51
|
Broza YY, Haick H. Biodiagnostics in an era of global pandemics-From biosensing materials to data management. VIEW 2022; 3:20200164. [PMID: 34766159 PMCID: PMC8441813 DOI: 10.1002/viw.20200164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
The novel corona virus SARS-CoV-2 (COVID-19) has exposed the world to challenges never before seen in fast diagnostics, monitoring, and prevention of the outbreak. As a result, different approaches for fast diagnostic and screening are made and yet to find the ideal way. The current mini-review provides and examines evidence-based innovative and rapid chemical sensing and related biodiagnostic solutions to deal with infectious disease and related pandemic emergencies, which could offer the best possible care for the general population and improve the approachability of the pandemic information, insights, and surrounding contexts. The review discusses how integration of sensing devices with big data analysis, artificial Intelligence or machine learning, and clinical decision support system, could improve the accuracy of the recorded patterns of the disease conditions within an ocean of information. At the end, the mini-review provides a prospective on the requirements to improve our coping of the pandemic-related biodiagnostics as well as future opportunities.
Collapse
Affiliation(s)
- Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
52
|
Qi L, Gao X, Pan D, Sun Y, Cai Z, Xiong Y, Dang Y. Research progress in the screening and evaluation of umami peptides. Compr Rev Food Sci Food Saf 2022; 21:1462-1490. [PMID: 35201672 DOI: 10.1111/1541-4337.12916] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Umami is an important element affecting food taste, and the development of umami peptides is a topic of interest in food-flavoring research. The existing technology used for traditional screening of umami peptides is time-consuming and labor-intensive, making it difficult to meet the requirements of high-throughput screening, which limits the rapid development of umami peptides. The difficulty in performing a standard measurement of umami intensity is another problem that restricts the development of umami peptides. The existing methods are not sensitive and specific, making it difficult to achieve a standard evaluation of umami taste. This review summarizes the umami receptors and umami peptides, focusing on the problems restricting the development of umami peptides, high-throughput screening, and establishment of evaluation standards. The rapid screening of umami peptides was realized based on molecular docking technology and a machine learning method, and the standard evaluation of umami could be realized with a bionic taste sensor. The progress of rapid screening and evaluation methods significantly promotes the study of umami peptides and increases its application in the seasoning industry.
Collapse
Affiliation(s)
- Lulu Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yongzhao Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
53
|
Fedi A, Vitale C, Giannoni P, Caluori G, Marrella A. Biosensors to Monitor Cell Activity in 3D Hydrogel-Based Tissue Models. SENSORS (BASEL, SWITZERLAND) 2022; 22:1517. [PMID: 35214418 PMCID: PMC8879987 DOI: 10.3390/s22041517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) culture models have gained relevant interest in tissue engineering and drug discovery owing to their suitability to reproduce in vitro some key aspects of human tissues and to provide predictive information for in vivo tests. In this context, the use of hydrogels as artificial extracellular matrices is of paramount relevance, since they allow closer recapitulation of (patho)physiological features of human tissues. However, most of the analyses aimed at characterizing these models are based on time-consuming and endpoint assays, which can provide only static and limited data on cellular behavior. On the other hand, biosensing systems could be adopted to measure on-line cellular activity, as currently performed in bi-dimensional, i.e., monolayer, cell culture systems; however, their translation and integration within 3D hydrogel-based systems is not straight forward, due to the geometry and materials properties of these advanced cell culturing approaches. Therefore, researchers have adopted different strategies, through the development of biochemical, electrochemical and optical sensors, but challenges still remain in employing these devices. In this review, after examining recent advances in adapting existing biosensors from traditional cell monolayers to polymeric 3D cells cultures, we will focus on novel designs and outcomes of a range of biosensors specifically developed to provide real-time analysis of hydrogel-based cultures.
Collapse
Affiliation(s)
- Arianna Fedi
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), 16149 Genoa, Italy; (A.F.); (C.V.)
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, 16126 Genoa, Italy
| | - Chiara Vitale
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), 16149 Genoa, Italy; (A.F.); (C.V.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Paolo Giannoni
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Guido Caluori
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Pessac, France;
- INSERM UMR 1045, Cardiothoracic Research Center of Bordeaux, University of Bordeaux, 33600 Pessac, France
| | - Alessandra Marrella
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), 16149 Genoa, Italy; (A.F.); (C.V.)
| |
Collapse
|
54
|
Noh TU, Abdul-Aziz A. Haptenation of skin sensitizers with cysteine and gold nanoparticles modified screen printed carbon electrode analyzed using impedance technique. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
55
|
Lei J, Shi L, Liu W, Li B, Jin Y. Portable and sensitive detection of cancer cells via a handheld luminometer. Analyst 2022; 147:3219-3224. [DOI: 10.1039/d2an00666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and sensitive chemiluminescent method for portable detection of cancer cells via a handheld luminometer.
Collapse
Affiliation(s)
- Jing Lei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
56
|
Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022; 189:443. [PMID: 36350388 PMCID: PMC9643942 DOI: 10.1007/s00604-022-05533-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- Guangzhou Laboratory, Guangzhou, 510320, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
57
|
Ducrée J. Systematic review of centrifugal valving based on digital twin modeling towards highly integrated lab-on-a-disc systems. MICROSYSTEMS & NANOENGINEERING 2021; 7:104. [PMID: 34987859 PMCID: PMC8677742 DOI: 10.1038/s41378-021-00317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 05/07/2023]
Abstract
Current, application-driven trends towards larger-scale integration (LSI) of microfluidic systems for comprehensive assay automation and multiplexing pose significant technological and economical challenges to developers. By virtue of their intrinsic capability for powerful sample preparation, centrifugal systems have attracted significant interest in academia and business since the early 1990s. This review models common, rotationally controlled valving schemes at the heart of such "Lab-on-a-Disc" (LoaD) platforms to predict critical spin rates and reliability of flow control which mainly depend on geometries, location and liquid volumes to be processed, and their experimental tolerances. In absence of larger-scale manufacturing facilities during product development, the method presented here facilitates efficient simulation tools for virtual prototyping and characterization and algorithmic design optimization according to key performance metrics. This virtual in silico approach thus significantly accelerates, de-risks and lowers costs along the critical advancement from idea, layout, fluidic testing, bioanalytical validation, and scale-up to commercial mass manufacture.
