51
|
Narayanaswami V, Kim J, McNamee MG. Protein-lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 1. Spatial disposition of cysteine residues in the gamma subunit analyzed by fluorescence-quenching and energy-transfer measurements. Biochemistry 1993; 32:12413-9. [PMID: 8241131 DOI: 10.1021/bi00097a020] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nicotinic acetylcholine receptor from Torpedo californica was labeled with a fluorescent, lipophilic probe, N-(1-pyrenyl)maleimide, specific for sulfhydryls in a hydrophobic environment, and was found to alkylate Cys 416, Cys 420 and Cys 451 in the gamma subunit [Li, L., Schuchard, M., Palma, A., Pradier, L., & McNamee, M.G. (1990) Biochemistry 29, 5428-5436]. The spatial disposition of the acetylcholine receptor-bound pyrene with respect to the membrane bilayer was assessed by a combination of fluorescence-quenching and resonance energy transfer measurements, under conditions of selective labeling of the gamma subunit. Quenching of pyrene fluorescence by spin-labeled fatty acids with the doxyl group at positions C-5 and C-12 revealed that the former was more effective, with a Stern-Volmer quenching constant of 0.187 compared to 0.072 for the latter, suggesting that the fluorophore(s) are located closer to the membrane-water interface rather than the hydrophobic interior. Energy transfer was found to occur from tryptophan in the acetylcholine receptor to cysteine-bound pyrene with a distance of separation of approximately 18 A. However, there was no energy transfer when pyrene-labeled AChR was reconstituted into membranes containing brominated phospholipids and cholesterol, suggesting that the fluorophore(s) responsible for energy transfer are located in the membrane domain. Thus, the N-(1-pyrenyl)maleimide can be used to monitor lipid-protein interactions of the AChR.
Collapse
Affiliation(s)
- V Narayanaswami
- Section of Molecular and Cellular Biology, University of California, Davis 95616
| | | | | |
Collapse
|
52
|
Fernandez AM, Fernandez-Ballester G, Ferragut JA, Gonzalez-Ros JM. Labeling of the nicotinic acetylcholine receptor by a photoactivatable steroid probe: effects of cholesterol and cholinergic ligands. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1149:135-44. [PMID: 8318525 DOI: 10.1016/0005-2736(93)90034-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A photoactivatable steroid, p-azidophenacyl 3 alpha-hydroxy-5 beta-cholan-24- ate (APL), has been synthesized and used instead of cholesterol to functionally reconstitute purified acetylcholine receptor (AcChR) into vesicles made of asolectin phospholipids. Upon irradiation, the extent of AcChR photolabeling by APL is directly proportional to the amount of APL incorporated into the reconstituted vesicles and the maximum stoichiometry observed corresponds to approx. 50 mol of APL bound per mol of AcChR. Furthermore, all four subunits of the AcChR become labeled by APL and the observed labeling pattern resembles the 2:1:1:1 stoichiometry characteristic of these subunits within the AcChR complex. The presence of either cholesterol or neutral lipids from asolectin in the reconstituted bilayer decreases both, the incorporation of APl into the vesicles and the covalent labeling of the AcChR upon irradiation, without altering the stoichiometry of labeling in AcChR subunits stated above. This suggests that the potential interaction sites for the photoactivatable probe in the reconstituted AcChR are mostly those normally occupied by the natural neutral lipids. Carbamylcholine, a cholinergic agonist, also reduces the extent of APL photolabeling of the AcChR in a dose-dependent manner but, in contrast to the effects of cholesterol, the presence of carbamylcholine alters the stoichiometry of labeling in the AcChR subunits. This, along with the observation that such a decrease in the extent of APL photolabeling caused by carbamylcholine can be blocked by preincubation with alpha-bungarotoxin, suggest that AcChR desensitization induced by prolonged exposure to cholinergic agonists encompasses a rearrangement of transmembrane portions of the AcChR protein, which can be sensed by the photoactivatable probe. Conversely, presence of (+)-tubocurarine, a competitive cholinergic antagonist, has no effects on altering either the extent of APL photolabeling of the AcChR or the distribution of the labeling among AcChR subunits.
