51
|
Parsa A, Salout SA. Investigation of the antioxidant activity of electrosynthesized polyaniline/reduced graphene oxide nanocomposite in a binary electrolyte system on ABTS and DPPH free radicals. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
52
|
Wang Y, Choi HK, Brinckmann JA, Jiang X, Huang L. Chemical analysis of Panax quinquefolius (North American ginseng): A review. J Chromatogr A 2015; 1426:1-15. [DOI: 10.1016/j.chroma.2015.11.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
|
53
|
Wang M, Zhang XJ, Liu F, Hu Y, He C, Li P, Su H, Wan JB. Saponins isolated from the leaves of Panax notoginseng protect against alcoholic liver injury via inhibiting ethanol-induced oxidative stress and gut-derived endotoxin-mediated inflammation. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
54
|
Choi SH, Jung SW, Lee BH, Kim HJ, Hwang SH, Kim HK, Nah SY. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions. Front Pharmacol 2015; 6:245. [PMID: 26578955 PMCID: PMC4621423 DOI: 10.3389/fphar.2015.00245] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/12/2015] [Indexed: 01/21/2023] Open
Abstract
Ginseng, the root of Panax ginseng, is used as a traditional medicine. Despite the long history of the use of ginseng, there is no specific scientific or clinical rationale for ginseng pharmacology besides its application as a general tonic. The ambiguous description of ginseng pharmacology might be due to the absence of a predominant active ingredient that represents ginseng pharmacology. Recent studies show that ginseng abundantly contains lysophosphatidic acids (LPAs), which are phospholipid-derived growth factor with diverse biological functions including those claimed to be exhibited by ginseng. LPAs in ginseng form a complex with ginseng proteins, which can bind and deliver LPA to its cognate receptors with a high affinity. As a first messenger, gintonin produces second messenger Ca2+ via G protein-coupled LPA receptors. Ca2+ is an intracellular mediator of gintonin and initiates a cascade of amplifications for further intercellular communications by activation of Ca2+-dependent kinases, receptors, gliotransmitter, and neurotransmitter release. Ginsenosides, which have been regarded as primary ingredients of ginseng, cannot elicit intracellular [Ca2+]i transients, since they lack specific cell surface receptor. However, ginsenosides exhibit non-specific ion channel and receptor regulations. This is the key characteristic that distinguishes gintonin from ginsenosides. Although the current discourse on ginseng pharmacology is focused on ginsenosides, gintonin can definitely provide a mode of action for ginseng pharmacology that ginsenosides cannot. This review article introduces a novel concept of ginseng ligand-LPA receptor interaction and proposes to establish a paradigm that shifts the focus from ginsenosides to gintonin as a major ingredient representing ginseng pharmacology.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Seok-Won Jung
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, Sangji University , Wonju, South Korea
| | - Ho-Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine , Daejeon, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| |
Collapse
|
55
|
Allison RR. Radiobiological modifiers in clinical radiation oncology: current reality and future potential. Future Oncol 2015; 10:2359-79. [PMID: 25525845 DOI: 10.2217/fon.14.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy can successfully ablate tumors. However, the same ionization process that destroys a cancer can also permanently damage surrounding organs resulting in unwanted clinical morbidity. Therefore, modern radiation therapy attempts to minimize dose to normal tissue to prevent side effects. Still, as tumors and normal tissues intercalate, the risk of normal tissue injury often may prevent tumoricidal doses of radiation therapy to be delivered. This paper will review current outcomes and limitations of radiobiological modifiers that may selectively enhance the radiosensitivity of tumors as well as parallel techniques that may protect normal tissues from radiation injury. Future endeavors based in part upon newly elucidated genetic pathways will be highlighted.
