51
|
Serafino A, Chiminelli M, Balestri D, Marchiò L, Bigi F, Maggi RM, Malacria M, Maestri G. Dimerizing cascades of enallenamides reveal the visible-light-promoted activation of cumulated C-C double bonds. Chem Sci 2022; 13:2632-2639. [PMID: 35340858 PMCID: PMC8890112 DOI: 10.1039/d1sc06719b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/07/2023] Open
Abstract
The visible-light-promoted activation of conjugated C-C double bonds is well developed, while that of cumulated systems is underexplored. We present the feasibility of this challenging approach. The localization of a triplet on an allenamide arm can be favored over that on a conjugated alkene. Allenamides with an arylacryloyl arm dimerize at room temperature in the presence of visible light and an iridium(iii) photocatalyst. Two orthogonal polycyclizations took place and their outcome is entirely dictated by the substitution of the alkene partner. Both cascades afford complex molecular architectures with high selectivity. Products form through the ordered rearrangement of twelve π electrons, providing a [3.2.0] bicyclic unit tethered to a fused tricycle, whose formation included an aryl C-H functionalization step, using disubstituted alkenes. The outcome was reverted with trisubstituted ones, which gave rise to taxane-like bridged tricycles that had two six-membered lactams flanking a cyclooctane ring, which was established through the creation of four alternate C-C bonds.
Collapse
Affiliation(s)
- Andrea Serafino
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Davide Balestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Luciano Marchiò
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Franca Bigi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
- IMEM-CNR Parco Area Delle Scienze 37/A 43124 Parma Italy
| | - Rai-Mondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Max Malacria
- Sorbonne Université, Faculty of Science and Engineering, IPCM (UMR CNRS 8232) 4 Place Jussieu 75252 Paris Cedex 05 France
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
52
|
Ni D, Song L, Zhao Y, Liu S. One-pot synthesis of multi-substituted conjugated dienones by trapping allene carbocations with active ylides. Chem Commun (Camb) 2022; 58:2698-2701. [PMID: 35108717 DOI: 10.1039/d1cc06405c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(II)/boron reagent co-catalyzed unprecedent transformation was established for the rapid construction of multi-substituted conjugated dienones under mild conditions by trapping allene carbocations with oxonium ylides from simple starting points in yields up to 85%. Two CC double bonds, one C-C and one C-O single bond were built in this one-pot reaction. The diversity-oriented strategy was also established to synthesize alkyne ether and dihydrofuran derivatives by a substrate-depended fashion.
Collapse
Affiliation(s)
- Dan Ni
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Longlong Song
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
53
|
Chakrabarty A, Mukherjee S. Iridium‐Catalyzed Enantioselective and Chemodivergent Allenylic Alkylation of Vinyl Azides for the Synthesis of α‐Allenylic Amides and Ketones**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aditya Chakrabarty
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | - Santanu Mukherjee
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| |
Collapse
|
54
|
Quintavalla A, Veronesi R, Speziali L, Martinelli A, Zaccheroni N, Mummolo L, Lombardo M. Allenamides Playing Domino: A Redox‐Neutral Photocatalytic Synthesis of Functionalized 2‐Aminofurans. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Arianna Quintavalla
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ruben Veronesi
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Laura Speziali
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ada Martinelli
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Nelsi Zaccheroni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Liviana Mummolo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Marco Lombardo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
55
|
Pedrazzani R, Pintus A, De Ventura R, Marchini M, Ceroni P, Silva López C, Monari M, Bandini M. Boosting Gold(I) Catalysis via Weak Interactions: New Fine-Tunable Impy Ligands. ACS ORGANIC & INORGANIC AU 2022; 2:229-235. [PMID: 36855471 PMCID: PMC9954282 DOI: 10.1021/acsorginorgau.1c00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of modular ImPy-carbene-Au(I) complexes are synthesized and fully characterized both in the solid state and in solution. The presence of oligoaryl units (phenyl and thienyl rings) at the C5-position of the ImPy core (in close proximity to the gold center) imprints on the organometallic species fine-tunable and predictable catalytic properties. A marked accelerating effect was recorded in several [Au(I)]-catalyzed electrophilic activations of unsaturated hydrocarbons when a CF3-containing aromatic ring was accommodated at the ImPy core.