Collapse
Affiliation(s)
- A M Fernandez
- Department of Neurochemistry, University of Alicante, Spain
| | | | | | | |
Collapse
|
53
|
Chapter 10 The lipid annulus of the nicotinic acetylcholine receptor as a locus of structural-functional interactions. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
54
|
Barrantes FJ. Structural and functional crosstalk between acetylcholine receptor and its membrane environment. Mol Neurobiol 1992; 6:463-82. [PMID: 1285935 DOI: 10.1007/bf02757947] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nicotinic acetylcholine receptor (AChR) is a transmembrane protein belonging to the superfamily of rapid, ligand-operated channels. Theoretical models based on thermodynamic criteria assign portions of the polypeptide chains to the lipid bilayer region. From an experimental point of view, however, the relationship between the two moieties remains largely unexplored. Current studies from our laboratory are aimed at defining the structural, dynamic, and functional relationship between membrane lipids and AChR. We are particularly interested in establishing the characteristics of and differences between the lipids in each leaflet of the bilayer and the belt or "annular" lipids immediately surrounding AChR and the bulk bilayer lipids. We are also interested in determining the possible implications of lipid modifications on AChR channel properties. Toward these ends, fluorescence and other spectroscopic techniques, together with biochemical analyses and patch-clamp studies, are currently being undertaken. Correlations can be established between structural aspects of phospholipid packing in the immediate perimeter of AChR and other properties of these annular lipids revealed by dynamic spectroscopic and molecular modeling techniques. Lipid compositional analyses of the clonal muscle cell line BC3H-1 and chemical modification studies have been carried out by incubation of intact cells in culture and of membrane patches excised therefrom with liposomes of different lipid composition. These studies have been combined with electrophysiological measurements using the patch-clamp technique, with the aim of determining the possible effects of lipids on the channel properties of muscle-type AChR. A variety of experimental conditions, involving polar head and fatty acyl chain substitution of phospholipids and cholesterol incorporation, are being assayed in the BC3H-1 cells.
Collapse
Affiliation(s)
- F J Barrantes
- Instituto de Investigaciones Bioquimicas, Consejo de Investigaciones Cientificas y Tecnicas, Bahia Blanca, Argentina
| |
Collapse
|
55
|
Seto-Young D, Monk BC, Perlin DS. Assessing hydrophobic regions of the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1102:213-9. [PMID: 1390824 DOI: 10.1016/0005-2728(92)90102-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hydrophobic, photoactivatable probe TID [3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine] was used to label the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The H(+)-ATPase accounted for 43% of the total label associated with plasma membrane protein and incorporated 0.3 mol of [125I]TID per mol of 100 kDa polypeptide. The H(+)-ATPase was purified by octyl glucoside extraction and glycerol gradient centrifugation, and was cleaved by either cyanogen bromide digestion or limited tryptic proteolysis to isolate labeled fragments. Cyanogen bromide digestion resulted in numerous labeled fragments of mass less than 21 kDa. Seven fragments suitable for microsequence analysis were obtained by electrotransfer to poly(vinylidene difluoride) membranes. Five different regions of amino-acid sequence were identified, including fragments predicted to encompass both membrane-spanning and cytoplasmic protein structure domains. Most of the labeling of the cytoplasmic domain was concentrated in a region comprising amino acids 347 to 529. This catalytic region contains the site of phosphorylation and was previously suggested to be hydrophobic in character (Goffeau, A. and De Meis, L. (1990) J. Biol. 265, 15503-15505). Complementary labeling information was obtained from an analysis of limited tryptic fragments enriched for hydrophobic character. Six principal labeled fragments, of 29.6, 20.6, 16, 13.1, 11.4 and 9.7 kDa, were obtained. These fragments were found to comprise most of the putative transmembrane region and a portion of the cytoplasmic region that overlapped with the highly labeled active site-containing cyanogen bromide fragment. Overall, the extensive labeling of protein structure domains known to lie outside the bilayer suggests that [125I]TID labeling patterns cannot be unambiguously interpreted for the purpose of discerning membrane-embedded protein structure domains. It is proposed that caution should be applied in the interpretation of [125I]TID labeling patterns of the yeast plasma membrane H(+)-ATPase and that new and diverse approaches should be developed to provide a more definitive topology model.