Collapse
|
56
|
Abstract
Saponins are a large family of amphiphilic glycosides of steroids and triterpenes found in plants and some marine organisms. By expressing a large diversity of structures on both sugar chains and aglycones, saponins exhibit a wide range of biological and pharmacological properties and serve as major active principles in folk medicines, especially in traditional Chinese medicines. Isolation of saponins from natural sources is usually a formidable task due to the microheterogeneity of saponins in Nature. Chemical synthesis can provide access to large amounts of natural saponins as well as congeners for understanding their structure-activity relationships and mechanisms of action. This article presents a comprehensive account on chemical synthesis of saponins. First highlighted are general considerations on saponin synthesis, including preparation of aglycones and carbohydrate building blocks, assembly strategies, and protecting-group strategies. Next described is the state of the art in the synthesis of each type of saponins, with an emphasis on those representative saponins having sophisticated structures and potent biological activities.
Collapse
Affiliation(s)
- You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Stephane Laval
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
57
|
Ginsenoside Rg1, a potential JNK inhibitor, protects against ischemia/reperfusion-induced liver damage. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
58
|
Ginsenoside Rb1 attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling pathways. Vascul Pharmacol 2015; 73:86-95. [PMID: 25912763 DOI: 10.1016/j.vph.2015.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/08/2015] [Accepted: 04/13/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA), a life-threatening vascular disease, accounts for approximately 10% of the morbidity in people over 65 years old. No satisfactory approach is available to treat AAA. Ginsenosides Rb1 and Rg1 are primary ingredients of Panax notoginseng for the treatment of cardiovascular diseases, but their impact on AAA is unknown. METHODS AND RESULTS An AAA model was established using an Ang II infusion in ApoE(-/-) mice. After continuous stimulation of Ang II for 28 days, suprarenal aortic aneurysms developed in 77% mice and 12% mice died suddenly due to AAA rupture. Administration of ginsenoside Rb1 (20 mg/kg/day), but not ginsenoside Rg1, significantly reduced the incidence and mortality of AAA. Ginsenoside Rb1 treatment dramatically suppressed Ang II-induced diameter enlargement, extracellular matrix degradation, matrix metalloproteinase (MMP) production, inflammatory cell infiltration, and vascular smooth muscle cell (VSMC) dysfunction. Mechanistic studies indicated that the protective effects of ginsenoside Rb1 were associated with the inactivation of JNK and p38 MAPK signaling pathways. A specific activator of JNK and p38, anisomycin, nearly abolished ginsenoside Rb1-driven suppression of MMP secretion by VSMCs. CONCLUSIONS Ginsenoside Rb1, as a potential anti-AAA agent, suppressed AAA through inhibiting the JNK and p38 signaling pathways.
Collapse
|
59
|
Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015; 33:717-35. [PMID: 25747290 DOI: 10.1016/j.biotechadv.2015.03.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/28/2015] [Accepted: 03/01/2015] [Indexed: 12/20/2022]
Abstract
Medicinal plants are essential for improving human health, and around 75% of the population in developing countries relies mainly on herb-based medicines for health care. As the king of herb plants, ginseng has been used for nearly 5,000 years in the oriental and recently in western medicines. Among the compounds studied in ginseng plants, ginsenosides have been shown to have multiple medical effects such as anti-oxidative, anti-aging, anti-cancer, adaptogenic and other health-improving activities. Ginsenosides belong to a group of triterpene saponins (also called ginseng saponins) that are found almost exclusively in Panax species and accumulated especially in the plant roots. In this review, we update the conserved and diversified pathway/enzyme biosynthesizing ginsenosides which have been presented. Particularly, we highlight recent milestone works on functional characterization of key genes dedicated to the production of ginsenosides, and their application in engineering plants and yeast cells for large-scale production of ginsenosides.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea.