Collapse
Affiliation(s)
- Riccardo Pedrazzani
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy
| | - Angela Pintus
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy
| | - Roberta De Ventura
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy
| | - Marianna Marchini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy
| | - Paola Ceroni
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy
| | - Carlos Silva López
- Departamento
de Química Orgánica, Universidad
de Vigo, 36310 Vigo, Spain
| | - Magda Monari
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy,
| | - Marco Bandini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy,Center
for Chemical Catalysis—C3, Via Selmi 2, 40126 Bologna, Italy,
| |
Collapse
|
56
|
Escalante CH, Carmona-Hernández FA, Hernández-López A, Martínez-Mora EI, Delgado F, Tamariz J. Cascade synthesis of indolizines and pyrrolo[1,2- a]pyrazines from 2-formyl-1-propargylpyrroles. Org Biomol Chem 2022; 20:396-409. [PMID: 34904608 DOI: 10.1039/d1ob01839f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward synthesis of indolizines and pyrrolo[1,2-a]pyrazines was performed through a cascade condensation/cyclization/aromatization reaction of substituted 2-formyl-N-propargylpyrroles with active methylene compounds such as nitromethane, alkyl malonates, methyl cyanoacetate and malononitrile. Under basic conditions, the reaction proceeded satisfactorily to provide the corresponding 6,7-disubstituted indolizines. The condensation of the pyrrolic analogues with ammonium acetate gave rise to pyrrolo[1,2-a]pyrazines in high yields. N-Allenyl-2-formylpyrroles behaved as more reactive substrates than 2-formyl-N-propargylpyrroles, furnishing the expected indolizines in higher yields. Hence, an allenyl-containing intermediate was probably generated as the reactive species in the reaction mechanism of some N-propargyl pyrroles prior to the cyclization reaction.
Collapse
Affiliation(s)
- Carlos H Escalante
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Fernando A Carmona-Hernández
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Alberto Hernández-López
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Eder I Martínez-Mora
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico. .,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza e Ing. J. Cárdenas S/N, 25280 Saltillo, Coah., Mexico
| | - Francisco Delgado
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Joaquín Tamariz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| |
Collapse
|
57
|
The Rearrangement of Alkylallenes to 1,3-Dienes. REACTIONS 2022. [DOI: 10.3390/reactions3010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
1,3-Dienes are vital building blocks in organic synthesis. They underpin many fundamental synthetic transformations and are present in numerous natural products and drug candidate molecules. The rearrangement of an alkylallene to a 1,3-diene is an atom efficient, redox neutral, transformation that provides a straightforward synthetic route to functionalized 1,3-dienes. Herein, we provide an account of this transformation using allenes that are not predisposed by the presence of heteroatoms or electron-withdrawing groups directly attached to the allene. Early reports of this skeletal rearrangement are acid-mediated approaches, with limited substrate scope, but they provide valuable mechanistic insights. More recent transition metal-mediated approaches that exhibit improved substrate scope are described, together with isolated examples that have utilized this rearrangement.
Collapse
|
58
|
Yu L, Zhou Q, Gao Y, Fu Z, Xiao Y, Li Z, Wang J. Synthesis of Polyallenoates through Copper-Mediated Cross-Coupling of Dialkynes and Bis-α-Diazoesters. Chem Commun (Camb) 2022; 58:3909-3912. [DOI: 10.1039/d2cc00299j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper-catalyzed cross-coupling of alkynes and α-diazoesters have been applied in the synthesis of polyallenoates for the first time. The polymerization tolerated various functional groups and afforded the polyallenoates with...
Collapse
|
59
|
Li TT, Lu WY, Shen LW, Wang ZH, Zhao JQ, You Y, Yuan WC. CuI-catalyzed decarboxylative highly regioselective phosphonylation of terminal alkyne-substituted cyclic carbonates/carbamates to access 4-phosphonyl 2,3-allenols/2,3-allenamines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
60
|
Yang Y, Wang H, Sun Z, Li X, Sun F, Liu Q, Zhang L, Xu L, Liu H. Palladium-catalyzed regiodivergent arylamination/aryloxygenation of allenamide. Org Chem Front 2022. [DOI: 10.1039/d2qo01271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In regiodivergent arylamination/aryloxygenation of allenamides, use of Cy2NMe caused 2,1-arylamination and the corresponding alkenes were formed with excellent Z configuration. Whereas, utilizing Ag2CO3 caused 2,3-aryloxygenation via an unexpected CO2 insertion from Ag2CO3.