Collapse
Affiliation(s)
- Jens Ducrée
- School of Physical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
58
|
Wu C, Zhu P, Liu Y, Du L, Wang P. Field-Effect Sensors Using Biomaterials for Chemical Sensing. SENSORS 2021; 21:s21237874. [PMID: 34883883 PMCID: PMC8659547 DOI: 10.3390/s21237874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022]
Abstract
After millions of years of evolution, biological chemical sensing systems (i.e., olfactory and taste systems) have become very powerful natural systems which show extreme high performances in detecting and discriminating various chemical substances. Creating field-effect sensors using biomaterials that are able to detect specific target chemical substances with high sensitivity would have broad applications in many areas, ranging from biomedicine and environments to the food industry, but this has proved extremely challenging. Over decades of intense research, field-effect sensors using biomaterials for chemical sensing have achieved significant progress and have shown promising prospects and potential applications. This review will summarize the most recent advances in the development of field-effect sensors using biomaterials for chemical sensing with an emphasis on those using functional biomaterials as sensing elements such as olfactory and taste cells and receptors. Firstly, unique principles and approaches for the development of these field-effect sensors using biomaterials will be introduced. Then, the major types of field-effect sensors using biomaterials will be presented, which includes field-effect transistor (FET), light-addressable potentiometric sensor (LAPS), and capacitive electrolyte–insulator–semiconductor (EIS) sensors. Finally, the current limitations, main challenges and future trends of field-effect sensors using biomaterials for chemical sensing will be proposed and discussed.
Collapse
Affiliation(s)
- Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Ping Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence:
| |
Collapse
|
59
|
Ovechkina VS, Zakian SM, Medvedev SP, Valetdinova KR. Genetically Encoded Fluorescent Biosensors for Biomedical Applications. Biomedicines 2021; 9:biomedicines9111528. [PMID: 34829757 PMCID: PMC8615007 DOI: 10.3390/biomedicines9111528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
One of the challenges of modern biology and medicine is to visualize biomolecules in their natural environment, in real-time and in a non-invasive fashion, so as to gain insight into their physiological behavior and highlight alterations in pathological settings, which will enable to devise appropriate therapeutic strategies. Genetically encoded fluorescent biosensors constitute a class of imaging agents that enable visualization of biological processes and events directly in situ, preserving the native biological context and providing detailed insight into their localization and dynamics in cells. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically encoded fluorescent biosensors in drug screening. This review summarizes results of the studies that have been conducted in the last years toward the fabrication of genetically encoded fluorescent biosensors for biomedical applications with a comprehensive discussion on the challenges, future trends, and potential inputs needed for improving them.
Collapse
Affiliation(s)
- Vera S. Ovechkina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey P. Medvedev
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Kamila R. Valetdinova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
60
|
Paivana G, Barmpakos D, Mavrikou S, Kallergis A, Tsakiridis O, Kaltsas G, Kintzios S. Evaluation of Cancer Cell Lines by Four-Point Probe Technique, by Impedance Measurements in Various Frequencies. BIOSENSORS 2021; 11:345. [PMID: 34562935 PMCID: PMC8466278 DOI: 10.3390/bios11090345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Cell-based biosensors appear to be an attractive tool for the rapid, simple, and cheap monitoring of chemotherapy effects at a very early stage. In this study, electrochemical measurements using a four-point probe method were evaluated for suspensions of four cancer cell lines of different tissue origins: SK-N-SH, HeLa, MCF-7 and MDA-MB-231, all for two different population densities: 50 K and 100 K cells/500 μL. The anticancer agent doxorubicin was applied for each cell type in order to investigate whether the proposed technique was able to determine specific differences in cell responses before and after drug treatment. The proposed methodology can offer valuable insight into the frequency-dependent bioelectrical responses of various cellular systems using a low frequency range and without necessitating lengthy cell culture treatment. The further development of this biosensor assembly with the integration of specially designed cell/electronic interfaces can lead to novel diagnostic biosensors and therapeutic bioelectronics.
Collapse
Affiliation(s)
- Georgia Paivana
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| | - Dimitris Barmpakos
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| | - Alexandros Kallergis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Odysseus Tsakiridis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Grigoris Kaltsas
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| |
Collapse
|
61
|
Yang CM, Yen T, Liu HL, Lin YJ, Lin PY, Tsui LS, Chen CH, Chen YP, Hsu YC, Lo CH, Wu TR, Lai HC, Chin WC, Pijanowska DG, Hwang TL, Lai CS. A real-time mirror-LAPS mini system for dynamic chemical imaging and cell acidification monitoring. SENSORS AND ACTUATORS B: CHEMICAL 2021; 341:130003. [DOI: 10.1016/j.snb.2021.130003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
62
|
Wan H, Zhao J, Huang Y, Tao F, Fu Y. Rapid quantitative detection of glucose using biological sensor system as combined with electrochemical data treatment. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1949343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Haifang Wan
- Department of Anaesthesiology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China,
| | - Jie Zhao
- Department of Anaesthesiology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China,
| | - Yanming Huang
- Department of Anaesthesiology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China,
| | - Fan Tao
- Department of Anaesthesiology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China,
| | - Yunbin Fu
- Department of Anaesthesiology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China,
| |
Collapse
|
63
|
Ullah N, Chen W, Noureen B, Tian Y, Du L, Wu C, Ma J. An Electrochemical Ti 3C 2T x Aptasensor for Sensitive and Label-Free Detection of Marine Biological Toxins. SENSORS (BASEL, SWITZERLAND) 2021; 21:4938. [PMID: 34300682 PMCID: PMC8309833 DOI: 10.3390/s21144938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022]
Abstract
Saxitoxin (STX) belongs to the family of marine biological toxins, which are major contaminants in seafood. The reference methods for STX detection are mouse bioassay and chromatographic analysis, which are time-consuming, high costs, and requirement of sophisticated operation. Therefore, the development of alternative methods for STX analysis is urgent. Electrochemical analysis is a fast, low-cost, and sensitive method for biomolecules analysis. Thus, in this study, an electrolyte-insulator-semiconductor (EIS) sensor based on aptamer-modified two-dimensional layered Ti3C2Tx nanosheets was developed for STX detection. The high surface area and rich functional groups of MXene benefited the modification of aptamer, which had specific interactions with STX. Capacitance-voltage (C-V) and constant-capacitance (ConCap) measurement results indicated that the aptasensor was able to detect STX with high sensitivity and good specificity. The detection range was 1.0 nM to 200 nM and detection limit was as low as 0.03 nM. Moreover, the aptasensor was found to have a good selectivity and two-week stability. The mussel tissue extraction test suggested the potential application of this biosensor in detecting STX in real samples. This method provides a convenient approach for low-cost, rapid, and label-free detection of marine biological toxins.
Collapse
Affiliation(s)
- Najeeb Ullah
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (W.C.); (B.N.); (Y.T.); (L.D.)
| | - Beenish Noureen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (W.C.); (B.N.); (Y.T.); (L.D.)
| | - Yulan Tian
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (W.C.); (B.N.); (Y.T.); (L.D.)
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (W.C.); (B.N.); (Y.T.); (L.D.)