| |
Collapse
|
60
|
Wang RF, Zheng MM, Cao YD, Li H, Li CX, Xu JH, Wang ZT. Enzymatic transformation of vina-ginsenoside R₇ to rare notoginsenoside ST-4 using a new recombinant glycoside hydrolase from Herpetosiphon aurantiacus. Appl Microbiol Biotechnol 2015; 99:3433-42. [PMID: 25676336 DOI: 10.1007/s00253-015-6446-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 11/25/2022]
Abstract
An eco-friendly and convenient preparation method for notoginsenoside ST-4 has been established by completely transforming vina-ginsenoside R7 using a recombinant glycosidase hydrolyzing enzyme (HaGH03) from Herpetosiphon aurantiacus. This enzyme specifically hydrolyzed the glucose at the C-20 position but not the external xylose or two inner glucoses at position C-3. Protein sequence BLAST revealed that HaGH03, composed of 749 amino acids and presumptively listed as a member of the family 3 glycoside hydrolases, has highest identity (48 %) identity with a thermostable β-glucosidase B, which was not known of any functions for ginsenoside transformation. The steady state kinetic parameters for purified HaGH03 measured against p-nitrophenyl β-D-glucopyranoside and vina-ginsenoside R7 were K M = 5.67 ± 0.24 μM and 0.59 ± 0.23 mM, and k cat = 69.2 ± 0.31/s and 2.15 ± 0.46/min, respectively. HaGH03 converted 2.5 mg/mL of vina-ginsenoside R7 to ST-4 with a molar yield of 100 % and a space-time yield of 104 mg/L/h in optimized conditions. These results underscore that HaGH03 has much potential for the effective preparation of target ginsenosides possessing valuable pharmacological activities. This is the first report identifying an enzyme that has the ability to transform vina-ginsenoside R7 and provides an approach to preparing rare notoginsenoside ST-4.
Collapse
Affiliation(s)
- Ru-Feng Wang
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 210038, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
61
|
Lee SJ, Lee WJ, Chang SE, Lee GY. Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor. J Ginseng Res 2015. [PMID: 26199555 PMCID: PMC4506376 DOI: 10.1016/j.jgr.2015.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Panax ginseng has been used to prolong longevity and is believed to be useful for improving skin complexion. Ginsenosides are the most active components isolated from ginseng, and ginsenoside Rg3 (G-Rg3) in particular has been demonstrated to possess antioxidative, antitumorigenic, and anti-inflammatory properties. The aim of this study was to examine the ability of G-Rg3 to inhibit melanogenesis. Methods The effects of G-Rg3 on melanin contents and the protein levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related protein 1 (TRP1) were evaluated. Melanogenesis-regulating signaling molecules such as Akt and extracellular signal-regulated kinase (ERK) were also examined to explore G-Rg3-induced antimelanogenic mechanisms. Results G-Rg3 was found to significantly inhibit the synthesis of melanin in normal human epidermal melanocytes and B16F10 cells in a dose-dependent manner. The activity of cellular tyrosinase and the expression of MITF, tyrosinase, and TRP1 were all reduced, whereas ERK was strongly activated. PD98059 (a specific inhibitor of ERK) attenuated the G-Rg3-induced inhibition of melanin synthesis and tyrosinase activity. Conclusion Taken together, these results showed that G-Rg3 induces the activation of ERK, which accounts for its antimelanogenic effects. G-Rg3 may be a promising safe skin-whitening agent, adding to the long list of uses of P. ginseng for the enhancement of skin beauty.
Collapse
Affiliation(s)
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ga-Young Lee
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
62
|
Zhang YC, Li G, Jiang C, Yang B, Yang HJ, Xu HY, Huang LQ. Tissue-specific distribution of ginsenosides in different aged ginseng and antioxidant activity of ginseng leaf. Molecules 2014; 19:17381-99. [PMID: 25353387 PMCID: PMC6271886 DOI: 10.3390/molecules191117381] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/26/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to systematically evaluate the effect of the cultivation year on the quality of different ginseng tissues. Qualitative and quantitative analyses of ginsenosides were conducted using a UPLC-UV-MS method. Eight main ginsenosides in three tissues (leaf, rhizome and main root) and four parts (periderm, phloem, cambium and xylem) of ginseng aged from 1 to 13 years were determined using a UPLC-PDA method. Additionally, the antioxidant capacities of ginseng leaves were analyzed by the DPPH, ABTS and HRSA methods. It was found that the contents of ginsenosides increased with cultivation years, causing a sequential content change of ginsenosides in an organ-specific manner: leaf > rhizome > main root. The ratio between protopanaxatriol (PPT, Rg1, Re and RF) and protopanaxadiol (PPD, Rb1, Rb2, RC and Rd) in the main root remained stable (about 1.0), while it increased in leaf from 1.37 to 3.14 and decreased in the rhizome from 0.99 to 0.72. The amount of ginsenosides accumulated in the periderm was 45.48 mg/g, which was more than twice as high compared with the other three parts. Furthermore, the antioxidant activities of ginseng leaves were measured as Trolox equivalents, showing that antioxidant activity increased along with time of cultivation. The results show that the best harvest time for shizhu ginseng is the fifth year of cultivation, and the root and rhizome could be used together within seven planting years for their similar PPT/PPD level. Besides, the quality of the ginseng products would be enhanced with the periderm. The ginseng leaf is rich in ginsenosides and has potential application for its antioxidant capacity.
