51
|
Hernandez JA, Phillips AH, Erbil WK, Zhao D, Demuez M, Zeymer C, Pelton JG, Wemmer DE, Rubio LM. A sterile alpha-motif domain in NafY targets apo-NifDK for iron-molybdenum cofactor delivery via a tethered domain. J Biol Chem 2010; 286:6321-8. [PMID: 21156797 DOI: 10.1074/jbc.m110.168732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NafY participates in the final steps of nitrogenase maturation, having a dual role as iron-molybdenum cofactor (FeMo-co) carrier and as chaperone to the FeMo-co-deficient apo-NifDK (apo-dinitrogenase). NafY contains an N-terminal domain of unknown function (n-NafY) and a C-terminal domain (core-NafY) necessary for FeMo-co binding. We show here that n-NafY and core-NafY have very weak interactions in intact NafY. The NMR structure of n-NafY reveals that it belongs to the sterile α-motif (SAM) family of domains, which are frequently involved in protein-protein interactions. The presence of a SAM domain in NafY was unexpected and could not be inferred from its amino acid sequence. Although SAM domains are very commonly found in eukaryotic proteins, they have rarely been identified in prokaryotes. The n-NafY SAM domain binds apo-NifDK. As opposed to full-length NafY, n-NafY impaired FeMo-co insertion when present in molar excess relative to FeMo-co and apo-NifDK. The implications of these observations are discussed to offer a plausible mechanism of FeMo-co insertion. NafY domain structure, molecular tumbling, and interdomain motion, as well as NafY interaction with apo-NifDK are consistent with the function of NafY in FeMo-co delivery to apo-NifDK.
Collapse
Affiliation(s)
- Jose A Hernandez
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University Arizona, Glendale, Arizona 85308, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Gatzeva-Topalova PZ, Warner LR, Pardi A, Sousa MC. Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane. Structure 2010; 18:1492-501. [PMID: 21070948 PMCID: PMC2991101 DOI: 10.1016/j.str.2010.08.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 11/30/2022]
Abstract
Folding and insertion of β-barrel outer membrane proteins (OMPs) is essential for Gram-negative bacteria. This process is mediated by the multiprotein complex BAM, composed of the essential β-barrel OMP BamA and four lipoproteins (BamBCDE). The periplasmic domain of BamA is key for its function and contains five "polypeptide transport-associated" (POTRA) repeats. Here, we report the crystal structure of the POTRA4-5 tandem, containing the essential for BAM complex formation and cell viability POTRA5. The domain orientation observed in the crystal is validated by solution NMR and SAXS. Using previously determined structures of BamA POTRA1-4, we present a spliced model of the entire BamA periplasmic domain validated by SAXS. Solution scattering shows that conformational flexibility between POTRA2 and 3 gives rise to compact and extended conformations. The length of BamA in its extended conformation suggests that the protein may bridge the inner and outer membranes across the periplasmic space.
Collapse
|
53
|
Rao JN, Jao CC, Hegde BG, Langen R, Ulmer TS. A combinatorial NMR and EPR approach for evaluating the structural ensemble of partially folded proteins. J Am Chem Soc 2010; 132:8657-68. [PMID: 20524659 DOI: 10.1021/ja100646t] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Partially folded proteins, characterized as exhibiting secondary structure elements with loose or absent tertiary contacts, represent important intermediates in both physiological protein folding and pathological protein misfolding. To aid in the characterization of the structural state(s) of such proteins, a novel structure calculation scheme is presented that combines structural restraints derived from pulsed EPR and NMR spectroscopy. The methodology is established for the protein alpha-synuclein (alphaS), which exhibits characteristics of a partially folded protein when bound to a micelle of the detergent sodium lauroyl sarcosinate (SLAS). By combining 18 EPR-derived interelectron spin label distance distributions with NMR-based secondary structure definitions and bond vector restraints, interelectron distances were correlated and a set of theoretical ensemble basis populations was calculated. A minimal set of basis structures, representing the partially folded state of SLAS-bound alphaS, was subsequently derived by back-calculating correlated distance distributions. A surprising variety of well-defined protein-micelle interactions was thus revealed in which the micelle is engulfed by two differently arranged antiparallel alphaS helices. The methodology further provided the population ratios between dominant ensemble structural states, whereas limitation in obtainable structural resolution arose from spin label flexibility and residual uncertainties in secondary structure definitions. To advance the understanding of protein-micelle interactions, the present study concludes by showing that, in marked contrast to secondary structure stability, helix dynamics of SLAS-bound alphaS correlate with the degree of protein-induced departures from free micelle dimensions.
Collapse
Affiliation(s)
- Jampani Nageswara Rao
- Department of Biochemistry & Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
54
|
Berlin K, O’Leary DP, Fushman D. Structural assembly of molecular complexes based on residual dipolar couplings. J Am Chem Soc 2010; 132:8961-72. [PMID: 20550109 PMCID: PMC2931813 DOI: 10.1021/ja100447p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present and evaluate a rigid-body molecular docking method, called PATIDOCK, that relies solely on the three-dimensional structure of the individual components and the experimentally derived residual dipolar couplings (RDCs) for the complex. We show that, given an accurate ab initio predictor of the alignment tensor from a protein structure, it is possible to accurately assemble a protein-protein complex by utilizing the RDCs' sensitivity to molecular shape to guide the docking. The proposed docking method is robust against experimental errors in the RDCs and computationally efficient. We analyze the accuracy and efficiency of this method using experimental or synthetic RDC data for several proteins, as well as synthetic data for a large variety of protein-protein complexes. We also test our method on two protein systems for which the structure of the complex and steric-alignment data are available (Lys48-linked diubiquitin and a complex of ubiquitin and a ubiquitin-associated domain) and analyze the effect of flexible unstructured tails on the outcome of docking. The results demonstrate that it is fundamentally possible to assemble a protein-protein complex solely on the basis of experimental RDC data and the prediction of the alignment tensor from 3D structures. Thus, despite the purely angular nature of RDCs, they can be converted into intermolecular distance/translational constraints. Additionally, we show a method for combining RDCs with other experimental data, such as ambiguous constraints from interface mapping, to further improve structure characterization of protein complexes.
Collapse
Affiliation(s)
| | | | - David Fushman
- To whom correspondence should be addressed , Phone: +1-301-405-3461. Fax: +1-301-314-0386
| |
Collapse
|
55
|
Liu Y, Kahn RA, Prestegard JH. Dynamic structure of membrane-anchored Arf*GTP. Nat Struct Mol Biol 2010; 17:876-81. [PMID: 20601958 PMCID: PMC2921649 DOI: 10.1038/nsmb.1853] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/13/2010] [Indexed: 11/11/2022]
Abstract
Arfs (ADP ribosylation factors) are N-myristoylated GTP/GDP switch proteins playing key regulatory roles in vesicle transport in eukaryotic cells. ARFs execute their roles by anchoring to membrane surfaces where they interact with other proteins to initiate budding and maturation of transport vesicles. However, existing structures of Arf•GTP are limited to non-myristoylated and truncated forms with impaired membrane binding. We report a high resolution NMR structure for full-length myristoylated yeast (Saccharomyces cerevisiae) Arf1 in complex with a membrane mimic. The two domain structure, in which the myristoylated N-terminal helix is separated from the C-terminal domain by a flexible linker, suggests a level of adaptability in binding modes for the myriad of proteins with which Arf interacts, and allows predictions of specific lipid binding sites on some of these proteins.