Collapse
Affiliation(s)
- D Seto-Young
- Public Health Research Institute, New York, NY 10016
| | | | | |
Collapse
|
56
|
Assessing hydrophobic regions of the plasma membrane H+-ATPase from Saccharomyces cerevisiae. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0167-4838(92)90512-c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
57
|
Figl A, Cohen BN, Quick MW, Davidson N, Lester HA. Regions of beta 4.beta 2 subunit chimeras that contribute to the agonist selectivity of neuronal nicotinic receptors. FEBS Lett 1992; 308:245-8. [PMID: 1505662 DOI: 10.1016/0014-5793(92)81284-s] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fifteen chimeric nicotinic receptor beta subunits were constructed consisting of N-terminal neuronal beta 4 sequences and C-terminal beta 2 sequences. Responses to cytisine, nicotine, or tetramethylammonium were compared to acetylcholine responses for these subunits expressed in Xenopus oocytes with alpha 3 subunits. The results show that (i) two residues in the extracellular domain of chimeric beta 4.beta 2 subunits (108 beta 2F/beta 4V, 110 beta 2S/beta 4T) account for much of the relative cytisine sensitivity; and (ii) four extracellular residues of chimeric beta 4.beta 2 subunits (112 beta 2A/beta 4V, 113 beta 2V/beta 4I and 115 beta 2S/beta 4R, 116 beta 2Y/beta 4S) account for most of the relative tetramethylammonium sensitivity. The data did not permit localization of nicotine sensitivity to any particular region.
Collapse
Affiliation(s)
- A Figl
- Division of Chemistry, California Institute of Technology, Pasadena 91125
| | | | | | | | | |
Collapse
|
58
|
White B, Cohen J. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49602-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
59
|
McCarthy M, Moore M. Effects of lipids and detergents on the conformation of the nicotinic acetylcholine receptor from Torpedo californica. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42565-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
60
|
Ortells MO, Cockcroft VB, Lunt GG, Marsh D, Barrantes FJ. The Nicotinic Acetylcholine Receptor and its Lipid Microenvironment. THE JERUSALEM SYMPOSIA ON QUANTUM CHEMISTRY AND BIOCHEMISTRY 1992. [DOI: 10.1007/978-94-011-2718-9_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
61
|
Structure of the agonist-binding site of the nicotinic acetylcholine receptor. [3H]acetylcholine mustard identifies residues in the cation-binding subsite. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54504-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
62
|
White B, Howard S, Cohen S, Cohen J. The hydrophobic photoreagent 3-(trifluoromethyl)-3-m-([125I] iodophenyl) diazirine is a novel noncompetitive antagonist of the nicotinic acetylcholine receptor. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54680-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
63
|
Blanton MP, Wang HH. Localization of regions of the Torpedo californica nicotinic acetylcholine receptor labeled with an aryl azide derivative of phosphatidylserine. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1067:1-8. [PMID: 1868099 DOI: 10.1016/0005-2736(91)90019-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A photoactivatable analog of phosphatidylserine, 125I-labeled 4-azidosalicylic acid-phosphatidylserine (125I-ASA-PS) (Blanton, M. and Wang, H.H. (1990) Biochemistry 29, 1186-1194) was used to label the nicotinic acetylcholine receptor. The photoactivatable group of 125I-ASA-PS is attached directly to the phospholipid head group making it an excellent probe of regions of the AchR structure in contact with the negatively-charged head group of phosphatidylserine. The 'binding domains' were localized by chemically cleaving the labeled receptor with cyanogen bromide (CNBr), separating the generated peptides by reverse-phase HPLC, and N-terminal sequence analysis of radiolabeled material. CNBr fragments containing flanking regions of the transmembrane spanning region M4 as well as within M3 were identified within HPLC separated radiolabeled material. The results suggest a topological arrangement of the transmembrane helices in which the hydrophobic faces of M3 and M4 form the boundary of the receptor complex in contact with the lipid bilayer.
Collapse
Affiliation(s)
- M P Blanton
- Department of Biology, University of California, Santa Cruz 95064
| | | |
Collapse
|
64
|
Middleton RE, Cohen JB. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label. Biochemistry 1991; 30:6987-97. [PMID: 2069955 DOI: 10.1021/bi00242a026] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The agonist [3H]nicotine was used as a photoaffinity label for the acetylcholine binding sites on the Torpedo nicotinic acetylcholine receptor (AChR). [3H]nicotine binds at equilibrium with Keq = 0.6 microM to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with [3H]nicotine resulted in covalent incorporation into the alpha- and gamma-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the alpha-subunit was labeled via both agonist sites but the gamma-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Within the alpha-subunit, 93% of the labeling was contained within a 20-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Ser-173. Sequence analysis of this peptide indicated that approximately 80% of the incorporation was into Tyr-198, approximately 13% was into Cys-192, and approximately 7% was into Tyr-190. Chymotryptic digestion of the alpha-subunit confirmed that Tyr-198 was the principal amino acid labeled by [3H]nicotine. This confirmation required a novel radio-sequencing strategy employing omicron-phthalaldehyde, since the efficiency of photolabeling was low (approximately 1.0%) and the labeled chymotryptic peptide was not isolated in sufficient quantity to be identified by mass. [3H]Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.