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (W.C.); (B.N.); (Y.T.); (L.D.)
| | - Jie Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
- Medical Research Center, Xi’an No.3 Hospital, Xi’an 710018, China
| |
Collapse
|
64
|
Electrochemical Cell-Based Sensor for Detection of Food Hazards. MICROMACHINES 2021; 12:mi12070837. [PMID: 34357247 PMCID: PMC8306248 DOI: 10.3390/mi12070837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
People’s health has been threatened by several common food hazards. Thus, it is very important to establish rapid and accurate methods to detect food hazards. In recent years, biosensors have inspired developments because of their specificity and sensitivity, short reaction time, low cost, small size and easy operation. Owing to their high precision and non-destructive characteristics, cell-based electrochemical detection methods can reflect the damage of food hazards to organisms better. In this review, the characteristics of electrochemical cell-based biosensors and their applications in the detection of common hazards in food are reviewed. The strategies of cell immobilization and 3D culture on electrodes are discussed. The current limitations and further development prospects of cell-based electrochemical biosensors are also evaluated.
Collapse
|
65
|
Kasiviswanathan U, Balavigneswaran CK, Kumar C, Poddar S, Jit S, Sharma N, Mahto SK. Aluminium Oxide Thin-Film Based In Vitro Cell-Substrate Sensing Device for Monitoring Proliferation of Myoblast Cells. IEEE Trans Nanobioscience 2021; 20:331-337. [PMID: 33755569 DOI: 10.1109/tnb.2021.3068318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We demonstrate cell-substrate interaction on aluminium oxide thin-film in metal-insulator-metal structure followed by the change in dielectric characteristics of Al2O3 as a function of progression of cellular growth. The theoretical calculation of the fabricated biosensor reveals that the changes in the intrinsic elemental parameters are mainly attributed to the cell-induced behavioural changes.
Collapse
|
66
|
Federici L, Masulli M, Allocati N. An Overview of Biosensors Based on Glutathione Transferases and for the Detection of Glutathione. ELECTROANAL 2021. [DOI: 10.1002/elan.202100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry University “G. d' Annunzio” Chieti Italy
- CAST (Center for Advanced Studies and Technology) University “G. d' Annunzio” Chieti Italy
- UniCamillus – Saint Camillus International University of Health Sciences Rome Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry University “G. d' Annunzio” Chieti Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry University “G. d' Annunzio” Chieti Italy
| |
Collapse
|
67
|
A Membrane Filter-Assisted Mammalian Cell-Based Biosensor Enabling 3D Culture and Pathogen Detection. SENSORS 2021; 21:s21093042. [PMID: 33926091 PMCID: PMC8123675 DOI: 10.3390/s21093042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
We have developed a membrane filter-assisted cell-based biosensing platform by using a polyester membrane as a three-dimensional (3D) cell culture scaffold in which cells can be grown by physical attachment. The membrane was simply treated with ethanol to increase surficial hydrophobicity, inducing the stable settlement of cells via gravity. The 3D membrane scaffold was able to provide a relatively longer cell incubation time (up to 16 days) as compared to a common two-dimensional (2D) cell culture environment. For a practical application, we fabricated a cylindrical cartridge to support the scaffold membranes stacked inside the cartridge, enabling not only the maintenance of a certain volume of culture media but also the simple exchange of media in a flow-through manner. The cartridge-type cell-based analytical system was exemplified for pathogen detection by measuring the quantities of toll-like receptor 1 (TLR1) induced by applying a lysate of P. aeruginosa and live E. coli, respectively, providing a fast, convenient colorimetric TLR1 immunoassay. The color images of membranes were digitized to obtain the response signals. We expect the method to further be applied as an alternative tool to animal testing in various research areas such as cosmetic toxicity and drug efficiency.
Collapse
|
68
|
Li Z, Li J, Dou Y, Wang L, Song S. A Carbon-Based Antifouling Nano-Biosensing Interface for Label-Free POCT of HbA1c. BIOSENSORS 2021; 11:118. [PMID: 33921226 PMCID: PMC8069255 DOI: 10.3390/bios11040118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Electrochemical biosensing relies on electron transport on electrode surfaces. However, electrode inactivation and biofouling caused by a complex biological sample severely decrease the efficiency of electron transfer and the specificity of biosensing. Here, we designed a three-dimensional antifouling nano-biosensing interface to improve the efficiency of electron transfer by a layer of bovine serum albumin (BSA) and multi-walled carbon nanotubes (MWCNTs) cross-linked with glutaraldehyde (GA). The electrochemical properties of the BSA/MWCNTs/GA layer were investigated using both cyclic voltammetry and electrochemical impedance to demonstrate its high-efficiency antifouling nano-biosensing interface. The BSA/MWCNTs/GA layer kept 92% of the original signal in 1% BSA and 88% of that in unprocessed human serum after a 1-month exposure, respectively. Importantly, we functionalized the BSA/MWCNTs/GA layer with HbA1c antibody (anti-HbA1c) and 3-aminophenylboronic acid (APBA) for sensitive detection of glycated hemoglobin A (HbA1c). The label-free direct electrocatalytic oxidation of HbA1c was investigated by cyclic voltammetry (CV). The linear dynamic range of 2 to 15% of blood glycated hemoglobin A (HbA1c) in non-glycated hemoglobin (HbAo) was determined. The detection limit was 0.4%. This high degree of differentiation would facilitate a label-free POCT detection of HbA1c.
Collapse
Affiliation(s)
- Zhenhua Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jianyong Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yanzhi Dou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Song
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
69
|
Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, Koniakhin SV, Dubina MV. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng 2021; 7:1962-1986. [PMID: 33749256 DOI: 10.1021/acsbiomaterials.0c01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we aim to introduce the reader to the technique of electrical impedance spectroscopy (EIS) with a focus on its biological, biomaterials, and medical applications. We explain the theoretical and experimental aspects of the EIS with the details essential for biological studies, i.e., interaction of metal electrodes with biological matter and liquids, strategies of measurement rate increasing, noise reduction in bio-EIS experiments, etc. We also give various examples of successful bio-EIS practical implementations in science and technology, from whole-body health monitoring and sensors for vision prosthetic care to single living cell examination platforms, virus disease research, biomolecules detection, and implementation of novel biomaterials. The present review can be used as a bio-EIS tutorial for students as well as a handbook for scientists and engineers because of the extensive references covering the contemporary research papers in the field.
Collapse
Affiliation(s)
- Daniil D Stupin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Ekaterina A Kuzina
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Anna A Abelit
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - Anton K Emelyanov
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Street. 6-8, Saint Petersburg 197022, Russia
| | - Dmitrii M Nikolaev
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg 198504, Russia
| | - Sergei V Koniakhin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand F-63000, France
| | - Michael V Dubina
- Institute of Highly Pure Biopreparation of the Federal Medical-Biological Agency, Pudozhskaya 7, St. Petersburg 197110, Russia
| |
Collapse
|
70
|
Nejadmansouri M, Majdinasab M, Nunes GS, Marty JL. An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. SENSORS (BASEL, SWITZERLAND) 2021; 21:1176. [PMID: 33562374 PMCID: PMC7915219 DOI: 10.3390/s21041176] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Antioxidants are a group of healthy substances which are useful to human health because of their antihistaminic, anticancer, anti-inflammatory activity and inhibitory effect on the formation and the actions of reactive oxygen species. Generally, they are phenolic complexes present in plant-derived foods. Due to the valuable nutritional role of these mixtures, analysis and determining their amount in food is of particular importance. In recent years, many attempts have been made to supply uncomplicated, rapid, economical and user-friendly analytical approaches for the on-site detection and antioxidant capacity (AOC) determination of food antioxidants. In this regards, sensors and biosensors are regarded as favorable tools for antioxidant analysis because of their special features like high sensitivity, rapid detection time, ease of use, and ease of miniaturization. In this review, current five-year progresses in different types of optical and electrochemical sensors/biosensors for the analysis of antioxidants in foods are discussed and evaluated well. Moreover, advantages, limitations, and the potential for practical applications of each type of sensors/biosensors have been discussed. This review aims to prove how sensors/biosensors represent reliable alternatives to conventional methods for antioxidant analysis.