Collapse
Affiliation(s)
- Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
56
|
Mäntylahti S, Koskela O, Jiang P, Permi P. MQ-HNCO-TROSY for the measurement of scalar and residual dipolar couplings in larger proteins: application to a 557-residue IgFLNa16-21. JOURNAL OF BIOMOLECULAR NMR 2010; 47:183-194. [PMID: 20454834 DOI: 10.1007/s10858-010-9422-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/14/2010] [Indexed: 05/29/2023]
Abstract
We describe a novel pulse sequence, MQ-HNCO-TROSY, for the measurement of scalar and residual dipolar couplings between amide proton and nitrogen in larger proteins. The experiment utilizes the whole 2T(N) polarization transfer delay for labeling of (15)N chemical shift in a constant time manner, which efficiently doubles the attainable resolution in (15)N dimension with respect to the conventional HNCO-TROSY experiment. In addition, the accordion principle is employed for measuring (J + D)(NH)s, and the multiplet components are selected with the generalized version of the TROSY scheme introduced by Nietlispach (J Biomol NMR 31:161-166, 2005). Therefore, cross peak overlap is diminished while the time period during which the (15)N spin is susceptible to fast transverse relaxation associated with the anti-TROSY transition is minimized per attainable resolution unit. The proposed MQ-HNCO-TROSY scheme was employed for measuring RDCs in high molecular weight protein IgFLNa16-21 of 557 residues, resulting in 431 experimental RDCs. Correlations between experimental and back-calculated RDCs in individual domains gave relatively low Q-factors (0.19-0.39), indicative of sufficient accuracy that can be obtained with the proposed MQ-HNCO-TROSY experiment in high molecular weight proteins.
Collapse
Affiliation(s)
- Sampo Mäntylahti
- NMR Laboratory, Program in Structural Biology and Biophysics, Institute of Biotechnology/NMR Laboratory, University of Helsinki, P.O. Box 65, 00014, Helsinki, Finland
| | | | | | | |
Collapse
|
57
|
Shapira B, Prestegard JH. Electron-nuclear interactions as probes of domain motion in proteins. J Chem Phys 2010; 132:115102. [PMID: 20331317 DOI: 10.1063/1.3328644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Long range interactions between nuclear spins and paramagnetic ions can serve as a sensitive monitor of internal motion of various parts of proteins, including functional loops and separate domains. In the case of interdomain motion, the interactions between the ion and NMR-observable nuclei are modulated in direction and magnitude mainly by a combination of overall and interdomain motions. The effects on observable parameters such as paramagnetic relaxation enhancement (PRE) and pseudocontact shift (PCS) can, in principle, be used to characterize motion. These parameters are frequently used for the purpose of structural refinements. However, their use to probe actual domain motions is less common and is lacking a proper theoretical treatment from a motional perspective. In this work, a suitable spin Hamiltonian is incorporated in a two body diffusion model to produce the time correlation function for the nuclear spin-paramagnetic ion interactions. Simulated observables for nuclei in different positions with respect to the paramagnetic ion are produced. Based on these simulations, it demonstrated that both the PRE and the PCS can be very sensitive probes of domain motion. Results for different nuclei within the protein sense different aspects of the motions. Some are more sensitive to the amplitude of the internal motion, others are more sensitive to overall diffusion rates, allowing separation of these contributions. Experimentally, the interaction strength can also be tuned by substitution of different paramagnetic ions or by varying magnetic field strength (in the case of lanthanides) to allow the use of more detailed diffusion models without reducing the reliability of data fitting.
Collapse
Affiliation(s)
- Boaz Shapira
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
58
|
Bhattacharya A, Revington M, Zuiderweg ERP. Measurement and interpretation of 15N-1H residual dipolar couplings in larger proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 203:11-28. [PMID: 20018538 PMCID: PMC2835473 DOI: 10.1016/j.jmr.2009.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 05/12/2023]
Abstract
A decade ago, Dr. L.E. Kay and co-workers described an ingenious HNCO-based triple-resonance experiment from which several protein backbone RDCs can be measured simultaneously (Yang et al. (1999) [1]). They implemented a J-scaling technique in the (15)N dimension of the 3D experiment to obtain the NH RDCs. We have used this idea to carry out J-scaling in a 2D (15)N-(1)H-TROSY experiment and have found it to be an excellent method to obtain NH RDCs for larger proteins upto 70 kDa, far superior to commonly used HSQC in-phase/anti-phase and HSQC/TROSY comparisons. Here, this method, dubbed "RDC-TROSY" is discussed in detail and the limits of its utility are assessed by simulations. Prominent in the latter analysis is the evaluation of the effect of amide proton flips on the "RDC-TROSY" linewidths. The details of the technical and computational implementations of these methods for the determination of domain orientations in 45-60 kDa Hsp70 chaperone protein constructs are described.
Collapse
Affiliation(s)
- Akash Bhattacharya
- Department of LSA Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
59
|
Piserchio A, Nair PA, Shuman S, Ghose R. Solution NMR studies of Chlorella virus DNA ligase-adenylate. J Mol Biol 2009; 395:291-308. [PMID: 19913033 DOI: 10.1016/j.jmb.2009.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 01/31/2023]
Abstract
DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3'-OH/5'-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone (15)N spin relaxation and (15)N,(1)H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5'-phosphate.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry, The City College of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
60
|
Wang J, Zuo X, Yu P, Xu H, Starich MR, Tiede DM, Shapiro BA, Schwieters CD, Wang YX. A method for helical RNA global structure determination in solution using small-angle x-ray scattering and NMR measurements. J Mol Biol 2009; 393:717-34. [PMID: 19666030 DOI: 10.1016/j.jmb.2009.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/04/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
We report a "top-down" method that uses mainly duplexes' global orientations and overall molecular dimension and shape restraints, which were extracted from experimental NMR and small-angle X-ray scattering data, respectively, to determine global architectures of RNA molecules consisting of mostly A-form-like duplexes. The method is implemented in the G2G (from global measurement to global structure) toolkit of programs. We demonstrate the efficiency and accuracy of the method by determining the global structure of a 71-nt RNA using experimental data. The backbone root-mean-square deviation of the ensemble of the calculated global structures relative to the X-ray crystal structure is 3.0+/-0.3 A using the experimental data and is only 2.5+/-0.2 A for the three duplexes that were orientation restrained during the calculation. The global structure simplifies interpretation of multidimensional nuclear Overhauser spectra for high-resolution structure determination. The potential general application of the method for RNA structure determination is discussed.
Collapse
Affiliation(s)
- Jinbu Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick/NIH, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Wang J, Zuo X, Yu P, Byeon IJL, Jung J, Wang X, Dyba M, Seifert S, Schwieters CD, Qin J, Gronenborn AM, Wang YX. Determination of multicomponent protein structures in solution using global orientation and shape restraints. J Am Chem Soc 2009; 131:10507-15. [PMID: 19722627 PMCID: PMC2873192 DOI: 10.1021/ja902528f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Determining architectures of multicomponent proteins or protein complexes in solution is a challenging problem. Here we report a methodology that simultaneously uses residual dipolar couplings (RDC) and the small-angle X-ray scattering (SAXS) restraints to mutually orient subunits and define the global shape of multicomponent proteins and protein complexes. Our methodology is implemented in an efficient algorithm and demonstrated using five examples. First, we demonstrate the general approach with simulated data for the HIV-1 protease, a globular homodimeric protein. Second, we use experimental data to determine the structures of the two-domain proteins L11 and gammaD-Crystallin, in which the linkers between the domains are relatively rigid. Finally, complexes with K(d) values in the high micro- to millimolar range (weakly associating proteins), such as a homodimeric GB1 variant, and with K(d) values in the nanomolar range (tightly bound), such as the heterodimeric complex of the ILK ankyrin repeat domain (ARD) and PINCH LIM1 domain, respectively, are evaluated. Furthermore, the proteins or protein complexes that were determined using this method exhibit better solution structures than those obtained by either NMR or X-ray crystallography alone as judged based on the pair-distance distribution functions (PDDF) calculated from experimental SAXS data and back-calculated from the structures.