Collapse
Affiliation(s)
- Ying-Chun Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Geng Li
- Institute of Natural Medicine and Chinese Medicine Resources, Beijing Normal University, Beijing 100700, China.
| | - Chao Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hai-Yu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
63
|
Zhuang CL, Mao XY, Liu S, Chen WZ, Huang DD, Zhang CJ, Chen BC, Shen X, Yu Z. Ginsenoside Rb1 improves postoperative fatigue syndrome by reducing skeletal muscle oxidative stress through activation of the PI3K/Akt/Nrf2 pathway in aged rats. Eur J Pharmacol 2014; 740:480-7. [DOI: 10.1016/j.ejphar.2014.06.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 01/14/2023]
|
64
|
Pocoví-Martínez S, Kemmer-Jonas U, Pérez-Prieto J, Frey H, Stiriba SE. Supramolecular Antioxidant Assemblies of Hyperbranched Polyglycerols and Phenols. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Salvador Pocoví-Martínez
- Instituto de Ciencia Molecular (ICMOL); Universidad de Valencia; Catedrático José Beltrán, 2 46980 Paterna Valencia Spain
| | - Ulrike Kemmer-Jonas
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg, 10-14 55099 Mainz Germany
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMOL); Universidad de Valencia; Catedrático José Beltrán, 2 46980 Paterna Valencia Spain
| | - Holger Frey
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg, 10-14 55099 Mainz Germany
| | - Salah-Eddine Stiriba
- Instituto de Ciencia Molecular (ICMOL); Universidad de Valencia; Catedrático José Beltrán, 2 46980 Paterna Valencia Spain
| |
Collapse
|
65
|
Han J, Wu X, Cai W, Shao X. Rapid determination of amino acids in ginseng by high performance liquid chromatography and chemometric resolution. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-3543-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
66
|
Zhu H, Shen H, Xu J, Xu JD, Zhu LY, Wu J, Chen HB, Li SL. Comparative study on intestinal metabolism and absorption in vivo of ginsenosides in sulphur-fumigated and non-fumigated ginseng by ultra performance liquid chromatography quadruple time-of-flight mass spectrometry based chemical profiling approach. Drug Test Anal 2014; 7:320-30. [PMID: 24853104 DOI: 10.1002/dta.1675] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/08/2022]
Abstract
Our previous study indicated that sulphur-fumigation of ginseng in post-harvest handling processes could induce chemical transformation of ginsenosides to generate multiple ginsenoside sulphur derivatives. In this study, the influence of sulphur-fumigation on intestinal metabolism and absorption in vivo of ginsenosides in ginseng was sequentially studied. The intestinal metabolic and absorbed profiles of ginsenosides in rats after intra-gastric (i.g.) administration of sulphur-fumigated ginseng (SFG) and non-fumigated ginseng (NFG) were comparatively characterized by a newly established ultra performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) with electrospray ionization negative (ESI-) mode. A novel strategy based on the characteristic product ions and fragmentation pathways of different types of aglycones (saponin skeletons) and glycosyl moieties was proposed and successfully applied to rapid structural identification of ginsenoside sulphur derivatives and relevant metabolites. In total, 18 ginsenoside sulphur derivatives and 26 ginsenoside sulphur derivative metabolites in the faeces together with six ginsenoside sulphur derivatives in the plasma were identified in the SFG-administrated group but not in the NFG-administrated group. The results clearly demonstrated that the intestinal metabolic and absorbed profiles of ginsenosides in sulphur-fumigated and non-fumigated ginseng were quite different, which inspired that sulphur-fumigation of ginseng should not be recommended before the bioactivity and toxicity of the ginsenoside sulphur derivatives were systematically evaluated.