Collapse
Affiliation(s)
- Maryam Nejadmansouri
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Gilvanda S Nunes
- Pesticide Residue Analysis Center, Federal University of Maranhao, 65080-040 Sao Luis, Brazil
| | - Jean Louis Marty
- Faculty of Sciences, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX 9, France
| |
Collapse
|
71
|
Gheorghiu M. A short review on cell-based biosensing: challenges and breakthroughs in biomedical analysis. J Biomed Res 2020; 35:255-263. [PMID: 33888671 PMCID: PMC8383170 DOI: 10.7555/jbr.34.20200128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Current cell-based biosensors have progressed substantially from mere alternatives to molecular bioreceptors into enabling tools for interfacing molecular machineries and gene circuits with microelectronics and for developing groundbreaking sensing and theragnostic platforms. The recent literature concerning whole-cell biosensors is reviewed with an emphasis on mammalian cells, and the challenges and breakthroughs brought along in biomedical analyses through novel biosensing concepts and the synthetic biology toolbox. These recent innovations allow development of cell-based biosensing platforms having tailored performances and capable to reach the levels of sensitivity, dynamic range, and stability suitable for high analytic/medical relevance. They also pave the way for the construction of flexible biosensing platforms with utility across biological research and clinical applications. The work is intended to stimulate interest in generation of cell-based biosensors and improve their acceptance and exploitation.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- Biosensors Department, International Centre of Biodynamics, Bucharest 060101, Romania
| |
Collapse
|
72
|
Recent progress in micro/nano biosensors for shellfish toxin detection. Biosens Bioelectron 2020; 176:112899. [PMID: 33358058 DOI: 10.1016/j.bios.2020.112899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Shellfish toxins, as one kind of marine toxin, have attracted worldwide attention due to their severe threat to food safety and human health. Therefore, it is highly essential and urgent to develop a low-cost and convenient method to detect these toxins. With the rapid advance in microfabrication processes, micro/nano biosensors provide novel approaches to address this issue. In addition to their features of low cost, portability, easy operation, high efficiency and high bioactivity, micro/nano biosensors have great potential to realize on-the-spot, rapid detection of shellfish toxins. This review focuses on the most recent advances in the development of micro/nano biosensors for shellfish toxin detection. These biosensors are mainly classified into five categories according to their transducer detection principles, which include optical devices, electrochemical sensors, electrochemiluminescence, field-effect transistors, and acoustic devices. Sensor strategies, toxin analytes, biosensitive elements, coupling methods and field detection performance are highlighted to discuss the applications of shellfish toxin detection. With advances in sensor technology, biomaterials, microfabrication and miniaturized electronics, micro/nano biosensors applied to in-field fast detection of shellfish toxins are expected to play a critical role in food safety, environmental monitoring, and foreign trade in the foreseeable future. Finally, the current challenges and future development trends of micro/nano biosensors for shellfish toxin detection are discussed.
Collapse
|
73
|
Wei X, Zhuang L, Li H, He C, Wan H, Hu N, Wang P. Advances in Multidimensional Cardiac Biosensing Technologies: From Electrophysiology to Mechanical Motion and Contractile Force. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005828. [PMID: 33230867 DOI: 10.1002/smll.202005828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular disease is currently a leading killer to human, while drug-induced cardiotoxicity remains the main cause of the withdrawal and attrition of drugs. Taking clinical correlation and throughput into account, cardiomyocyte is perfect as in vitro cardiac model for heart disease modeling, drug discovery, and cardiotoxicity assessment by accurately measuring the physiological multiparameters of cardiomyocytes. Remarkably, cardiomyocytes present both electrophysiological and biomechanical characteristics due to the unique excitation-contraction coupling, which plays a significant role in studying the cardiomyocytes. This review mainly focuses on the recent advances of biosensing technologies for the 2D and 3D cardiac models with three special properties: electrophysiology, mechanical motion, and contractile force. These high-performance multidimensional cardiac models are popular and effective to rebuild and mimic the heart in vitro. To help understand the high-quality and accurate physiologies, related detection techniques are highly demanded, from microtechnology to nanotechnology, from extracellular to intracellular recording, from multiple cells to single cell, and from planar to 3D models. Furthermore, the characteristics, advantages, limitations, and applications of these cardiac biosensing technologies, as well as the future development prospects should contribute to the systematization and expansion of knowledge.
Collapse
Affiliation(s)
- Xinwei Wei
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liujing Zhuang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuanjiang He
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping Wang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
74
|
Hui Chong LS, Zhang J, Bhat KS, Yong D, Song J. Bioinspired cell-in-shell systems in biomedical engineering and beyond: Comparative overview and prospects. Biomaterials 2020; 266:120473. [PMID: 33120202 DOI: 10.1016/j.biomaterials.2020.120473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 12/28/2022]
Abstract
With the development in tissue engineering, cell transplantation, and genetic technologies, living cells have become an important therapeutic tool in clinical medical care. For various cell-based technologies including cell therapy and cell-based sensors in addition to fundamental studies on single-cell biology, the cytoprotection of individual living cells is a prerequisite to extend cell storage life or deliver cells from one place to another, resisting various external stresses. Nature has evolved a biological defense mechanism to preserve their species under unfavorable conditions by forming a hard and protective armor. Particularly, plant seeds covered with seed coat turn into a dormant state against stressful environments, due to mechanical and water/gas constraints imposed by hard seed coat. However, when the environmental conditions become hospitable to seeds, seed coat is ruptured, initiating seed germination. This seed dormancy and germination mechanism has inspired various approaches that artificially induce cell sporulation via chemically encapsulating individual living cells within a thin but tough shell forming a 3D "cell-in-shell" structure. Herein, the recent advance of cell encapsulation strategies along with the potential advantages of the 3D "cell-in-shell" system is reviewed. Diverse coating materials including polymeric shells and hybrid shells on different types of cells ranging from microbes to mammalian cells will be discussed in terms of enhanced cytoprotective ability, control of division, chemical functionalization, and on-demand shell degradation. Finally, current and potential applications of "cell-in-shell" systems for cell-based technologies with remaining challenges will be explored.