Collapse
Affiliation(s)
- Yi Yang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Hui Wang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Zehua Sun
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Xinjin Li
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Fenggang Sun
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Qing Liu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Lizhi Zhang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Liping Xu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Hui Liu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| |
Collapse
|
61
|
Pandit YB, Liu RS. Dynamic Kinetic Resolution in Gold-Catalyzed (4 + 2)-Annulations between Alkynyl Benzaldehydes and Allenamides to Yield Enantioenriched All-Carbon Diarylalkylmethane Derivatives. Org Lett 2021; 24:548-553. [PMID: 34967633 DOI: 10.1021/acs.orglett.1c03963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work reports the synthesis of diarylmethane derivatives via gold-catalyzed (4 + 2)-annulations between alkynyl benzaldehydes and allenamides, followed by an aza-Claisen rearrangement. Deuterium labeling and crossover experiments have been performed to confirm this proposed mechanism. With racemic 3-substituted allenamides in a substrate ratio (1:1), we employ chiral gold catalysts to achieve a dynamic kinetic resolution to obtain enantioenriched diarylalkylmethane derivatives with high e.r. levels (up to 93:7).
Collapse
Affiliation(s)
- Yashwant Bhaskar Pandit
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 Taiwan, ROC
| | - Rai-Shung Liu
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 Taiwan, ROC
| |
Collapse
|
62
|
Das S, Azim A, Hota SK, Panda SP, Murarka S, De Sarkar S. An organophotoredox-catalyzed redox-neutral cascade involving N-(acyloxy)phthalimides and allenamides: synthesis of indoles. Chem Commun (Camb) 2021; 57:13130-13133. [PMID: 34806725 DOI: 10.1039/d1cc05397c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organophotoredox-catalyzed radical cascade of allenamides and alkyl N-(acyloxy)phthalimides for the synthesis of indoles is documented. The method features mild and robust reaction conditions, and exhibits broad scope. The tandem process enriches the limited repertoire of alkyl NHPI ester addition on electron-rich π-bonds as well as radical chemistry involving allenamides.
Collapse
Affiliation(s)
- Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| | - Aznur Azim
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
63
|
Xiao J, Cui Y, Li C, Xu H, Zhai Y, Zhang X, Ma S. Room Temperature Allenation of Terminal Alkynes with Aldehydes. Angew Chem Int Ed Engl 2021; 60:25708-25713. [PMID: 34595806 DOI: 10.1002/anie.202109879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Indexed: 11/10/2022]
Abstract
A gold-catalyzed room temperature allenation of terminal alkynes (ATA) with aldehydes affording 1,3-disubstituted allenes with diverse functional groups has been developed by identifying a gold(I) catalyst and an amine. The practicality of this reaction has been demonstrated by a ten gram-scale synthesis and the synthetic potentials have been demonstrated via various transformations and formal total synthesis of (-)-centrolobine. Mechanistic studies revealed that the gold catalyst, the aldehyde effect, the fluoroalkyl hydroxyl solvent (TFE or HFIP) and the structure of amine are vital in this room temperature ATA reaction.
Collapse
Affiliation(s)
- Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yifan Cui
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haibo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| |
Collapse
|
64
|
Xiao J, Cui Y, Li C, Xu H, Zhai Y, Zhang X, Ma S. Room Temperature Allenation of Terminal Alkynes with Aldehydes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yifan Cui
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Can Li
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Haibo Xu
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- Research Centre for Molecular Recognition and Synthesis Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| |
Collapse
|
65
|
Zheng Y, Moegle B, Ghosh S, Perfetto A, Luise D, Ciofini I, Miesch L. Copper-Catalyzed Synthesis of Terminal vs. Fluorine-Substituted N-Allenamides via Addition of Diazo Compounds to Terminal Ynamides. Chemistry 2021; 28:e202103598. [PMID: 34826155 DOI: 10.1002/chem.202103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 01/05/2023]
Abstract
A copper-mediated coupling reaction between ynamides and diazo-compounds to produce N-allenamides is reported for the first time. This method enables facile and rapid access to terminal N-allenamides by using commercially available TMS-diazomethane with wide functional group compatibility on the nitrogen. Furthermore, the ubiquity of molecules containing a fluorine moiety in medicine, in agricultural, and material science requires the continuous search of new building blocks, including this unique surrogate. The CuI/diazo protocol was successfully applied to the synthesis of fluorine-substituted N-allenamides. DFT calculations provided insights in the mechanism involved.