Collapse
Affiliation(s)
- He Zhu
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, 210028, PR China
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Ginsenoside Rb1 improves energy metabolism in the skeletal muscle of an animal model of postoperative fatigue syndrome. J Surg Res 2014; 191:344-9. [PMID: 24881470 DOI: 10.1016/j.jss.2014.04.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/11/2014] [Accepted: 04/24/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Postoperative fatigue syndrome (POFS) is a common clinical complication followed by almost every major abdominal surgery. Ginsenoside Rb1 (GRb1), a principle ginsenoside in ginseng, could exert a potent anti-fatigue effect on POFS. However, the mechanism is still unknown. Previous studies revealed that alterations in the energy metabolism in the skeletal muscle may play a vital role in the development and progression of fatigue. In the present study, we investigate the effect of GRb1 on energy metabolism in the skeletal muscle of a rat model of POFS induced by major small intestinal resection. METHODS GRb1 (10 mg/kg) was intraperitoneally administrated once daily for 1, 3, 7, and 10 d from the operation day, respectively. The locomotor activity was recorded every day, and total food intake was calculated starting from 24 h after surgery. After GRb1 treatment was completed, blood and skeletal muscle were sampled. The level of blood glucose was determined by an automatic biochemical analyzer. The content of adenosine triphosphate (ATP) in skeletal muscle was determined by high-performance liquid chromatography. The activity of energy metabolic enzymes Na(+)-K(+)-ATPase, pyruvate kinase, and succinate dehydrogenase (SDH) was assessed by commercially available kits. RESULTS The results revealed that GRb1 could increase locomotor activity of POFS rats and significantly increase their total food intake postoperatively (P < 0.05). Furthermore, GRb1 also significantly increased ATP content in the skeletal muscle of POFS rats (P < 0.05). Meanwhile, the activity of Na(+)-K(+)-ATPase and SDH in the skeletal muscle of POFS rats was enhanced by GRb1 (P < 0.05). However, no significant differences in blood glucose and pyruvate kinase were found between the POFS and GRb1 treatment rats (P > 0.05). CONCLUSIONS These results suggest that GRb1 may improve skeletal muscle energy metabolism in POFS, and the underlying mechanism may be associated with an increase in the content of ATP and an enhancement in the activity of energy metabolic enzymes such as Na(+)-K(+)-ATPase ATPase and SDH in the skeletal muscle.
Collapse
|
68
|
Parsa A, Sadeghi M, Maleki M, Parhizkar S, Ghani SA. Free radical scavenging activity of homo and copolymer of aniline and para-phenylenediamine prepared in ZnCl2 medium. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
69
|
Qi B, Liu L, Zhang H, Zhou GX, Wang S, Duan XZ, Bai XY, Wang SM, Zhao DQ. Anti-fatigue effects of proteins isolated from Panax quinquefolium. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:430-434. [PMID: 24607495 DOI: 10.1016/j.jep.2014.02.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE American ginseng (Panax quinquefolium) is an obligate shade perennial plant that belongs to Araliaceae ginseng species, and is native to eastern USA and Canada. Ginseng proteins are reported to have several pharmaceutical properties. However, such properties of American ginseng proteins (AGP) have seldom been reported. Also, anti-fatigue properties of AGP have not been studied. Therefore, we examined the anti-fatigue effects of AGP in mice. MATERIALS AND METHODS The molecular weight and protein contents of AGP were determined by SDS-PAGE, while the amino acid composition was analyzed by HPLC. The mice were divided into four groups. The control group was administered distilled water by gavage every day for 28 days. The other groups, designated as AGP treatment groups, were administered 125, 250 and 500 mg/kg of body weight, respectively of AGP by gavage every day for 28 days. Anti-fatigue activity was estimated using forced swimming test, and biochemical indices were determined using available kits. RESULTS The subunit molecular weight of AGP ranged from 8-66 kD and the protein content measured by Bradford assay was 1.86 mg/mL. The forced swimming time of low, intermediate and high groups were found to be longer as compared to the control group. AGP significantly decreased blood lactate (BLA) and serum urea nitrogen (SUN) levels, and increased hepatic glycogen (GLU) level. Additionally, AGP lowered malondialdehyde (MDA) content and increased the levels of glutathione peroxidase (GPx) and superoxide dismutase (SOD). CONCLUSION AGP shows anti-fatigue activity in mice, as measured by the physiological indices for fatigue.