Collapse
Affiliation(s)
- Jinbu Wang
- Protein Nucleic Acid Interaction Section, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- Protein Nucleic Acid Interaction Section, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Ping Yu
- Protein Nucleic Acid Interaction Section, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
- SAIC-Frederick, Inc., National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - In-Ja L. Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1050 BST3, Pittsburg, PA 15261
| | - Jinwon Jung
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1050 BST3, Pittsburg, PA 15261
| | - Xiaoxia Wang
- Structural Biology Program, Department of Molecular Cardiology, Lerner Research Institute, NB20, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Marzena Dyba
- Biophysics Resource, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
- SAIC-Frederick, Inc., National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Soenke Seifert
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Charles D. Schwieters
- Division of Computational Bioscience, Building 12A, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892-5624
| | - Jun Qin
- Structural Biology Program, Department of Molecular Cardiology, Lerner Research Institute, NB20, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1050 BST3, Pittsburg, PA 15261
| | - Yun-Xing Wang
- Protein Nucleic Acid Interaction Section, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
62
|
Shi L, Cembran A, Gao J, Veglia G. Tilt and azimuthal angles of a transmembrane peptide: a comparison between molecular dynamics calculations and solid-state NMR data of sarcolipin in lipid membranes. Biophys J 2009; 96:3648-62. [PMID: 19413970 DOI: 10.1016/j.bpj.2009.02.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 02/03/2009] [Accepted: 02/12/2009] [Indexed: 02/04/2023] Open
Abstract
We report molecular dynamics simulations in the explicit membrane environment of a small membrane-embedded protein, sarcolipin, which regulates the sarcoplasmic reticulum Ca-ATPase activity in both cardiac and skeletal muscle. In its monomeric form, we found that sarcolipin adopts a helical conformation, with a computed average tilt angle of 28 +/- 6 degrees and azymuthal angles of 66 +/- 22 degrees, in reasonable accord with angles determined experimentally (23 +/- 2 degrees and 50 +/- 4 degrees, respectively) using solid-state NMR with separated-local-field experiments. The effects of time and spatial averaging on both (15)N chemical shift anisotropy and (1)H/(15)N dipolar couplings have been analyzed using short-time averages of fast amide out-of-plane motions and following principal component dynamic trajectories. We found that it is possible to reproduce the regular oscillatory patterns observed for the anisotropic NMR parameters (i.e., PISA wheels) employing average amide vectors. This work highlights the role of molecular dynamics simulations as a tool for the analysis and interpretation of solid-state NMR data.
Collapse
Affiliation(s)
- Lei Shi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
63
|
Bermel W, Tkach EN, Sobol AG, Golovanov AP. Simultaneous measurement of residual dipolar couplings for proteins in complex using the isotopically discriminated NMR approach. J Am Chem Soc 2009; 131:8564-70. [DOI: 10.1021/ja901602c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wolfgang Bermel
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia, and Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Elena N. Tkach
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia, and Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Alexander G. Sobol
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia, and Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Alexander P. Golovanov
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia, and Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
64
|
Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 2009; 106:8471-6. [PMID: 19439666 DOI: 10.1073/pnas.0903503106] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DnaK is the canonical Hsp70 molecular chaperone protein from Escherichia coli. Like other Hsp70s, DnaK comprises two main domains: a 44-kDa N-terminal nucleotide-binding domain (NBD) that contains ATPase activity, and a 25-kDa substrate-binding domain (SBD) that harbors the substrate-binding site. Here, we report an experimental structure for wild-type, full-length DnaK, complexed with the peptide NRLLLTG and with ADP. It was obtained in aqueous solution by using NMR residual dipolar coupling and spin labeling methods and is based on available crystal structures for the isolated NBD and SBD. By using dynamics methods, we determine that the NBD and SBD are loosely linked and can move in cones of +/-35 degrees with respect to each other. The linker region between the domains is a dynamic random coil. Nevertheless, an average structure can be defined. This structure places the SBD in close proximity of subdomain IA of the NBD and suggests that the SBD collides with the NBD at this area to establish allosteric communication.
Collapse
|
65
|
Fisher CK, Zhang Q, Stelzer A, Al-Hashimi HM. Ultrahigh resolution characterization of domain motions and correlations by multialignment and multireference residual dipolar coupling NMR. J Phys Chem B 2009; 112:16815-22. [PMID: 19367865 DOI: 10.1021/jp806188j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) provide a unique opportunity for spatially characterizing complex motions in biomolecules with time scale sensitivity extending up to milliseconds. Up to five motionally averaged Wigner rotation elements, (D(0k)2(alphaalpha)), can be determined experimentally using RDCs measured in five linearly independent alignment conditions and applied to define motions of axially symmetric bond vectors. Here, we show that up to 25 motionally averaged Wigner rotation elements, (D(mk)2(alphabetagamma)), can be determined experimentally from multialignment RDCs and used to characterize rigid-body motions of chiral domains. The 25 (D(mk)2(alphabetagamma)) elements form a basis set that allows one to measure motions of a domain relative to an isotropic distribution of reference frames anchored on a second domain (and vice versa), thus expanding the 3D spatial resolution with which motions can be characterized. The 25 (D(mk)2(alphabetagamma)) elements can also be used to fit an ensemble consisting of up to eight equally or six unequally populated states. For more than two domains, changing the identity of the domain governing alignment allows access to new information regarding the correlated nature of the domain fluctuations. Example simulations are provided that validate the theoretical derivation and illustrate the high spatial resolution with which rigid-body domain motions can be characterized using multialignment and multireference RDCs. Our results further motivate the development of experimental approaches for both modulating alignment and anchoring it on specifically targeted domains.
Collapse
Affiliation(s)
- Charles K Fisher
- Department of Chemistry & Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
66
|
Bertini I, Kursula P, Luchinat C, Parigi G, Vahokoski J, Wilmanns M, Yuan J. Accurate Solution Structures of Proteins from X-ray Data and a Minimal Set of NMR Data: Calmodulin−Peptide Complexes As Examples. J Am Chem Soc 2009; 131:5134-44. [DOI: 10.1021/ja8080764] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Petri Kursula
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Juha Vahokoski
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Matthias Wilmanns
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| | - Jing Yuan
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, EMBL-Hamburg c/o DESY, Hamburg, Germany, Department of Biochemistry, University of Oulu, Oulu, Finland, and Department of Agricultural Biotechnology, University of Florence, via Maragliano 75-77, 50144 Florence, Italy
| |
Collapse
|
67
|
Bhattacharya A, Kurochkin AV, Yip GNB, Zhang Y, Bertelsen EB, Zuiderweg ERP. Allostery in Hsp70 chaperones is transduced by subdomain rotations. J Mol Biol 2009; 388:475-90. [PMID: 19361428 DOI: 10.1016/j.jmb.2009.01.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
Abstract
Hsp70s (heat shock protein 70 kDa) are central to protein folding, refolding, and trafficking in organisms ranging from archaea to Homo sapiens under both normal and stressed cellular conditions. Hsp70s are comprised of a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide binding site in the NBD and the substrate binding site in the SBD are allosterically linked: ADP binding promotes substrate binding, while ATP binding promotes substrate release. Hsp70s have been linked to inhibition of apoptosis (i.e., cancer) and diseases associated with protein misfolding such as Alzheimer's, Parkinson's, and Huntington's. It has long been a goal to characterize the nature of allosteric coupling in these proteins. However, earlier studies of the isolated NBD could not show any difference in overall conformation between the ATP state and the ADP state. Hence the question: How is the state of the nucleotide communicated between NBD and SBD? Here we report a solution NMR study of the 44-kDa NBD of Hsp70 from Thermus thermophilus in the ADP and AMPPNP states. Using the solution NMR methods of residual dipolar coupling analysis, we determine that significant rotations occur for different subdomains of the NBD upon exchange of nucleotide. These rotations modulate access to the nucleotide binding cleft in the absence of a nucleotide exchange factor. Moreover, the rotations cause a change in the accessibility of a hydrophobic surface cleft remote from the nucleotide binding site, which previously has been identified as essential to allosteric communication between NBD and SBD. We propose that it is this change in the NBD surface cleft that constitutes the allosteric signal that can be recognized by the SBD.