Collapse
Affiliation(s)
- Yongxiang Zheng
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Baptiste Moegle
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Santanu Ghosh
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Anna Perfetto
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005, Paris, France
| | - Davide Luise
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005, Paris, France
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005, Paris, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| |
Collapse
|
66
|
Wei W, Xu X, Lee KH, Lin R, Sung HHY, Williams ID, Lin Z, Jia G. Reactions of Rhenacyclobutadiene Complexes with Allenes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ka-Ho Lee
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ran Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| |
Collapse
|
67
|
Hajiloo Shayegan M, Li ZY, Cui X. Ligand-Controlled Regiodivergence for Catalytic Stereoselective Semireduction of Allenamides. Chemistry 2021; 28:e202103402. [PMID: 34693580 DOI: 10.1002/chem.202103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Ligand-controlled regiodivergence has been developed for catalytic semireduction of allenamides with excellent chemo- and stereocontrol. This system also provides an example of catalytic regiodivergent semireduction of allenes for the first time. The divergence of the semireduction is enabled by ligand switch with the same palladium pre-catalyst under operationally simple and mild conditions. Monodentate ligand XPhos exclusively promotes selective 1,2-semireduction to afford allylic amides, while bidentate ligand BINAP completely switched the regioselectivity to 2,3-semireduction, producing (E)-enamide derivatives.
Collapse
Affiliation(s)
| | - Zhong-Yuan Li
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xin Cui
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
68
|
Jin Y, Wen H, Yang F, Ding D, Wang C. Synthesis of Multisubstituted Allenes via Nickel-Catalyzed Cross-Electrophile Coupling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hao Wen
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feiyan Yang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Decai Ding
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
69
|
Zhou T, Zhu Y, Zhang H, He J, Li H, Lang M, Wang J, Peng S. One‐Pot Synthesis of 1,2,3‐Triazolo Polycyclic Systems via Copper‐Catalyzed/TsOH‐Promoted Tandem Annulation of 1,6‐Allenynes with Organic Azides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ting Zhou
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Yuqi Zhu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Hong Zhang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Jieyin He
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Hongguang Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Ming Lang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Jian Wang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
- School of Pharmaceutical Sciences Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology Ministry of Education Tsinghua University Beijing 100084 People's Republic of China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| |
Collapse
|
70
|
Du X, Zhao H, Li X, Zhang L, Dong Y, Wang P, Zhang D, Liu Q, Liu H. Ligand-Regulated Palladium-Catalyzed Regiodivergent Hydroarylation of the Distal Double Bond of Allenamides with Aryl Boronic Acid. J Org Chem 2021; 86:13276-13288. [PMID: 34541854 DOI: 10.1021/acs.joc.1c01303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ligand-regulated regiodivergent hydroarylation of the distal double bond of allenamides with aryl boronic acid was achieved in the presence of palladium(II) catalysts, delivering a variety of functionalized enamide with excellent E selectivity and Markovnikov/anti-Markovnikov selectivity. Two possible coordination intermediates were proposed to be responsible for the regiodivergent hydroarylation: (1) The coordination Intermediate I, which was proposed to be formed through the coordination of MeCN, distal double bond, phenyl to palladium, led to the aryl group away from the Intermediate I, inducing excellent E selectivity and anti-Markovnikov selectivity. (2) A switch of regioselectivity to 1,2-Markovnikov hydroarylation was obtained using bidentate phosphine ligand (dppf or Xantphos). The formed coordination Intermediate II led to the N-tether away from the Intermediate II and at the trans position of aryl, resulting in excellent E selectivity and Markovnikov selectivity. Meanwhile, tentative investigation on the mechanism proved that the hydron source of this hydroarylation is more likely to be boronic acid. The transmetallation between aryl boronic acid and palladium catalyst was the initial step of this transformation.
Collapse
Affiliation(s)
- Xin Du
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Huan Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Xinling Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| |
Collapse
|
71
|
Woldegiorgis AG, Han Z, Lin X. Organocatalytic Asymmetric Dearomatization Reaction for the Synthesis of Axial Chiral Allene-Derived Naphthalenones Bearing Quaternary Stereocenters. Org Lett 2021; 23:6606-6611. [PMID: 34387497 DOI: 10.1021/acs.orglett.1c01849] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The highly regio-, diastereo-, and enantioselective dearomatization reaction of 1-substituted 2-naphthols and β,γ-alkynyl-α-imino esters with complete atom economy is disclosed via chiral phosphoric acid catalysis. This protocol provides facile and efficient access to asymmetric construction of a broad range of axially chiral allene-derived naphthalenones bearing quaternary stereocenters in good yields with high diastereoselectivities and enantioselectivities.
