or in catalysis were found conserved, and sequence comparison suggested conservation of the global fold found in adenylate kinases or in several CMP/UMP kinases. The enzyme was purified to homogeneity, crystallized, and analyzed for its structural and catalytic properties. The crystals belong to the hexagonal space group P6(3), have unit cell parameters a = b = 82.3 A and c = 60.7 A, and diffract x-rays to a 1.9 A resolution. The bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 328 nm upon excitation at 295 nm, which suggests that the single tryptophan residue (Trp30) is located in a hydrophobic environment. Substrate specificity studies showed that CMP kinase from E. coli is active with ATP, dATP, or GTP as donors and with CMP, dCMP, and arabinofuranosyl-CMP as acceptors. This is in contrast with CMP/UMP kinase from Dictyostelium discoideum, an enzyme active on CMP or UMP but much less active on the corresponding deoxynucleotides. Binding of CMP enhanced the affinity of E. coli CMP kinase for ATP or ADP, a particularity never described in this family of proteins that might explain inhibition of enzyme activity by excess of nucleoside monophosphate.
Collapse
Affiliation(s)
- N Bucurenci
- Unité de Biochimie des Régulations Cellulaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|