Collapse
Affiliation(s)
- Lydia Shi Hui Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore; Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Jingyi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore; Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Kiesar Sideeq Bhat
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
75
|
Lu X, Ye Y, Zhang Y, Sun X. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 2020; 61:3819-3835. [PMID: 32885986 DOI: 10.1080/10408398.2020.1809341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
76
|
Zhao J, Ellis-Davies GCR. Intracellular photoswitchable neuropharmacology driven by luminescence from upconverting nanoparticles. Chem Commun (Camb) 2020; 56:9445-9448. [PMID: 32761019 PMCID: PMC7812838 DOI: 10.1039/d0cc03956j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoswitchable drugs are small-molecule optical probes that undergo chromatically selective control of drug efficacy using, most often, UV-visible light. Here we report that luminescence produced by near-infrared stimulation of NaYF4:TmYb nanoparticles can be used for "remote control" of an azobenzene-based photochromic ion channel blocker of neurons in living brain slices.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
77
|
Detection of biotin with zeptomole sensitivity using recombinant spores and a competition assay. Anal Bioanal Chem 2020; 412:7219-7226. [PMID: 32761258 DOI: 10.1007/s00216-020-02854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Detection of protein-binding analytes is important for many applications. Currently, various instrument-based techniques are used for detecting protein-binding analytes. However, such techniques have several limitations including high cost and time-consuming sample processing. In order to overcome these limitations, we developed a sensitive competition assay for the detection of protein-binding analytes using recombinant endospores as a sensing element. The method is based on the competition between the biotin, the model analyte, and a biotin-magnetic bead complex to bind the recombinant spores containing the biotin binding region of streptavidin. After magnetic attraction, the residual spores in the suspension are spread on plates to form colonies which are used to count the amount of the residual spores; the higher the residual ratio of spores, the more biotin in the samples. The linear range was from 150 zmol to 1.5 fmol and the limit of detection of the assay was 150 zmol. The assay proposed herein is sensitive and does not require any expensive equipment. It is suitable for qualitative or semi-quantitative analysis such as screening tests for the detection of toxic chemicals.
Collapse
|
78
|
Li YCE, Lee IC. The Current Trends of Biosensors in Tissue Engineering. BIOSENSORS 2020; 10:E88. [PMID: 32756393 PMCID: PMC7459738 DOI: 10.3390/bios10080088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Biosensors constitute selective, sensitive, and rapid tools for disease diagnosis in tissue engineering applications. Compared to standard enzyme-linked immunosorbent assay (ELISA) analytical technology, biosensors provide a strategy to real-time and on-site monitor micro biophysiological signals via a combination of biological, chemical, and physical technologies. This review summarizes the recent and significant advances made in various biosensor technologies for different applications of biological and biomedical interest, especially on tissue engineering applications. Different fabrication techniques utilized for tissue engineering purposes, such as computer numeric control (CNC), photolithographic, casting, and 3D printing technologies are also discussed. Key developments in the cell/tissue-based biosensors, biomolecular sensing strategies, and the expansion of several biochip approaches such as organs-on-chips, paper based-biochips, and flexible biosensors are available. Cell polarity and cell behaviors such as proliferation, differentiation, stimulation response, and metabolism detection are included. Biosensors for diagnosing tissue disease modes such as brain, heart, lung, and liver systems and for bioimaging are discussed. Finally, we discuss the challenges faced by current biosensing techniques and highlight future prospects of biosensors for tissue engineering applications.
Collapse
Affiliation(s)
- Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
79
|
Graphene Templated DNA Arrays and Biotin-Streptavidin Sensitive Bio-Transistors Patterned by Dynamic Self-Assembly of Polymeric Films Confined within a Roll-on-Plate Geometry. NANOMATERIALS 2020; 10:nano10081468. [PMID: 32727109 PMCID: PMC7466610 DOI: 10.3390/nano10081468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Patterning of surfaces with a simple strategy provides insights into the functional interfaces by suitable modification of the surface by novel techniques. Especially, highly ordered structural topographies and chemical features from the wide range of interfaces have been considered as important characteristics to understand the complex relationship between the surface chemistries and biological systems. Here, we report a simple fabrication method to create patterned surfaces over large areas using evaporative self-assembly that is designed to produce a sacrificial template and lithographic etch masks of polymeric stripe patterns, ranging from micrometer to nanoscale. By facilitating a roll-on-plate geometry, the periodically patterned surface structures formed by repetitive slip-stick motions were thoroughly examined to be used for the deposition of the Au nanoparticles decorated graphene oxide (i.e., AuNPs, ~21 nm) and the formation of conductive graphene channels. The fluorescently labeled thiol-modified DNA was applied on the patterned arrays of graphene oxide (GO)/AuNPs, and biotin-streptavidin sensitive devices built with graphene-based transistors (GFETs, effective mobility of ~320 cm2 V-1 s-1) were demonstrated as examples of the platform for the next-generation biosensors with the high sensing response up to ~1 nM of target analyte (i.e., streptavidin). Our strategy suggests that the stripe patterned arrays of polymer films as sacrificial templates can be a simple route to creating highly sensitive biointerfaces and highlighting the development of new chemically patterned surfaces composed of graphene-based nanomaterials.
Collapse
|
80
|
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
81
|
Tanaka S, Kimura K, Miyamoto KI, Yanase Y, Uno S. Simulation and Experiment for Electrode Coverage Evaluation by Electrochemical Impedance Spectroscopy Using Parallel Facing Electrodes. ANAL SCI 2020; 36:853-858. [PMID: 31983717 DOI: 10.2116/analsci.19p451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A parallel facing electrode (PFE) structure for adherent cell monitoring by electrochemical impedance spectroscopy (EIS) was developed, and its characteristics were investigated by both computer simulation and experiment. The PFE model consists of two facing gold electrode strips separated by 40 μm, and the area of its intersection is 500 × 500 μm. Computer simulation of EIS with adherent cells showed a distinct difference in solution resistance for different cell coverage, which was confirmed by experimental results using latex beads suspension. A well-defined relationship between solution resistance and cell coverage in our PFE is promising for quantitative evaluation of cell density, morphology and fatality.
Collapse
Affiliation(s)
- Shinya Tanaka
- Department of Electrical Systems, Graduate School of Science and Engineering, Ritsumeikan University
| | - Kaiken Kimura
- Department of Electrical Systems, Graduate School of Science and Engineering, Ritsumeikan University
| | | | - Yuhki Yanase
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University
| | - Shigeyasu Uno
- Department of Electrical Systems, Graduate School of Science and Engineering, Ritsumeikan University
| |
Collapse
|
82
|
Hassan Q, Ahmadi S, Kerman K. Recent Advances in Monitoring Cell Behavior Using Cell-Based Impedance Spectroscopy. MICROMACHINES 2020; 11:E590. [PMID: 32545753 PMCID: PMC7345285 DOI: 10.3390/mi11060590] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Cell-based impedance spectroscopy (CBI) is a powerful tool that uses the principles of electrochemical impedance spectroscopy (EIS) by measuring changes in electrical impedance relative to a voltage applied to a cell layer. CBI provides a promising platform for the detection of several properties of cells including the adhesion, motility, proliferation, viability and metabolism of a cell culture. This review gives a brief overview of the theory, instrumentation, and detection principles of CBI. The recent applications of the technique are given in detail for research into cancer, neurodegenerative diseases, toxicology as well as its application to 2D and 3D in vitro cell cultures. CBI has been established as a biophysical marker to provide quantitative cellular information, which can readily be adapted for single-cell analysis to complement the existing biomarkers for clinical research on disease progression.