Collapse
Affiliation(s)
| | - Zhao Han
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
72
|
NIS-promoted intramolecular cyclization of allenamides for the synthesis of tetrahydro-β-carbolines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
73
|
Chen W, Jiang C, Zhang J, Xu J, Xu L, Xu X, Li J, Cui C. Rare-Earth-Catalyzed Selective 1,4-Hydrosilylation of Branched 1,3-Enynes Giving Tetrasubstituted Silylallenes. J Am Chem Soc 2021; 143:12913-12918. [PMID: 34388341 DOI: 10.1021/jacs.1c04689] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allenes are versatile synthons in organic synthesis and medicinal chemistry because of their diverse reactivities. Catalytic 1,4-hydrosilylation of 1,3-enynes may present the straightforward strategy for synthesis of silylallenes. However, the transition-metal-catalyzed reaction has not been successful due to poor selectivity and very limited substrate scopes. We report here the efficient and selective 1,4-hydrosilylation of branched 1,3-enynes enabled by the ene-diamido rare-earth ate catalysts using both alkyl and aryl hydrosilanes, leading to the exclusive formation of tetrasubstituted silylallenes. Deuteration reaction, kinetic study, and DFT calculations were conducted to investigate the possible mechanism, revealing crucial roles of high Lewis acidity, large ionic radius, and ate structure of the rare-earth catalysts.
Collapse
Affiliation(s)
- Wufeng Chen
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunhui Jiang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiaqi Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Lin Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiufang Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
74
|
Zhang J, Huo X, Xiao J, Zhao L, Ma S, Zhang W. Enantio- and Diastereodivergent Construction of 1,3-Nonadjacent Stereocenters Bearing Axial and Central Chirality through Synergistic Pd/Cu Catalysis. J Am Chem Soc 2021; 143:12622-12632. [PMID: 34351136 DOI: 10.1021/jacs.1c05087] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In contrast to the widely explored methods for the asymmetric synthesis of molecules bearing a single stereocenter or adjacent stereocenters, the concurrent construction of 1,3-stereogenic centers in an enantio- and diastereoselective manner remains a challenge, especially in acyclic systems. Herein, we report an enantio- and diastereodivergent construction of 1,3-nonadjacent stereocenters bearing allenyl axial and central chirality through synergistic Pd/Cu-catalyzed dynamic kinetic asymmetric allenylation with racemic allenylic esters. The protocol is suitable for a wide range of substrates including the challenging allenylic esters with less sterically bulky substituents and provided chiral allenylic products bearing 1,3-nonadjacent stereocenters with high levels of enantio- and diastereoselectivities (up to >20:1 dr and >99% ee). Furthermore, several representative transformations involving axial-to-central chirality transfer were conducted, affording useful structural motifs containing nonadjacent stereocenters in a diastereodivergent manner.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China.,Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
75
|
Ye C, Jiao Y, Chiou MF, Li Y, Bao H. Direct synthesis of pentasubstituted pyrroles and hexasubstituted pyrrolines from propargyl sulfonylamides and allenamides. Chem Sci 2021; 12:9162-9167. [PMID: 34276946 PMCID: PMC8261710 DOI: 10.1039/d1sc02090k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
Multisubstituted pyrroles are important fragments that appear in many bioactive small molecule scaffolds. Efficient synthesis of multisubstituted pyrroles with different substituents from easily accessible starting materials is challenging. Herein, we describe a metal-free method for the preparation of pentasubstituted pyrroles and hexasubstituted pyrrolines with different substituents and a free amino group by a base-promoted cascade addition-cyclization of propargylamides or allenamides with trimethylsilyl cyanide. This method would complement previous methods and support expansion of the toolbox for the synthesis of valuable, but previously inaccessible, highly substituted pyrroles and pyrrolines. Mechanistic studies to elucidate the reaction pathway have been conducted.