Collapse
Affiliation(s)
- Bin Qi
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Li Liu
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - He Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Guang-xin Zhou
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Shan Wang
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Xiao-zheng Duan
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Xue-yuan Bai
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Si-ming Wang
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Da-qing Zhao
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| |
Collapse
|
70
|
A new ginsengenin containing an oxacyclopentane-ring isolated from the acid hydrolysate of total ginsenosides. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
71
|
Liu Z, Li W, Li X, Zhang M, Chen L, Zheng YN, Sun GZ, Ruan CC. Antidiabetic effects of malonyl ginsenosides from Panax ginseng on type 2 diabetic rats induced by high-fat diet and streptozotocin. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:233-240. [PMID: 23147499 DOI: 10.1016/j.jep.2012.10.058] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 09/18/2012] [Accepted: 10/27/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Ginseng (Panax ginseng C. A. Meyer) has been recorded to treat 'Xiao-ke' (emaciation and thirst) symptom in many ancient Chinese medical literatures (such as 'Shen Nong Ben Cao Jing') for thousands of years. 'Xiao-ke' symptom, in general, indicates diabetes mellitus. AIM OF THE STUDY Malonyl ginsenosides (MGR) are natural ginsenosides which exist in both fresh and air-dried ginseng. The objective of this study is to determine the antidiabetic function of MGR on type 2 diabetes. MATERIALS AND METHODS High fat diet-fed and streptozotocin-induced diabetic rats were treated with 50 and 100mg/kg/d of MGR or vehicle for 3 weeks. The effects of MGR on fasting blood glucose (FBG), intraperitoneal glucose tolerance test (IPGTT), serum insulin (SI), insulin tolerance test (ITT), body weight, total cholesterol (TC), and triglyceride (TG) levels in type 2 diabetic rats were measured. RESULTS After 3 weeks of treatment, MGR administration showed significantly lower FBG levels compared to the diabetic control group. In glucose tolerance test, IPGTT data showed that both MGR 50 and 100mg/kg groups significantly increased the glucose disposal after glucose load. The ITT also showed improvement of insulin sensitivity during 120 min of insulin treatment. In addition, MGR reduced TG and TC contents while showed no effect on body weight in diabetic rats. CONCLUSION The findings from this study suggest that MGR can alleviate hyperglycemia, hyperlipemia and insulin resistance of type 2 diabetes.
Collapse
Affiliation(s)
- Zhi Liu
- Institute of Agricultural Modernization, Jilin Agricultural University, Changchun 130118, China
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Yu J, Sun J, Niu Y, Li R, Liao J, Zhang F, Yu B. Synthetic access toward the diverse ginsenosides. Chem Sci 2013. [DOI: 10.1039/c3sc51479j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
73
|
Haya L, Osante I, Mainar AM, Cativiela C, Urieta JS. Intramolecular hydrogen-bonding activation in cysteines: a new effective radical scavenger. Phys Chem Chem Phys 2013; 15:9407-13. [DOI: 10.1039/c3cp50743b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|