Collapse
Affiliation(s)
- Akash Bhattacharya
- Department of Biological Chemistry and Biophysics Research Division, The University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
68
|
Jain NU. Use of residual dipolar couplings in structural analysis of protein-ligand complexes by solution NMR spectroscopy. Methods Mol Biol 2009; 544:231-52. [PMID: 19488703 DOI: 10.1007/978-1-59745-483-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Investigation of structure-function relationships in protein complexes, specifically protein-ligand interactions, carry great significance in elucidating the structural and mechanistic bases of molecular recognition events and their role in regulating cell processes. Nuclear magnetic resonance (NMR) spectroscopy is one of the leading structural and analytical techniques in in-depth studies of protein-ligand interactions. Recent advances in NMR methodology such as transverse relaxation-optimized spectroscopy (TROSY) and residual dipolar couplings (RDCs) measured in liquid crystalline alignment medium, offer a viable alternative to traditional nuclear Overhauser enhancement (NOE)-based approaches for structure determination of large protein complexes. RDCs provide a way to constrain the relative orientation of two molecules in complex with each other by aligning their independently determined order tensors. The potential for utilization of RDCs can be extended to proteins with multiple ligands or even multimeric protein-ligand complexes, where symmetry properties of the protein can be taken advantage of. Availability of effective RDC data collection and analysis protocols can certainly aid this process by their incorporation into structure calculation protocols using intramolecular and intermolecular orientational restraints. This chapter discusses in detail some of these protocols including methods for sample preparation in liquid crystalline media, NMR experiments for RDC data collection, as well as software tools for RDC data analysis and protein-ligand complex structure determination.
Collapse
Affiliation(s)
- Nitin U Jain
- Cellular and Molecular Biology Department, University of Tennessee, 37996-0840, Knoxville, TN, USA.
| |
Collapse
|
69
|
Abstract
Orientational restraints such as residual dipolar couplings promise to overcome many of the problems that traditionally limited liquid-state nuclear magnetic resonance spectroscopy. Recently, we developed methods to predict a molecular alignment tensor and thus residual dipolar couplings for a given molecular structure. This provides many new opportunities for the study of the structure and dynamics of proteins, nucleic acids, oligosaccharides and small molecules. This protocol details the use of the software PALES (Prediction of AlignmEnt from Structure) for prediction of an alignment tensor from a known three-dimensional (3D) coordinate file of a solute. The method is applicable to alignment of molecules in many neutral and charged orienting media and takes into account the molecular shape and 3D charge distribution of the molecule.
Collapse
|
70
|
Bertini I, Calderone V, Fragai M, Jaiswal R, Luchinat C, Melikian M, Mylonas E, Svergun DI. Evidence of reciprocal reorientation of the catalytic and hemopexin-like domains of full-length MMP-12. J Am Chem Soc 2008; 130:7011-21. [PMID: 18465858 DOI: 10.1021/ja710491y] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The proteolytic activity of matrix metalloproteinases toward extracellular matrix components (ECM), cytokines, chemokines, and membrane receptors is crucial for several homeostatic and pathological processes. Active MMPs are a family of single-chain enzymes (23 family members in the human genome), most of which constituted by a catalytic domain and by a hemopexin-like domain connected by a linker. The X-ray structures of MMP-1 and MMP-2 suggest a conserved and well-defined spatial relationship between the two domains. Here we present structural data for MMP-12, suitably stabilized against self-hydrolysis, both in solution (NMR and SAXS) and in the solid state (X-ray), showing that the hemopexin-like and the catalytic domains experience conformational freedom with respect to each other on a time scale shorter than 10(-8) s. Hints on the probable conformations are also obtained. This experimental finding opens new perspectives for the often hypothesized active role of the hemopexin-like domain in the enzymatic activity of MMPs.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Holland NB, Nishimiya Y, Tsuda S, Sönnichsen FD. Two domains of RD3 antifreeze protein diffuse independently. Biochemistry 2008; 47:5935-41. [PMID: 18459801 DOI: 10.1021/bi8001924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antifreeze proteins (AFPs) make up a class of structurally diverse proteins that help to protect many organisms from freezing temperatures by inhibiting ice crystal growth at temperatures below the colligative freezing point. AFPs are typically small proteins with a relatively flat, slightly hydrophobic binding region that matches the lattice structure of a specific ice crystal plane. The only known two-domain AFP is RD3 from the Antarctic eel pout. It consists of two nearly identical type III domains connected by a nine-residue linker. This protein exhibits higher activity than the single-domain protein at low concentrations. The initial solution structure of RD3 revealed that the domains were aligned so that the binding regions were nearly coplanar, effectively doubling the surface area for binding. A more recent report suggests that the domains may not be aligned in solution but rather diffuse independently. To resolve the issue, we have measured the NMR residual dipolar couplings using alignment media of stretched gels and filamentous phage to determine the relative orientation of the domains. We find that the two domains of RD3 are free to move relative to each other, within the constraint of the flexible nine-residue linker. Our data show that there is no strongly preferred alignment in solution. Furthermore, the flexibility and length of the linker are sufficient to allow the two domains to have their binding faces in the same orientation and coplanar for simultaneous binding to an ice crystal surface.
Collapse
Affiliation(s)
- Nolan B Holland
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
72
|
Bertini I, Luchinat C, Parigi G, Pierattelli R. Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans 2008:3782-90. [PMID: 18629397 DOI: 10.1039/b719526e] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR experiments and tools for the characterization of the structure and dynamics of paramagnetic proteins are presented here. The focus is on the importance of (13)C direct-detection NMR for the assignment of paramagnetic systems in solution, on the information contained in paramagnetic effects observed both in solution and in the solid state, and on novel paramagnetism-based tools for the investigation of conformational heterogeneity in protein-protein complexes or in multi-domain proteins.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, (FI), Italy.
| | | | | | | |
Collapse
|
73
|
Rathinavelan T, Im W. A novel strategy to determine protein structures using exclusively residual dipolar coupling. J Comput Chem 2008; 29:1640-9. [DOI: 10.1002/jcc.20923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
74
|
Affiliation(s)
- Joel R Tolman
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
75
|
Louhivuori M, Otten R, Salminen T, Annila A. Evidence of molecular alignment fluctuations in aqueous dilute liquid crystalline media. JOURNAL OF BIOMOLECULAR NMR 2007; 39:141-52. [PMID: 17701275 PMCID: PMC2039844 DOI: 10.1007/s10858-007-9182-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 07/02/2007] [Accepted: 07/19/2007] [Indexed: 05/09/2023]
Abstract
Protein dynamics can be studied by NMR measurements of aqueous dilute liquid crystalline samples. However, the measured residual dipolar couplings are sensitive not only to internal fluctuations but to all changes in internuclear vectors relative to the laboratory frame. We show that side-chain fluctuations and bond librations in the ps-ns time scale perturb the molecular shape and charge distribution of a small globular protein sufficiently to cause a noticeable variation in the molecular alignment. The alignment variation disperses the bond vectors of a conformational ensemble even further from the dispersion already caused by internal fluctuations of a protein. Consequently RDC-probed order parameters are lower than those obtained by laboratory frame relaxation measurements.
Collapse
Affiliation(s)
- Martti Louhivuori
- Department of Physical Sciences, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki 00014, Finland.
| | | | | | | |
Collapse
|
76
|
Wang X, Srisailam S, Yee AA, Lemak A, Arrowsmith C, Prestegard JH, Tian F. Domain-domain motions in proteins from time-modulated pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2007; 39:53-61. [PMID: 17657568 DOI: 10.1007/s10858-007-9174-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 05/14/2023]
Abstract
In recent years paramagnetic NMR derived structural constraints have become increasingly popular for the study of biomolecules. Some of these are based on the distance and angular dependences of pseudo contact shifts (PCSs). When modulated by internal motions PCSs also become sensitive reporters on molecular dynamics. We present here an investigation of the domain-domain motion in a two domain protein (PA0128) through time-modulation of PCSs. PA0128 is a protein of unknown function from Pseudomonas aeruginosa (PA) and contains a Zn(2+) binding site in the N-terminal domain. When substituted with Co(2+) in the binding site, several resonances from the C-terminal domain showed severe line broadening along the (15)N dimension. Relaxation compensated CPMG experiments revealed that the dramatic increase in the (15)N linewidth came from contributions of chemical exchange. Since several sites with perturbed relaxation are localized to a single beta-strand region, and since extracted timescales of motion for the perturbed sites are identical, and since the magnitude of the chemical exchange contributions is consistent with PCSs, the observed rate enhancements are interpreted as the result of concerted domain motion on the timescale of a few milliseconds. Given the predictability of PCS differences and the easy interpretation of the experimental results, we suggest that these effects might be useful in the study of molecular processes occurring on the millisecond to microsecond timescale.