Collapse
Affiliation(s)
- Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Yihang Jiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
76
|
Lee KJ, Kim G. Bromoamination of a Benzoallene Ether and the Subsequent Palladium‐catalyzed Coupling Reactions to Benzoxazinone Derivatives Containing Conjugated Substituents. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kun Jung Lee
- Department of Chemistry, College of Natural Sciences Chungnam National University Daejon 34134 Republic of Korea
| | - Guncheol Kim
- Department of Chemistry, College of Natural Sciences Chungnam National University Daejon 34134 Republic of Korea
| |
Collapse
|
77
|
Zhong X, Tan J, Qiao J, Zhou Y, Lv C, Su Z, Dong S, Feng X. Catalytic asymmetric synthesis of spirocyclobutyl oxindoles and beyond via [2+2] cycloaddition and sequential transformations. Chem Sci 2021; 12:9991-9997. [PMID: 34377393 PMCID: PMC8317662 DOI: 10.1039/d1sc02681j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Efficient asymmetric synthesis of a collection of small molecules with structural diversity is highly important to drug discovery. Herein, three distinct types of chiral cyclic compounds were accessible by enantioselective catalysis and sequential transformations. Highly regio- and enantioselective [2+2] cycloaddition of (E)-alkenyloxindoles with the internal C[double bond, length as m-dash]C bond of N-allenamides was achieved with N,N'-dioxide/Ni(OTf)2 as the catalyst. Various optically active spirocyclobutyl oxindole derivatives were obtained under mild conditions. Moreover, formal [4+2] cycloaddition products occurring at the terminal C[double bond, length as m-dash]C bond of N-allenamides, dihydropyran-fused indoles, were afforded by a stereospecific sequential transformation with the assistance of a catalytic amount of Cu(OTf)2. In contrast, performing the conversion under air led to the formation of γ-lactones via the water-involved deprotection and rearrangement process. Experimental studies and DFT calculations were performed to probe the reaction mechanism.
Collapse
Affiliation(s)
- Xia Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jiuqi Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Cidan Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|
78
|
Zhu X, Li R, Yao H, Lin A. Palladium-Catalyzed Allenamide Carbopalladation/Allylation with Active Methine Compounds. Org Lett 2021; 23:4630-4634. [PMID: 34048265 DOI: 10.1021/acs.orglett.1c01369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed allenamide carbopalladation/allylation with active methine compounds has been developed. Various indoles and isoquinolinones bearing a quaternary carbon center were achieved with good efficiency, a broad substrate scope and good functional group tolerance. This reaction underwent cascade oxidative addition, carbopalladation, and allylic alkylation, and two new C-C bonds were formed in one pot.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ruibo Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
79
|
Xiao J, Xu H, Huo X, Zhang W, Ma S. One Stone Two Birds—Enantioselective Bimetallic Catalysis for
α‐Amino
Acid Derivatives with an Allene Unit. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haibo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 China
| |
Collapse
|
80
|
Xie Y, Yang X, Xu J, Chai H, Liu H, Zhang J, Song J, Gao Y, Jin Z, Chi YR. Access to Allene‐Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yongtao Xie
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Huifang Chai
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Hongxia Liu
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Jun Song
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Yuan Gao
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
81
|
Xie Y, Yang X, Xu J, Chai H, Liu H, Zhang J, Song J, Gao Y, Jin Z, Chi YR. Access to Allene-Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angew Chem Int Ed Engl 2021; 60:14817-14823. [PMID: 33834597 DOI: 10.1002/anie.202102177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Indexed: 12/17/2022]
Abstract
Azolium cumulenolates are a special type of intermediates in N-heterocyclic carbene catalysis. They contain elongated linear structures with three contiguous C=C bonds and sterically unhindered α-carbon atoms. These structural features make it difficult to develop enantioselective reactions for these intermediates. Here we disclose the first carbene-catalyzed highly enantioselective addition reactions of azolium cumulenolates. The reaction starts with alkynals as the precursors for azolium cumulenolate intermediates that undergo enantioselective addition to activated ketones. From the same set of substrates, both allene and spirooxindole products can be obtained with high yields and excellent enantioselectivities. The allene moieties in our optically enriched products carry rich reactivities and can be transformed to diverse molecules. The spirooxindole scaffolds in our products are important structural motifs in natural products and medicines.