Collapse
Affiliation(s)
- R E Middleton
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
65
|
Dwyer BP. Topological dispositions of lysine alpha 380 and lysine gamma 486 in the acetylcholine receptor from Torpedo californica. Biochemistry 1991; 30:4105-12. [PMID: 1902116 DOI: 10.1021/bi00230a041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The locations have been determined, with respect to the plasma membrane, of lysine alpha 380 and lysine gamma 486 in the alpha subunit and the gamma subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the alpha subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the gamma subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium [3H]-borohydride. Saponin was added to a portion of the vesicles prior to labeling to render them permeable to pyridoxal phosphate. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine alpha 380 and lysine gamma 486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The peptides bound and released by the immunoadsorbents were positively identified and quantified by high-pressure liquid chromatography. Modification of lysine alpha 380 in the native acetylcholine receptor in sealed vesicles increased 5-fold in the presence of saponin, while modification of lysine gamma 486 was unaffected by the presence of saponin. The conclusions that follow from these results are that lysine alpha 380 is on the inside surface of a vesicle and lysine gamma 486 is on the outside surface.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B P Dwyer
- Department of Chemistry, University of California, San Diego, La Jolla 92093
| |
Collapse
|
66
|
Changeux JP. The TiPS lecture. The nicotinic acetylcholine receptor: an allosteric protein prototype of ligand-gated ion channels. Trends Pharmacol Sci 1990; 11:485-92. [PMID: 2080554 DOI: 10.1016/0165-6147(90)90049-e] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J P Changeux
- URA CNRS D1284, Neurobiologie Moléculaire, Institut Pasteur, Laboratoire de Neurobiologie Moléculaire, Département des Biotechnologies, Paris, France
| |
Collapse
|
67
|
Kistler J, Schaller J, Sigrist H. MP38 contains the membrane-embedded domain of the lens fiber gap junction protein MP70. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38306-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
68
|
Blanton MP, Wang HH. Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine. Biochemistry 1990; 29:1186-94. [PMID: 2322557 DOI: 10.1021/bi00457a014] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A photoactivatable analogue of phosphatidylserine, 125I-labeled 4-azidosalicylic acid-phosphatidylserine (125I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin (a crude soybean lipid extract) vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the alpha subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR alpha subunit that incorporated 125I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the alpha subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the alpha subunit incorporated little or no detectable amount of probe.
Collapse
Affiliation(s)
- M P Blanton
- Department of Biology, University of California, Santa Cruz 95064
| | | |
Collapse
|
69
|
Pedersen SE, Bridgman PC, Sharp SD, Cohen JB. Identification of a cytoplasmic region of the Torpedo nicotinic acetylcholine receptor alpha-subunit by epitope mapping. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40267-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
70
|
Forman SA, Miller KW. Molecular sites of anesthetic action in postsynaptic nicotinic membranes. Trends Pharmacol Sci 1989; 10:447-52. [PMID: 2692257 DOI: 10.1016/s0165-6147(89)80009-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Theories of general anesthesia have traditionally been based on correlations between potency and the properties of simple models such as apolar solvents, lipid bilayers and soluble proteins. However, mechanisms can now be determined directly by studying excitable proteins in their membrane environment. Stuart Forman and Keith Miller describe the physiological, biophysical and molecular biological evidence pointing to the location of a discrete allosteric site on the nicotinic acetylcholine receptor at which local anesthetics act. General anesthetics, while superficially resembling local anesthetics in their actions on the receptor, do not appear to act upon such a site.