Collapse
Affiliation(s)
- X Wang
- Southeast Collaboratory for Biomolecular NMR, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Rathinavelan T, Im W. Explicit treatment of force contribution from alignment tensor using overdetermined linear equations and its application in NMR structure determination. J Comput Chem 2007; 28:1858-64. [PMID: 17405113 DOI: 10.1002/jcc.20712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Residual dipolar coupling (RDC) provides valuable information about the orientation of each internuclear vector in a macromolecule with respect to the static magnetic field. However, structure determination utilizing RDC still remains challenging without additional restraints such as NOE. In this context, a novel approach has been developed to efficiently extract structural information from RDC by successive application of singular value decomposition (SVD) method in the course of NMR structure determination. Force contribution from the alignment tensor is rigorously formulated in the context of SVD, and assessments have been made to verify its numerical accuracy. The efficacy of this approach is illustrated by showing that RDC restraints alone can restore a distorted beta-hairpin to native-like structure using the replica-exchange molecular dynamics simulations.
Collapse
Affiliation(s)
- Thenmalarchelvi Rathinavelan
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
78
|
Feng L, Lee HS, Prestegard JH. NMR resonance assignments for sparsely 15N labeled proteins. JOURNAL OF BIOMOLECULAR NMR 2007; 38:213-9. [PMID: 17487550 DOI: 10.1007/s10858-007-9159-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 03/31/2007] [Accepted: 04/05/2007] [Indexed: 05/07/2023]
Abstract
For larger proteins, and proteins not amenable to expression in bacterial hosts, it is difficult to deduce structures using NMR methods based on uniform (13)C, (15)N isotopic labeling and observation of just nuclear Overhauser effects (NOEs). In these cases, sparse labeling with selected (15)N enriched amino acids and extraction of a wider variety of backbone-centered structural constraints is providing an alternate approach. A limitation, however, is the absence of resonance assignment strategies that work without uniform (15)N, (13)C labeling or preparation of numerous samples labeled with pairs of isotopically labeled amino acids. In this paper an approach applicable to a single sample prepared with sparse (15)N labeling in selected amino acids is presented. It relies on correlation of amide proton exchange rates, measured from data on the intact protein and on digested and sequenced peptides. Application is illustrated using the carbohydrate binding protein, Galectin-3. Limitations and future applications are discussed.
Collapse
Affiliation(s)
- Lianmei Feng
- Complex Carbohydrate Research Center, University of Geogia, Athens, GA 30602-4712, USA
| | | | | |
Collapse
|
79
|
Ryabov Y, Fushman D. Structural assembly of multidomain proteins and protein complexes guided by the overall rotational diffusion tensor. J Am Chem Soc 2007; 129:7894-902. [PMID: 17550252 PMCID: PMC2532536 DOI: 10.1021/ja071185d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a simple and robust approach that uses the overall rotational diffusion tensor as a structural constraint for domain positioning in multidomain proteins and protein-protein complexes. This method offers the possibility to use NMR relaxation data for detailed structure characterization of such systems provided the structures of individual domains are available. The proposed approach extends the concept of using long-range information contained in the overall rotational diffusion tensor. In contrast to the existing approaches, we use both the principal axes and principal values of protein's rotational diffusion tensor to determine not only the orientation but also the relative positioning of the individual domains in a protein. This is achieved by finding the domain arrangement in a molecule that provides the best possible agreement with all components of the overall rotational diffusion tensor derived from experimental data. The accuracy of the proposed approach is demonstrated for two protein systems with known domain arrangement and parameters of the overall tumbling: the HIV-1 protease homodimer and Maltose Binding Protein. The accuracy of the method and its sensitivity to domain positioning are also tested using computer-generated data for three protein complexes, for which the experimental diffusion tensors are not available. In addition, the proposed method is applied here to determine, for the first time, the structure of both open and closed conformations of a Lys48-linked diubiquitin chain, where domain motions render impossible accurate structure determination by other methods. The proposed method opens new avenues for improving structure characterization of proteins in solution.
Collapse
Affiliation(s)
| | - David Fushman
- Corresponding author: David Fushman, 1115 Biomolecular Sciences Bldg (#296), Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742-3360, Tel: (301) 405 3461, Fax: (301) 314 0386, E-mail:
| |
Collapse
|
80
|
Cicero DO, Contessa GM, Pertinhez TA, Gallo M, Katsuyama AM, Paci M, Farah CS, Spisni A. Solution structure of ApaG from Xanthomonas axonopodis pv. citri reveals a fibronectin-3 fold. Proteins 2007; 67:490-500. [PMID: 17256769 DOI: 10.1002/prot.21277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ApaG proteins are found in a wide variety of bacterial genomes but their function is as yet unknown. Some eukaryotic proteins involved in protein-protein interactions, such as the human polymerase delta-interacting protein (PDIP38) and the F Box A (FBA) proteins, contain ApaG homology domains. We have used NMR to determine the solution structure of ApaG protein from the plant pathogen Xanthomonas axonopodis pv. citri (ApaG(Xac)) with the aim to shed some light on its molecular function. ApaG(Xac) is characterized by seven antiparallel beta strands forming two beta sheets, one containing three strands (ABE) and the other four strands (GFCC'). Relaxation measurements indicate that the protein has a quite rigid structure. In spite of the presence of a putative GXGXXG pyrophosphate binding motif ApaG(Xac) does not bind ATP or GTP, in vitro. On the other hand, ApaG(Xac) adopts a fibronectin type III (Fn3) fold, which is consistent with the hypothesis that it is involved in mediating protein-protein interactions. The fact that the proteins of ApaG family do not display significant sequence similarity with the Fn3 domains found in other eukaryotic or bacterial proteins suggests that Fn3 domain may have arisen earlier in evolution than previously estimated.
Collapse
Affiliation(s)
- Daniel O Cicero
- Department of Chemical Science and Technology, University of Rome, Tor Vergata, Italy
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Domain mobility plays an essential role in the biological function of multidomain systems. The characteristic times of domain motions fall into the interval from nano- to milliseconds, amenable to NMR studies. Proper analysis of NMR relaxation data for these systems in solution has to account for interdomain motions, in addition to the overall tumbling and local intradomain dynamics. Here we propose a model of interdomain mobility in a multidomain protein, which considers domain reorientations as exchange/interconversion between two distinct conformational states of the molecule, combined with fully anisotropic overall tumbling. Analysis of 15N-relaxation data for Lys48-linked diubiquitin at pH 4.5 and 6.8 showed that this model adequately fits the experimental data and allows characterization of both structural and motional properties of diubiquitin, thus providing information about the relative orientation of ubiquitin domains in both interconverting states. The analysis revealed that the two domains reorient on a time scale of 9-30 ns, with the amplitudes sufficient for allowing a protein ligand access to the binding sites sequestered at the interface in the closed conformation. The analysis of a possible mechanism controlling the equilibrium between the interconverting states in diubiquitin points toward protonation of His68, which results in three different charged states of the molecule, with zero, +e, and +2e net charge. Only two of the three states are noticeably populated at pH 4.5 or 6.8, which assures applicability of the two-state model to diubiquitin at these conditions. We also compare our model with the "extended model-free" approach and discuss possible future developments of the model.
Collapse
Affiliation(s)
| | - David Fushman
- All correspondence should be addressed to, David Fushman, 1115 Biomolecular Sciences Bldg (#296), Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742-3360, USA, Tel: (301) 405 3461, Fax: (301) 314 0386, E-mail:
| |
Collapse
|
82
|
Suh JY, Iwahara J, Clore GM. Intramolecular domain-domain association/dissociation and phosphoryl transfer in the mannitol transporter of Escherichia coli are not coupled. Proc Natl Acad Sci U S A 2007; 104:3153-8. [PMID: 17360622 PMCID: PMC1805604 DOI: 10.1073/pnas.0609103104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli mannitol transporter (II(Mtl)) comprises three domains connected by flexible linkers: a transmembrane domain (C) and two cytoplasmic domains (A and B). II(Mtl) catalyzes three successive phosphoryl-transfer reactions: one intermolecular (from histidine phosphocarrier protein to the A domain) and two intramolecular (from the A to the B domain and from the B domain to the incoming sugar bound to the C domain). A key functional requirement of II(Mtl) is that the A and B cytoplasmic domains be able to rapidly associate and dissociate while maintaining reasonably high occupancy of an active stereospecific AB complex to ensure effective phosphoryl transfer along the pathway. We have investigated the rate of intramolecular domain-domain association and dissociation in IIBA(Mtl) by using (1)H relaxation dispersion spectroscopy in the rotating frame. The open, dissociated state (comprising an ensemble of states) and the closed, associated state (comprising the stereospecific complex) are approximately equally populated. The first-order rate constants for intramolecular association and dissociation are 1.7 (+/-0.3) x 10(4) and 1.8 (+/-0.4) x 10(4) s(-1), respectively. These values compare to rate constants of approximately 500 s(-1) for A --> B and B --> A phosphoryl transfer, derived from qualitative line-shape analysis of (1)H-(15)N correlation spectra taken during the course of active catalysis. Thus, on average, approximately 80 association/dissociation events are required to effect a single phosphoryl-transfer reaction. We conclude that intramolecular phosphoryl transfer between the A and B domains of II(Mtl) is rate-limited by chemistry and not by the rate of formation or dissociation of a stereospecific complex in which the active sites are optimally apposed.