Collapse
Affiliation(s)
- Yongtao Xie
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Huifang Chai
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongxia Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jun Song
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuan Gao
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
82
|
Lu WY, You Y, Li TT, Wang ZH, Zhao JQ, Yuan WC. CuI-Catalyzed Decarboxylative Thiolation of Propargylic Cyclic Carbonates/Carbamates to Access Allenyl Thioethers. J Org Chem 2021; 86:6711-6720. [PMID: 33844530 DOI: 10.1021/acs.joc.1c00453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first CuI-catalyzed decarboxylative thiolation of terminal alkyne-substituted cyclic carbonates/carbamates to access allenes has been developed. A wide range of hydroxymethyl- and aminomethyl-containing allenyl thioethers were smoothly obtained in good to excellent yields under mild conditions. The copper-allenylidene intermediate among the process is crucial to the decarboxylative thiolation reaction. This method opens up a new channel to access allenyl thioether compounds.
Collapse
Affiliation(s)
- Wen-Ya Lu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
83
|
Suárez-Rodríguez T, Suárez-Sobrino ÁL, Ballesteros A. Gold(I)-Catalyzed [8+2]-Cycloaddition of 8-Aryl-8-azaheptafulvenes with Allenamides and Ynamides: Regioselective Synthesis of Dihydrocycloheptapyrrole Derivatives. Chemistry 2021; 27:7154-7159. [PMID: 33567146 DOI: 10.1002/chem.202005348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 01/01/2023]
Abstract
Gold(I)-catalyzed higher-order [8+2] cycloadditions of 8-aryl-8-azaheptafulvenes 1 with allenamides 2 and ynamides 3 were studied. 1,8-Dihydrocycloheptapyrroles 4 were achieved by a regioselective [8+2] cycloaddition of azaheptafulvenes 1 and allenamides 2 in the presence of (2,4-ditBuC6 H3 O)3 PAuNTf2 as catalyst. Besides, ynamides 3 and 8-aryl-8-azaheptafulvenes 1, undergo a regioselective [8+2] cycloaddition, to give 2-amido-1,4-dihydrocycloheptapyrroles 7 in the presence of JohnPhosAuNTf2 as catalyst. Both reactions take place with good yields and with a variety of substituents. A plausible mechanism hypothesis suggests a nucleophilic attack of the 8-azaheptafulvene to the gold activated electron rich allene or alkyne moieties of the allenamide and ynamide, respectively.
Collapse
Affiliation(s)
- Tatiana Suárez-Rodríguez
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Ángel L Suárez-Sobrino
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Alfredo Ballesteros
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
84
|
Regio- and stereoselective synthesis of cyclobutanes by nickel-catalyzed homodimerizative [2 + 2] cycloaddition using allenamides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
85
|
Pedrazzani R, An J, Monari M, Bandini M. New Chiral BINOL‐Based Phosphates for Enantioselective [Au(I)]‐Catalyzed Dearomatization of β‐Naphthols with Allenamides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Riccardo Pedrazzani
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Juzeng An
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Magda Monari
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Marco Bandini
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
- Consorzio C.I.N.M.P.I.S. Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
86
|
Mondal A, Chowdhury C. Palladium-Catalyzed Synthesis of 1-Vinyltetrahydro-β-carbolines and Aza-spiroindolenines: Access to the Syntheses of 1-Vinyl-β-carbolines and Eudistomins Y1 and Y2. J Org Chem 2021; 86:3810-3825. [PMID: 33591208 DOI: 10.1021/acs.joc.0c02651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general synthesis of 1-vinyltetrahydro-β-carbolines (THBCs) has been achieved via palladium(0)-catalyzed cyclocondensation between allenyltryptamines and aryl iodides. Aza-spiroindolenines could also be accessed from the N-unsubstituted indole substrates by simply tweaking the reaction conditions. DDQ-mediated oxidation of THBCs easily afforded β-carbolines, which could be synthetically transformed into 1-aroyl-β-carbolines of pharmacological interest. Formal total syntheses of eudistomins Y1 and Y2 have also been achieved.
Collapse
Affiliation(s)
- Amrita Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
87
|
Kondoh A, Terada M. Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
88
|
Abstract
This review summarizes the visible light mediated strategies for the functionalization of allenes.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anoop Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|
89
|
Ding Y, Long J, Fang X. Nickel-catalyzed highly regioselective hydrocyanation of aliphatic allenes. Org Chem Front 2021. [DOI: 10.1039/d1qo01099a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed hydrocyanation of aliphatic allenes with excellent regioselectivity is developed. This protocol enables a catalytic pathway to access various allylic nitriles containing quaternary carbon centers in good yields.