Collapse
Affiliation(s)
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (Q.H.); (S.A.)
| |
Collapse
|
83
|
Zeng M, Zhou T, Su Z, Pan W. Electrochemically prepared poly(L-lysine) and 3-hydroxyphenylboronic acid composite as a conventional adhesion material for rice suspension cells. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
84
|
Din MO, Martin A, Razinkov I, Csicsery N, Hasty J. Interfacing gene circuits with microelectronics through engineered population dynamics. SCIENCE ADVANCES 2020; 6:eaaz8344. [PMID: 32494744 PMCID: PMC7244307 DOI: 10.1126/sciadv.aaz8344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/18/2020] [Indexed: 05/27/2023]
Abstract
While there has been impressive progress connecting bacterial behavior with electrodes, an attractive observation to facilitate advances in synthetic biology is that the growth of a bacterial colony can be determined from impedance changes over time. Here, we interface synthetic biology with microelectronics through engineered population dynamics that regulate the accumulation of charged metabolites. We demonstrate electrical detection of the bacterial response to heavy metals via a population control circuit. We then implement this approach to a synchronized genetic oscillator where we obtain an oscillatory impedance profile from engineered bacteria. We lastly miniaturize an array of electrodes to form "bacterial integrated circuits" and demonstrate its applicability as an interface with genetic circuits. This approach paves the way for new advances in synthetic biology, analytical chemistry, and microelectronic technologies.
Collapse
Affiliation(s)
- M. Omar Din
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Aida Martin
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Ivan Razinkov
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas Csicsery
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeff Hasty
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
85
|
Interdigitated aluminium and titanium sensors for assessing epithelial barrier functionality by electric cell-substrate impedance spectroscopy (ECIS). Biomed Microdevices 2020; 22:30. [PMID: 32328801 PMCID: PMC7181462 DOI: 10.1007/s10544-020-00486-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electric cell-substrate impedance spectroscopy (ECIS) enables non-invasive and continuous read-out of electrical parameters of living tissue. The aim of the current study was to investigate the performance of interdigitated sensors with 50 μm electrode width and 50 μm inter-electrode distance made of gold, aluminium, and titanium for monitoring the barrier properties of epithelial cells in tissue culture. At first, the measurement performance of the photolithographic fabricated sensors was characterized by defined reference electrolytes. The sensors were used to monitor the electrical properties of two adherent epithelial barrier tissue models: renal proximal tubular LLC-PK1 cells, representing a normal functional transporting epithelium, and human cervical cancer-derived HeLa cells, forming non-transporting cancerous epithelial tissue. Then, the impedance spectra obtained were analysed by numerically fitting the parameters of the two different models to the measured impedance spectrum. Aluminium sensors proved to be as sensitive and consistent in repeated online-recordings for continuous cell growth and differentiation monitoring as sensors made of gold, the standard electrode material. Titanium electrodes exhibited an elevated intrinsic ohmic resistance in comparison to gold reflecting its lower electric conductivity. Analysis of impedance spectra through applying models and numerical data fitting enabled the detailed investigation of the development and properties of a functional transporting epithelial tissue using either gold or aluminium sensors. The result of the data obtained, supports the consideration of aluminium and titanium sensor materials as potential alternatives to gold sensors for advanced application of ECIS spectroscopy.
Collapse
|
86
|
Boron I, Juárez A, Battaglini F. Portable Microalgal Biosensor for Herbicide Monitoring. ChemElectroChem 2020. [DOI: 10.1002/celc.202000210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ignacio Boron
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales Medio Ambiente y Energía (INQUIMAE– CONICET) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
| | - Angela Juárez
- Departamento de Biodiversidad y Biología Experimental. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA – CONICET) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
| | - Fernando Battaglini
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales Medio Ambiente y Energía (INQUIMAE– CONICET) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
| |
Collapse
|
87
|
Sensing Senses: Optical Biosensors to Study Gustation. SENSORS 2020; 20:s20071811. [PMID: 32218129 PMCID: PMC7180777 DOI: 10.3390/s20071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
The five basic taste modalities, sweet, bitter, umami, salty and sour induce changes of Ca2+ levels, pH and/or membrane potential in taste cells of the tongue and/or in neurons that convey and decode gustatory signals to the brain. Optical biosensors, which can be either synthetic dyes or genetically encoded proteins whose fluorescence spectra depend on levels of Ca2+, pH or membrane potential, have been used in primary cells/tissues or in recombinant systems to study taste-related intra- and intercellular signaling mechanisms or to discover new ligands. Taste-evoked responses were measured by microscopy achieving high spatial and temporal resolution, while plate readers were employed for higher throughput screening. Here, these approaches making use of fluorescent optical biosensors to investigate specific taste-related questions or to screen new agonists/antagonists for the different taste modalities were reviewed systematically. Furthermore, in the context of recent developments in genetically encoded sensors, 3D cultures and imaging technologies, we propose new feasible approaches for studying taste physiology and for compound screening.
Collapse
|
88
|
Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review. SENSORS 2020; 20:s20061803. [PMID: 32214038 PMCID: PMC7146165 DOI: 10.3390/s20061803] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/20/2022]
Abstract
Artificial noses are broad-spectrum multisensors dedicated to the detection of volatile organic compounds (VOCs). Despite great recent progress, they still suffer from a lack of sensitivity and selectivity. We will review, in a systemic way, the biomimetic strategies for improving these performance criteria, including the design of sensing materials, their immobilization on the sensing surface, the sampling of VOCs, the choice of a transduction method, and the data processing. This reflection could help address new applications in domains where high-performance artificial noses are required such as public security and safety, environment, industry, or healthcare.