Collapse
Affiliation(s)
- Jeong-Yong Suh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Junji Iwahara
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
83
|
Maximciuc AA, Putkey JA, Shamoo Y, Mackenzie KR. Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode. Structure 2007; 14:1547-56. [PMID: 17027503 DOI: 10.1016/j.str.2006.08.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 08/29/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
Calmodulin regulates ryanodine receptor-mediated Ca(2+) release through a conserved binding site. The crystal structure of Ca(2+)-calmodulin bound to this conserved site reveals that calmodulin recognizes two hydrophobic anchor residues at a novel "1-17" spacing that brings the calmodulin lobes close together but prevents them from contacting one another. NMR residual dipolar couplings demonstrate that the detailed structure of each lobe is preserved in solution but also show that the lobes experience domain motions within the complex. FRET measurements confirm the close approach of the lobes in binding the 1-17 target and show that calmodulin binds with one lobe to a peptide lacking the second anchor. We suggest that calmodulin regulates the Ca(2+) channel by switching between the contiguous binding mode seen in our crystal structure and a state where one lobe of calmodulin contacts the conserved binding site while the other interacts with a noncontiguous site on the channel.
Collapse
Affiliation(s)
- Adina A Maximciuc
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
84
|
Abstract
Solution NMR spectroscopy represents a powerful tool for examining the structure and function of biological macromolecules. The advent of multidimensional (2D-4D) NMR, together with the widespread use of uniform isotopic labeling of proteins and RNA with the NMR-active isotopes, 15N and 13C, opened the door to detailed analyses of macromolecular structure, dynamics, and interactions of smaller macromolecules (< approximately 25 kDa). Over the past 10 years, advances in NMR and isotope labeling methods have expanded the range of NMR-tractable targets by at least an order of magnitude. Here we briefly describe the methodological advances that allow NMR spectroscopy of large macromolecules and their complexes and provide a perspective on the wide range of applications of NMR to biochemical problems.
Collapse
Affiliation(s)
- Mark P Foster
- Department of Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
85
|
Marintchev A, Frueh D, Wagner G. NMR methods for studying protein-protein interactions involved in translation initiation. Methods Enzymol 2007; 430:283-331. [PMID: 17913643 DOI: 10.1016/s0076-6879(07)30012-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Translation in the cell is carried out by complex molecular machinery involving a dynamic network of protein-protein and protein-RNA interactions. Along the multiple steps of the translation pathway, individual interactions are constantly formed, remodeled, and broken, which presents special challenges when studying this sophisticated system. NMR is a still actively developing technology that has recently been used to solve the structures of several translation factors. However, NMR also has a number of other unique capabilities, of which the broader scientific community may not always be aware. In particular, when studying macromolecular interactions, NMR can be used for a wide range of tasks from testing unambiguously whether two molecules interact to solving the structure of the complex. NMR can also provide insights into the dynamics of the molecules, their folding/unfolding, as well as the effects of interactions with binding partners on these processes. In this chapter, we have tried to summarize, in a popular format, the various types of information about macromolecular interactions that can be obtained with NMR. Special attention is given to areas where the use of NMR provides unique information that is difficult to obtain with other approaches. Our intent was to help the general scientific audience become more familiar with the power of NMR, the current status of the technological limitations of individual NMR methods, as well as the numerous applications, in particular for studying protein-protein interactions in translation.
Collapse
Affiliation(s)
- Assen Marintchev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
86
|
Pennestri M, Melino S, Contessa GM, Casavola EC, Paci M, Ragnini-Wilson A, Cicero DO. Structural basis for the interaction of the myosin light chain Mlc1p with the myosin V Myo2p IQ motifs. J Biol Chem 2006; 282:667-79. [PMID: 17074768 DOI: 10.1074/jbc.m607016200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin, regulatory, and essential myosin light chain are evolutionary conserved proteins that, by binding to IQ motifs of target proteins, regulate essential intracellular processes among which are efficiency of secretory vesicles release at synapsis, intracellular signaling, and regulation of cell division. The yeast Saccharomyces cerevisiae calmodulin Cmd1 and the essential myosin light chain Mlc1p share the ability to interact with the class V myosin Myo2p and Myo4 and the class II myosin Myo1p. These myosins are required for vesicle, organelle, and mRNA transport, spindle orientation, and cytokinesis. We have used the budding yeast model system to study how calmodulin and essential myosin light chain selectively regulate class V myosin function. NMR structural analysis of uncomplexed Mlc1p and interaction studies with the first three IQ motifs of Myo2p show that the structural similarities between Mlc1p and the other members of the EF-hand superfamily of calmodulin-like proteins are mainly restricted to the C-lobe of these proteins. The N-lobe of Mlc1p presents a significantly compact and stable structure that is maintained both in the free and complexed states. The Mlc1p N-lobe interacts with the IQ motif in a manner that is regulated both by the IQ motifs sequence as well as by light chain structural features. These characteristic allows a distinctive interaction of Mlc1p with the first IQ motif of Myo2p when compared with calmodulin. This finding gives us a novel view of how calmodulin and essential light chain, through a differential binding to IQ1 of class V myosin motor, regulate this activity during vegetative growth and cytokinesis.
Collapse
Affiliation(s)
- Matteo Pennestri
- Department of Chemical Science and Technology, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
87
|
Residual Dipolar Couplings Report on the Active Conformation of Rhodopsin-Bound Protein Fragments. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_2006_088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
88
|
Ryabov Y, Fushman D. Analysis of interdomain dynamics in a two-domain protein using residual dipolar couplings together with 15N relaxation data. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S143-51. [PMID: 16823894 DOI: 10.1002/mrc.1822] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper, we propose the idea that simultaneous analysis of NMR relaxation data and residual dipolar couplings (RDCs) can provide information about interdomain dynamics in a multidomain protein, which cannot be derived from each data set separately. Specifically, such an approach can be useful when the interdomain motions occur on a timescale comparable to or slower than the overall tumbling in solution. We analyze residual dipolar couplings together with 15N relaxation data for Lys48-linked di-ubiquitin (Ub2), in which interdomain dynamics are described as interconversion between two distinct conformational states of the protein. Our results show that 15N relaxation and residual dipolar coupling data can be used as two complementary experimental data sets for consistent characterization of interdomain conformations and dynamics in this dual-domain protein.
Collapse
Affiliation(s)
- Yaroslav Ryabov
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
89
|
Modern High Resolution NMR for the Study of Structure, Dynamics and Interactions of Biological Macromolecules. Z PHYS CHEM 2006. [DOI: 10.1524/zpch.2006.220.5.567] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
90
|
Abstract
Domain orientation and dynamics can play an essential role in the function of multidomain proteins. Lys48-linked polyubiquitin chains, the principal signal for proteasomal protein degradation, adopt a closed conformation at physiological conditions, in which the functionally important residues Leu8, Ile44, and Val70 are sequestered at the interdomain interface. This interface must open in order for these groups to become available for interactions with various chain-recognition factors. Knowledge of the mechanism of domain motion leading to the opening of the interdomain interface in polyubiqutin is, therefore, essential for the understanding of the processes controlling molecular recognition events in polyubiquitin signaling. Here we use NMR to characterize the interdomain dynamics that open the interface in a di-ubiquitin chain. This process occurs via domain reorientations on a 10-ns time scale and with the amplitudes that are sufficient for making functionally important hydrophobic residues in polyubiquitin available for direct interactions with various ubiquitin-binding factors. The analysis revealed the structures of the interconverting conformational states of di-ubiquitin and the rates and amplitudes of this process at near-physiological and acidic pH. The proposed mechanism of domain reorientation is quite general and could serve as a paradigm of interdomain mobility in other multidomain systems.