Collapse
|
71
|
Carr C, Fischbach GD, Cohen JB. A novel 87,000-Mr protein associated with acetylcholine receptors in Torpedo electric organ and vertebrate skeletal muscle. J Cell Biol 1989; 109:1753-64. [PMID: 2793938 PMCID: PMC2115790 DOI: 10.1083/jcb.109.4.1753] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To identify proteins associated with nicotinic postsynaptic membranes, mAbs have been prepared to proteins extracted by alkaline pH or lithium diiodosalicylate from acetylcholine receptor-rich (AChR) membranes of Torpedo electric organ. Antibodies were obtained that recognized two novel proteins of 87,000 Mr and a 210,000:220,000 doublet as well as previously described proteins of 43,000 Mr, 58,000 (51,000 in our gel system), 270,000, and 37,000 (calelectrin). The 87-kD protein copurified with acetylcholine receptors and with 43- and 51-kD proteins during equilibrium centrifugation on continuous sucrose gradients, whereas a large fraction of the 210/220-kD protein was separated from AChRs. The 87-kD protein remained associated with receptors and 43-kD protein during velocity sedimentation through shallow sucrose gradients, a procedure that separated a significant amount of 51-kD protein from AChRs. The 87- and 270-kD proteins were cleaved by Ca++-activated proteases present in crude preparations and also in highly purified postsynaptic membranes. With the exception of anti-37-kD antibodies, some of the monoclonals raised against Torpedo proteins also recognized determinants in frozen sections of chick and/or rat skeletal muscle fibers and in permeabilized chick myotubes grown in vitro. Anti-87-kD sites were concentrated at chick and rat endplates, but the antibodies also recognized determinants present at lower site density in the extrasynaptic membrane. Anti-210:220-kD labeled chick endplates, but studies of neuron-myotube cocultures showed that this antigen was located on neurites rather than the postsynaptic membrane. As reported in other species, 43-kD determinants were restricted to chick endplates and anti-51-kD and anti-270-kD labeled extrasynaptic as well as synaptic membranes. None of the cross reacting antibodies recognized determinants on intact (unpermeabilized) myotubes, so the antigens must be located on the cytoplasmic aspect of the surface membrane. The role that each intracellular determinant plays in AChR immobilization at developing and mature endplates remains to be investigated.
Collapse
Affiliation(s)
- C Carr
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
72
|
Mitra AK, McCarthy MP, Stroud RM. Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kD cytoskeletal protein, determined at 22 A by low dose electron microscopy and x-ray diffraction to 12.5 A. J Biophys Biochem Cytol 1989; 109:755-74. [PMID: 2760111 PMCID: PMC2115713 DOI: 10.1083/jcb.109.2.755] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The three-dimensional structure of the nicotinic acetylcholine receptor (AChR) from Torpedo californica, crystallized both before and after removal of associated proteins, most notably the main 43-kD cytoskeletal protein that interacts both with AChR and actin, is determined to a resolution of 22 A. This is the first structural analysis where the 43-kD protein has been removed from the sample before crystallization. Thus, it provides the most reliable assessment of what constitutes the structure of the minimal five subunit AChR complex, and, by comparison with the native membrane, of the location of the 43-kD cytoskeletal protein. Image reconstruction of two-dimensional crystals includes information from electron images of up to +/- 52 degrees tilted specimens of latticed AChR. Hybrid density maps that include x-ray diffraction perpendicular to the membrane to 12.5 A resolution were used and eliminate some of the distortions introduced in maps based only on electron microscopic analyses. Comparison of the difference Fourier density maps between AChR with its normal complement of associated proteins, and without them shows that the main density, assigned to the actin-binding 43-kD component is closely associated with the lipid bilayer as well as with the cytoplasmic domain of the AChR. It binds beside the AChR, not beneath it as suggested by others (C. Toyoshima and N. Unwin 1988. Nature [Lond.]. 336:237-240). There is good agreement between the volumes of density for structural components and expected volumes based on their molecular weight. Acetylcholine receptors aggregate in the absence of any cytoskeletal proteins, suggesting that the AChR alone is sufficient to encode and stabilize clustering, and perhaps to do so during synaptogenesis. The main 43-kD component may play a role in location and rate of association of AChR. We show that the disulfide bond that cross-links delta-delta chains of adjacent pentamers in about 80% of AChR, is not required to stabilize the lattice of AChR. Latticed tube structures are stable indefinitely. The lattices described here have 20% less volume of lipid than those originally obtained and characterized by J. Kistler and R. M. Stroud (1981. Proc. Natl. Acad. Sci. USA. 78:3678-3682), or those subsequently characterized by A. Brisson and P. N. T. Unwin (1984. J. Cell Biol. 99:1202-1211) and A. Brisson and P. N. T. Unwin (1985. Nature (Lond.). 315:474-477).
Collapse
Affiliation(s)
- A K Mitra
- S-960 Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0048
| | | | | |
Collapse
|