Collapse
|
89
|
Sun J, Ren Y, Wang W, Hao H, Tang M, Zhang Z, Yang J, Zheng Y, Shi X. Transglutaminase-Catalyzed Encapsulation of Individual Mammalian Cells with Biocompatible and Cytoprotective Gelatin Nanoshells. ACS Biomater Sci Eng 2020; 6:2336-2345. [DOI: 10.1021/acsbiomaterials.0c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jimin Sun
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yafeng Ren
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Weibin Wang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Huili Hao
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Mingyu Tang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Zibo Zhang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - XianAi Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
90
|
Comes MC, Mencattini A, Di Giuseppe D, Filippi J, D’Orazio M, Casti P, Corsi F, Ghibelli L, Di Natale C, Martinelli E. A Camera Sensors-Based System to Study Drug Effects On In Vitro Motility: The Case of PC-3 Prostate Cancer Cells. SENSORS 2020; 20:s20051531. [PMID: 32164292 PMCID: PMC7085768 DOI: 10.3390/s20051531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Cell motility is the brilliant result of cell status and its interaction with close environments. Its detection is now possible, thanks to the synergy of high-resolution camera sensors, time-lapse microscopy devices, and dedicated software tools for video and data analysis. In this scenario, we formulated a novel paradigm in which we considered the individual cells as a sort of sensitive element of a sensor, which exploits the camera as a transducer returning the movement of the cell as an output signal. In this way, cell movement allows us to retrieve information about the chemical composition of the close environment. To optimally exploit this information, in this work, we introduce a new setting, in which a cell trajectory is divided into sub-tracks, each one characterized by a specific motion kind. Hence, we considered all the sub-tracks of the single-cell trajectory as the signals of a virtual array of cell motility-based sensors. The kinematics of each sub-track is quantified and used for a classification task. To investigate the potential of the proposed approach, we have compared the achieved performances with those obtained by using a single-trajectory paradigm with the scope to evaluate the chemotherapy treatment effects on prostate cancer cells. Novel pattern recognition algorithms have been applied to the descriptors extracted at a sub-track level by implementing features, as well as samples selection (a good teacher learning approach) for model construction. The experimental results have put in evidence that the performances are higher when a further cluster majority role has been considered, by emulating a sort of sensor fusion procedure. All of these results highlighted the high strength of the proposed approach, and straightforwardly prefigure its use in lab-on-chip or organ-on-chip applications, where the cell motility analysis can be massively applied using time-lapse microscopy images.
Collapse
Affiliation(s)
- Maria Colomba Comes
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Arianna Mencattini
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
- Correspondence:
| | - Davide Di Giuseppe
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Joanna Filippi
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Michele D’Orazio
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Paola Casti
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Francesca Corsi
- Dept. of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Roma, Italy;
| | - Lina Ghibelli
- Dept. Biology, University of Rome Tor Vergata, 00133 Roma, Italy;
| | - Corrado Di Natale
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Eugenio Martinelli
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| |
Collapse
|
91
|
Solaimuthu A, Vijayan AN, Murali P, Korrapati PS. Nano-biosensors and their relevance in tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
92
|
Voyvodic PL, Bonnet J. Cell-free biosensors for biomedical applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
93
|
Ye Y, Ji J, Sun Z, Shen P, Sun X. Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115718] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
94
|
Pan Y, Jiang D, Gu C, Qiu Y, Wan H, Wang P. 3D microgroove electrical impedance sensing to examine 3D cell cultures for antineoplastic drug assessment. MICROSYSTEMS & NANOENGINEERING 2020; 6:23. [PMID: 34567638 PMCID: PMC8433334 DOI: 10.1038/s41378-020-0130-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 11/10/2019] [Indexed: 05/19/2023]
Abstract
In recent decades, three-dimensional (3D) cancer cell models have attracted increasing interest in the field of drug screening due to their significant advantages in more accurate simulations of heterogeneous tumor behavior in vivo compared to two-dimensional models. Furthermore, drug sensitivity testing based on 3D cancer cell models can provide more reliable in vivo efficacy prediction. The gold standard fluorescence staining is hard to achieve real-time and label-free viability monitoring in 3D cancer cell models. In this study, a microgroove impedance sensor (MGIS) was specially developed for the dynamic and noninvasive monitoring of 3D cell viability. 3D cancer cells were trapped in microgrooves with gold electrodes on opposite walls for in situ impedance measurement. The change in the number of live cells caused inversely proportional changes to the impedance magnitude of the entire cell/Matrigel construct and reflected the proliferation and apoptosis of the 3D cells. It was confirmed that the 3D cell viability detected by the MGIS was highly consistent with the standard live/dead staining by confocal microscope characterization. Furthermore, the accuracy of the MGIS was validated quantitatively using a 3D lung cancer model and sophisticated drug sensitivity testing. In addition, the parameters of the MGIS in the measurement experiments were optimized in detail using simulations and experimental validation. The results demonstrated that the MGIS coupled with 3D cell culture would be a promising platform to improve the efficiency and accuracy of cell-based anticancer drug screening in vitro.
Collapse
Affiliation(s)
- Yuxiang Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050 China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Chenlei Gu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050 China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027 China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050 China
| |
Collapse
|
95
|
Gheorghiu M, Stanica L, Polonschii C, David S, Ruckenstein A, Popescu O, Badea T, Gheorghiu E. Modulation of Cellular Reactivity for Enhanced Cell-Based Biosensing. Anal Chem 2019; 92:806-814. [PMID: 31751507 DOI: 10.1021/acs.analchem.9b03217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell-based sensing platforms provide functional information on cellular effects of bioactive or toxic compounds in a sample. Current challenges concern the rather extended length of the assays as well as their limited reproducibility and sensitivity. We present a biosensing method capable of appraising, on a short time scale and with exquisite sensitivity, the occurrence and the magnitude of cellular alterations induced by low levels of a bioactive/toxic compound. Our method is based on integrating optogenetic control of non-electrogenic human cells, modified to express light sensitive protein channels, into a non-invasive electro-optical analytical platform enabling quantitative assessment of the stimulus dependent, dynamical cellular response. Our system exploits the interplay between optogenetic stimulation and time lapse fast impedance assays in boosting the platform sensitivity when exposing cells to a model exogenous stimulus, under both static and flow conditions. The proposed optogenetically modulated cell-based sensing platform is suitable for in field applications and provides a new paradigm for impedance-based sensing.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- International Centre of Biodynamics , Intrarea Portocalelor 1 B , 060101 Bucharest , Romania.,Faculty of Biology , University of Bucharest , 91-95 Splaiul Independentei , Bucharest 050095 , Romania
| | - Luciana Stanica
- International Centre of Biodynamics , Intrarea Portocalelor 1 B , 060101 Bucharest , Romania.,Faculty of Biology , University of Bucharest , 91-95 Splaiul Independentei , Bucharest 050095 , Romania
| | - Cristina Polonschii
- International Centre of Biodynamics , Intrarea Portocalelor 1 B , 060101 Bucharest , Romania
| | - Sorin David
- International Centre of Biodynamics , Intrarea Portocalelor 1 B , 060101 Bucharest , Romania
| | - Andrei Ruckenstein
- Department of Physics , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Octavian Popescu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center , Babes-Bolyai-University , 400084 Cluj-Napoca , Romania.,Institute of Biology Bucharest , Romanian Academy , 296 Splaiul Independentei , 060031 Bucharest , Romania
| | - Tudor Badea
- Retinal Circuit Development & Genetics Unit , Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute of the National Institutes of Health (N-NRL/NEI/NIH) , 6 Center Drive , Bethesda 20892 , Maryland , United States
| | - Eugen Gheorghiu
- International Centre of Biodynamics , Intrarea Portocalelor 1 B , 060101 Bucharest , Romania.,Faculty of Biology , University of Bucharest , 91-95 Splaiul Independentei , Bucharest 050095 , Romania
| |
Collapse
|
96
|
Broza YY, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W, Haick H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chem Rev 2019; 119:11761-11817. [DOI: 10.1021/acs.chemrev.9b00437] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Xi Zhou
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, P.R. China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Danyao Qu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Youbing Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Rotem Vishinkin
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Muhammad Khatib
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| |
Collapse
|
97
|
Ardeleanu MN, Popescu IN, Udroiu IN, Diaconu EM, Mihai S, Lungu E, Alhalaili B, Vidu R. Novel PDMS-Based Sensor System for MPWM Measurements of Picoliter Volumes in Microfluidic Devices. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4886. [PMID: 31717452 PMCID: PMC6891790 DOI: 10.3390/s19224886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023]
Abstract
In order for automatic microinjection to serve biomedical and genetic research, we have designed and manufactured a PDMS-based sensor with a circular section channel using the microwire molding technique. For the very precise control of microfluidic transport, we developed a microfluidic pulse width modulation system (MPWM) for automatic microinjections at a picoliter level. By adding a computer-aided detection and tracking of fluid-specific elements in the microfluidic circuit, the PDMS microchannel sensor became the basic element in the automatic control of the microinjection sensor. With the PDMS microinjection sensor, we precise measured microfluidic volumes under visual detection, assisted by very precise computer equipment (with precision below 1 μm) based on image processing. The calibration of the MPWM system was performed to increase the reproducibility of the results and to detect and measure microfluidic volumes. The novel PDMS-based sensor system for MPWM measurements of microfluidic volumes contributes to the advancement of intelligent control methods and techniques, which could lead to new developments in the design, control, and in applications of real-time intelligent sensor system control.