Collapse
Affiliation(s)
- Yaroslav Ryabov
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742-3360, USA
| | | |
Collapse
|
91
|
Clore GM, Schwieters CD. Concordance of Residual Dipolar Couplings, Backbone Order Parameters and Crystallographic B-factors for a Small α/β Protein: A Unified Picture of High Probability, Fast Atomic Motions in Proteins. J Mol Biol 2006; 355:879-86. [PMID: 16343537 DOI: 10.1016/j.jmb.2005.11.042] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/03/2005] [Accepted: 11/14/2005] [Indexed: 11/28/2022]
Abstract
Using ensemble refinement of the third immunoglobulin binding domain (GB3) of streptococcal protein G (a small alpha/beta protein of 56 residues), we demonstrate that backbone (N-H, N-C', Calpha-Halpha, Calpha-C') residual dipolar coupling data in five independent alignment media, generalized order parameters from 15N relaxation data, and B-factors from a high-resolution (1.1A), room temperature crystal structure are entirely consistent with one another within experimental error. The optimal ensemble size representation is between four and eight, as assessed by complete cross-validation of the residual dipolar couplings. Thus, in the case of GB3, all three observables reflect the same low-amplitude anisotropic motions arising from fluctuations in backbone phi/psi torsion angles in the picosecond to nanosecond regime in both solution and crystalline environments, yielding a unified picture of fast, high-probability atomic motions in proteins. An understanding of these motions is crucial for understanding the impact of protein dynamics on protein function, since they provide part of the driving force for triggered conformational changes that occur, for example, upon ligand binding, signal transduction and enzyme catalysis.
Collapse
Affiliation(s)
- G Marius Clore
- Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| | | |
Collapse
|
92
|
Ogura K, Nobuhisa I, Yuzawa S, Takeya R, Torikai S, Saikawa K, Sumimoto H, Inagaki F. NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox-derived proline-rich peptide. J Biol Chem 2005; 281:3660-8. [PMID: 16326715 DOI: 10.1074/jbc.m505193200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phagocyte NADPH oxidase plays a crucial role in host defense against microbial infections by generating reactive oxygen species. It is a multisubunit enzyme composed of membrane-bound flavocytochrome b558 as well as cytosolic components, including p47phox, which is essential for assembly of the complex. When phagocytes are activated, the cytosolic components of the NADPH oxidase translocate to flavocytochrome b558 due to binding of the tandem Src homology 3 (SH3) domains of p47phox to a proline-rich region in p22phox, a subunit of flavocytochrome b558. Using NMR titration, we first identified the proline-rich region of p22phox that is essential for binding to the tandem SH3 domains of p47phox. We subsequently determined the solution structure of the p47phox tandem SH3 domains complexed with the proline-rich peptide of p22phox using NMR spectroscopy. In contrast to the intertwined dimer reported for the crystal state, the solution structure is a monomer. The central region of the p22phox peptide forms a polyproline type II helix that is sandwiched by the N- and C-terminal SH3 domains, as was observed in the crystal structure, whereas the C-terminal region of the peptide takes on a short alpha-helical conformation that provides an additional binding site with the N-terminal SH3 domain. Thus, the C-terminal alpha-helical region of the p22phox peptide increases the binding affinity for the tandem SH3 domains of p47phox more than 10-fold.
Collapse
Affiliation(s)
- Kenji Ogura
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12 W-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Mackereth CD, Simon B, Sattler M. Extending the Size of Protein-RNA Complexes Studied by Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2005; 6:1578-84. [PMID: 16075426 DOI: 10.1002/cbic.200500106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
94
|
Cierpicki T, Bushweller JH, Derewenda ZS. Probing the supramodular architecture of a multidomain protein: the structure of syntenin in solution. Structure 2005; 13:319-27. [PMID: 15698575 DOI: 10.1016/j.str.2004.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 11/30/2004] [Accepted: 12/11/2004] [Indexed: 11/17/2022]
Abstract
Full understanding of the mechanism of function of multidomain proteins is dependent on our knowledge of their supramodular architecture in solution. This is a nontrivial task for both X-ray crystallography and NMR, because intrinsic flexibility makes crystallization of these proteins difficult, while their size creates a challenge for NMR. Here, we describe synergistic application of data derived from X-ray crystallography and NMR residual dipolar couplings (RDCs) to address the question of the supramodular structure of a two-domain protein, syntenin. Syntenin is a 32 kDa molecule containing two PDZ domains and is involved in cytoskeleton-membrane organization. We show that the mutual disposition of the PDZ domains clearly differs from that seen in the crystal structure, and we provide evidence that N- and C-terminal fragments of syntenin, hitherto presumed to lack ordered structure, contain folded structural elements in the full-length protein in contact with the PDZ tandem.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Molecular Physiology, and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
95
|
Shekar SC, Wu H, Fu Z, Yip SC, Cahill SM, Girvin ME, Backer JM. Mechanism of Constitutive Phosphoinositide 3-Kinase Activation by Oncogenic Mutants of the p85 Regulatory Subunit. J Biol Chem 2005; 280:27850-5. [PMID: 15932879 DOI: 10.1074/jbc.m506005200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p85/p110 phosphoinositide 3-kinases regulate multiple cell functions and are frequently mutated in human cancer. The p85 regulatory subunit stabilizes and inhibits the p110 catalytic subunit. The minimal fragment of p85 capable of regulating p110 is the N-terminal SH2 domain linked to the coiled-coil iSH2 domain (referred to as p85ni). We have previously proposed that the conformationally rigid iSH2 domain tethers p110 to p85, facilitating regulatory interactions between p110 and the p85 nSH2 domain. In an oncogenic mutant of murine p85, truncation at residue 571 leads to constitutively increased phosphoinositide 3-kinase activity, which has been proposed to result from either loss of an inhibitory Ser-608 autophosphorylation site or altered interactions with cellular regulatory factors. We have examined this mutant (referred to as p65) in vitro and find that p65 binds but does not inhibit p110, leading to constitutive p110 activity. This activated phenotype is observed with recombinant proteins in the absence of cellular factors. Importantly, this effect is also produced by truncating p85ni at residue 571. Thus, the phenotype is not because of loss of the Ser-608 inhibitory autophosphorylation site, which is not present in p85ni. To determine the structural basis for the phenotype of p65, we used a broadly applicable spin label/NMR approach to define the positioning of the nSH2 domain relative to the iSH2 domain. We found that one face of the nSH2 domain packs against the 581-593 region of the iSH2 domain. The loss of this interaction in the truncated p65 would remove the orienting constraints on the nSH2 domain, leading to a loss of p110 regulation by the nSH2. Based on these findings, we propose a general model for oncogenic mutants of p85 and p110 in which disruption of nSH2-p110 regulatory contacts leads to constitutive p110 activity.
Collapse
Affiliation(s)
- S Chandra Shekar
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
van Dijk ADJ, Fushman D, Bonvin AMJJ. Various strategies of using residual dipolar couplings in NMR-driven protein docking: Application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Proteins 2005; 60:367-81. [PMID: 15937902 DOI: 10.1002/prot.20476] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution structures of the free molecules, to model the structure of a complex in solution based solely on chemical shift perturbation (CSP) data in combination with orientational restraints from residual dipolar couplings (RDCs) when available. RDCs can be incorporated into the docking following various strategies: as direct restraints and/or as intermolecular intervector projection angle restraints (Meiler et al., J Biomol NMR 2000;16:245-252). The advantage of the latter for docking is that they directly define the relative orientation of the molecules. A combined protocol in which RDCs are first introduced as intervector projection angle restraints and at a later stage as direct restraints is shown here to give the best performance. This approach, implemented in our information-driven docking approach HADDOCK (Dominguez et al., J Am Chem Soc 2003;125:1731-1737), is used to determine the solution structure of the Lys48-linked di-ubiquitin, for which chemical shift mapping, RDCs, and (15)N-relaxation data have been previously obtained (Varadan et al., J Mol Biol 2002;324:637-647). The resulting structures, derived from CSP and RDC data, are cross-validated using (15)N-relaxation data. The solution structure differs from the crystal structure by a 20 degrees rotation of the two ubiquitin units relative to each other.