Collapse
Affiliation(s)
- Mihăiţă Nicolae Ardeleanu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 13 Aleea Sinaia Street, Targoviste 130004 Romania;
- S.C. Celteh Mezotronic S.R.L., Calea Câmpulung Street, No. 6A, Targoviste, 130092, Romania
| | - Ileana Nicoleta Popescu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 13 Aleea Sinaia Street, Targoviste 130004 Romania;
| | - Iulian Nicolae Udroiu
- Faculty of Electrical Engineering, Electronics and Information Technology, Valahia University of Targoviste, Targoviste 130004, Romania; (I.N.U.); (E.M.D.)
| | - Emil Mihai Diaconu
- Faculty of Electrical Engineering, Electronics and Information Technology, Valahia University of Targoviste, Targoviste 130004, Romania; (I.N.U.); (E.M.D.)
| | - Simona Mihai
- The Scientific and Technological Multidisciplinary Research Institute (ICSTM-UVT), Valahia University of Targoviste, Targoviste 130004, Romania;
| | - Emil Lungu
- Faculty of Sciences and Arts, Department of Mathematics, Valahia University of Targoviste, Targoviste 130004, Romania;
| | - Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Ruxandra Vidu
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616 USA
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, Bucharest 060042, Romania
| |
Collapse
|
98
|
Shafiee A, Ghadiri E, Kassis J, Atala A. Nanosensors for therapeutic drug monitoring: implications for transplantation. Nanomedicine (Lond) 2019; 14:2735-2747. [PMID: 31617787 DOI: 10.2217/nnm-2019-0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The number of patients requiring organ transplantations is exponentially increasing. New organs are either provided by healthy or deceased donors, or are grown in laboratories by tissue engineers. Post-surgical follow-up is vital for preventing any complications that can cause organ rejection. Physiological monitoring of a patient who receives newly transplanted organs is crucial. Many efforts are being made to enhance follow-up technologies for monitoring organ recipients, and point-of-care devices are beginning to emerge. Here, we describe the role of biosensors and nanosensors in improving organ transplantation efficiency, managing post-surgical follow-up and reducing overall costs. We provide an overview of the state-of-the-art biosensing technologies and offer some perspectives related to their further development.
Collapse
Affiliation(s)
- Ashkan Shafiee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Elham Ghadiri
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.,Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA.,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jareer Kassis
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
99
|
Scuratti F, Bonacchini GE, Bossio C, Salazar-Rios JM, Talsma W, Loi MA, Antognazza MR, Caironi M. Real-Time Monitoring of Cellular Cultures with Electrolyte-Gated Carbon Nanotube Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37966-37972. [PMID: 31532607 DOI: 10.1021/acsami.9b11383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell-based biosensors constitute a fundamental tool in biotechnology, and their relevance has greatly increased in recent years as a result of a surging demand for reduced animal testing and for high-throughput and cost-effective in vitro screening platforms dedicated to environmental and biomedical diagnostics, drug development, and toxicology. In this context, electrochemical/electronic cell-based biosensors represent a promising class of devices that enable long-term and real-time monitoring of cell physiology in a noninvasive and label-free fashion, with a remarkable potential for process automation and parallelization. Common limitations of this class of devices at large include the need for substrate surface modification strategies to ensure cell adhesion and immobilization, limited compatibility with complementary optical cell-probing techniques, and the need for frequency-dependent measurements, which rely on elaborated equivalent electrical circuit models for data analysis and interpretation. We hereby demonstrate the monitoring of cell adhesion and detachment through the time-dependent variations in the quasi-static characteristic current curves of a highly stable electrolyte-gated transistor, based on an optically transparent network of printable polymer-wrapped semiconducting carbon-nanotubes.
Collapse
Affiliation(s)
- Francesca Scuratti
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
- Department of Electronics, Information and Bioengineering , Politecnico di Milano , Piazza Leonardo da Vinci, 32 , 20133 Milano , Italy
| | - Giorgio E Bonacchini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| | - Caterina Bossio
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| | - Jorge M Salazar-Rios
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4 9747 AG Groningen , The Netherlands
| | - Wytse Talsma
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4 9747 AG Groningen , The Netherlands
| | - Maria A Loi
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4 9747 AG Groningen , The Netherlands
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| | - Mario Caironi
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| |
Collapse
|
100
|
Lee KH, Kim DM. In Vitro Use of Cellular Synthetic Machinery for Biosensing Applications. Front Pharmacol 2019; 10:1166. [PMID: 31680954 PMCID: PMC6803485 DOI: 10.3389/fphar.2019.01166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
The application of biosensors is expanding in diverse fields due to their high selectivity and sensitivity. Biosensors employ biological components for the recognition of target analytes. In addition, the amplifying nature of biosynthetic processes can potentially be harnessed to for biological transduction of detection signals. Recent advances in the development of highly productive and cost-effective cell-free synthesis systems make it possible to use these systems as the biological transducers to generate biosensing signals. This review surveys recent developments in cell-free biosensors, focusing on the newly devised mechanisms for the biological recognition of analytes to initiate the amplification processes of transcription and translation.
Collapse
Affiliation(s)
- Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| |
Collapse
|