Collapse
Affiliation(s)
- Aalt D J van Dijk
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
97
|
Choowongkomon K, Carlin CR, Sönnichsen FD. A structural model for the membrane-bound form of the juxtamembrane domain of the epidermal growth factor receptor. J Biol Chem 2005; 280:24043-52. [PMID: 15840573 DOI: 10.1074/jbc.m502698200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family involved in the regulation of cellular proliferation and differentiation. Its juxtamembrane domain (JX), the region located between the transmembrane and kinase domains, plays important roles in receptor trafficking. Two sorting signals, a PXXP motif and a 658LL659 motif, are responsible for basolateral sorting in polarized epithelial cells, and a 679LL680 motif targets the ligand-activated receptor for lysosomal degradation. To understand the regulation of these signals, we characterized the structural properties of recombinant JX domain in aqueous solution and in dodecylphosphocholine (DPC) detergent. JX is inherently unstructured in aqueous solution, albeit a nascent helix encompasses the lysosomal sorting signal. In DPC micelles, structures derived from NMR data showed three amphipathic, helical segments. A large, internally inconsistent group of long range nuclear Overhauser effects suggest a close proximity of the helices, and the presence of significant conformational averaging. Models were determined for the average JX conformation using restraints representing the translational restriction due to micelle-surface adsorption, and the helix orientations were determined from residual dipolar couplings. Two equivalent average structural models were obtained that differ only in the relative orientation between first and second helices. In these models, the 658LL659 and 679LL680 motifs are located in the first and second helices and face the micelle surface, whereas the PXXP motif is located in a flexible helix-connecting region. The data suggest that the activity of these signals may be regulated by their membrane association and restricted accessibility in the intact receptor.
Collapse
Affiliation(s)
- Kiattawee Choowongkomon
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
98
|
Revington M, Zhang Y, Yip GNB, Kurochkin AV, Zuiderweg ERP. NMR investigations of allosteric processes in a two-domain Thermus thermophilus Hsp70 molecular chaperone. J Mol Biol 2005; 349:163-83. [PMID: 15876376 DOI: 10.1016/j.jmb.2005.03.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/08/2005] [Accepted: 03/10/2005] [Indexed: 11/24/2022]
Abstract
Hsp70 chaperones are two-domain proteins that assist in intra-cellular protein (re) folding processes in all species. The protein folding activity of the substrate binding domain of the Hsp70s is regulated by nucleotide binding at the nucleotide-binding domain through an as yet undefined heterotropic allosteric mechanism. The available structures of the isolated domains of Hsp70s have given very limited indications of nucleotide-induced conformational changes that could modulate the affinity for substrate proteins. Here, we present a multi-dimensional NMR study of a prokaryotic Hsp70 homolog, Thermus thermophilus DnaK, using a 54kDa construct containing both nucleotide binding domain and most of the substrate binding domain. It is determined that the nucleotide binding domain and substrate binding domain are closely associated in all ligand states studied. Comparison of the assigned NMR spectra of the two-domain construct with those of the previously studied isolated nucleotide binding domain, allowed the identification of the nucleotide binding domain-substrate binding domain interface. A global three-dimensional structure was obtained for the two-domain construct on the basis of this information and of NMR residual dipolar couplings measurements. This is the first experimental elucidation of the relative positioning of the nucleotide binding domain and substrate binding domain for any Hsp70 chaperone. Comparisons of NMR data between various ligand states including nucleotide-free, ATP, ADP.Pi and ADP.Pi+ peptide bound, identified residues involved in the allosteric inter-domain communication. In particular, peptide binding to the substrate binding domain was found to cause conformational changes in the NBD extending to the nucleotide binding pocket. Detailed analysis suggests that the inter-domain interface becomes tighter in the (nucleotide binding domain ligation/substrate binding domain ligation) order ATP/apo, ADP.Pi/apo ADP.Pi/peptide.
Collapse
Affiliation(s)
- Matthew Revington
- Biophysics Research Division and Departments of Biological Chemistry and Chemistry, The University of Michigan, 930 N, University Avenue, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
99
|
Kay LE. NMR studies of protein structure and dynamics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 173:193-207. [PMID: 15780912 DOI: 10.1016/j.jmr.2004.11.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 05/24/2023]
Abstract
Recent advances in solution NMR spectroscopy have significantly extended the spectrum of problems that can now be addressed with this technology. In particular, studies of proteins with molecular weights on the order of 100 kDa are now possible at a level of detail that was previously reserved for much smaller systems. An example of the sort of information that is now accessible is provided in a study of malate synthase G, a 723 residue enzyme that has been a focal point of research efforts in my laboratory. Details of the labeling schemes that have been employed and optimal experiments for extraction of structural and dynamics information on this protein are described. NMR studies of protein dynamics, in principle, give insight into the relation between motion and function. A description of deuterium-based spin relaxation methods for the investigation of side chain dynamics is provided. Examples where millisecond (ms) time scale dynamics play an important role and where relaxation dispersion NMR spectroscopy has been particularly informative, including applications involving the membrane enzyme PagP and mutants of the Fyn SH3 domain that fold on a ms time scale, are presented.
Collapse
Affiliation(s)
- Lewis E Kay
- Contribution from the Protein Engineering Network Centers of Excellence and the Department of Medical Genetics, The University of Toronto, Toronto, Ont., Canada M5S 1A8.
| |
Collapse
|
100
|
Bouvignies G, Bernadó P, Blackledge M. Protein backbone dynamics from N-HN dipolar couplings in partially aligned systems: a comparison of motional models in the presence of structural noise. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 173:328-38. [PMID: 15780926 DOI: 10.1016/j.jmr.2005.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 12/22/2004] [Indexed: 05/09/2023]
Abstract
Residual dipolar couplings (RDCs) provide excellent probes for the exploration of dynamics in biomolecules on biologically relevant time-scales. Applying geometric motional models in combination with high-resolution structures to fit experimental RDCs allows the extraction of local dynamic amplitudes of peptide planes in proteins using only a limited number of data points. Here we compare the behaviour of three simple and intuitive dynamic modes: the Gaussian axial fluctuation model (1D-GAF), the two-site jump model, and a model supposing axially symmetric motion about a mean orientation. The requirement of a structural model makes this kind of methodology potentially very sensitive to structural imprecision. Numerical simulations of RDC dynamic averaging under different regimes show that the anisotropic motional models are more geometrically stringent than the axially symmetric model making it more difficult to alias structural noise as artificial dynamic amplitudes. Indeed, it appears that the model extracts accurate motional amplitudes even in the presence of significant structural error. We also show that a two-site jump model, also assuming the (alpha)C(i-1)-(alpha)C(i) as rotation axis, can only be distinguished from the previously developed GAF model beyond amplitude/jumps of around 40 degrees. The importance of appropriate estimation of the molecular alignment tensor for determination of local motional amplitudes is also illustrated here. We demonstrate a systematic scaling of extracted dynamic amplitudes if a static structure is assumed when determining the alignment tensor from dynamically averaged RDCs. As an example an artificial increase of 0.14 (0.85 compared to the expected 0.71) is observed in the extracted S2 if a pervasive 20 degrees GAF motion is present that is ignored in the tensor determination. Finally we apply a combined approach using the most appropriate motional model, to complete the analysis of dynamic motions from protein G.
Collapse
Affiliation(s)
- Guillaume Bouvignies
- Institut de Biologie Structurale Jean-Pierre Ebel, U.J.F.-C.N.R.S.-C.E.A., 41 rue Jules Horowitz, 38027 Grenoble Cedex, France
| | | | | |
Collapse
|