Collapse
Affiliation(s)
- Ying Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinguo Long
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
90
|
Pei G, Chen H, Xu W, Chen T, Li J. Diboron-controlled product selectivity switch in copper-catalyzed decarboxylative substitutions of alkynyl cyclic carbonates. Org Chem Front 2021. [DOI: 10.1039/d1qo01411k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DFT calculations were performed to explore the mechanisms, origins of diboron-controlled divergent product selectivity and stereoselectivity in the copper-catalyzed decarboxylative substitution of alkynyl cyclic carbonates.
Collapse
Affiliation(s)
- Guojing Pei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hui Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Wan Xu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Juan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
91
|
González‐Pelayo S, Bernardo O, Borge J, López LA. Synthesis of Metallocene Analogues of the Phenethylamine and Tetrahydroisoquinoline Scaffolds via Regioselective Ring Opening of 2‐Aryl‐
N
‐sulfonyl Aziridines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Silvia González‐Pelayo
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles” Universidad de Oviedo, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Julián Clavería 8 33006- Oviedo Spain
| | - Olaya Bernardo
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles” Universidad de Oviedo, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Julián Clavería 8 33006- Oviedo Spain
| | - Javier Borge
- Departamento de Química Física y Analítica Universidad de Oviedo Julián Clavería 8 33006- Oviedo Spain
| | - Luis A. López
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles” Universidad de Oviedo, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Julián Clavería 8 33006- Oviedo Spain
| |
Collapse
|
92
|
Li X, Liu Y, Ding N, Tan X, Zhao Z. Recent progress in transition-metal-free functionalization of allenamides. RSC Adv 2020; 10:36818-36827. [PMID: 35517974 PMCID: PMC9057111 DOI: 10.1039/d0ra07119f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
With their unique reactivity, selectivity, availability and stability, allenamides are receiving increasing attention, and reports on the functionalization of allenamides are rapidly growing in number. In this review, recent developments in transition-metal-free functionalization of allenamides are highlighted. First, developments based on allenamide reactivity are simply introduced. After presenting the advantages of allenamides, recent progress in transition-metal-free functionalization of allenamides is classified and discussed in detail in four parts: chiral phosphoric-acid-catalyzed asymmetric functionalization, iodine-reagent-mediated functionalization, 1,3-H-shift reaction of allenamides, and other metal-free allenamide functionalizations. For the majority of these transformations, plausible mechanisms are presented in detail. The purpose of this review is to provide illustrations of elegant allenamide chemistry, and thereby elicit further interest from the synthetic community to develop novel allenamide methodology.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 People's Republic of China
| | - Yongchun Liu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 People's Republic of China
| | - Na Ding
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 People's Republic of China
| | - Xiaoju Tan
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 People's Republic of China
| | - Zhigang Zhao
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 People's Republic of China
| |
Collapse
|
93
|
Pradhan TR, Lee HE, Gonzalez‐Montiel GA, Cheong PH, Park JK. Highly Chemoselective Esterification from
O
‐Aminoallylation of Carboxylic Acids: Metal‐ and Reagent‐Free Hydrocarboxylation of Allenamides. Chemistry 2020; 26:13826-13831. [DOI: 10.1002/chem.202000778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Tapas R. Pradhan
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Korea
| | - Hae Eun Lee
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Korea
| | | | | | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Korea
| |
Collapse
|
94
|
Shukla RK, Nair AM, Khan S, Volla CMR. Cobalt-Catalyzed C8-Dienylation of Quinoline-N-Oxides. Angew Chem Int Ed Engl 2020; 59:17042-17048. [PMID: 32558084 DOI: 10.1002/anie.202003216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Indexed: 12/19/2022]
Abstract
An efficient Cp*CoIII -catalyzed C8-dienylation of quinoline-N-oxides was achieved by employing allenes bearing leaving groups at the α-position as the dienylating agents. The reaction proceeds by CoIII -catalyzed C-H activation of quinoline-N-oxides and regioselective migratory insertion of the allene followed by a β-oxy elimination, leading to overall dienylation. Site-selective C-H activation was achieved with excellent selectivity under mild reaction conditions, and 30 mol % of a NaF additive was found to be crucial for the efficient dienylation. The methodology features high stereoselectivity, mild reaction conditions, and good functional-group tolerance. C8-alkenylation of quinoline-N-oxides was achieved in the case of allenes devoid of leaving groups as coupling partners. Furthermore, gram-scale preparation and preliminary mechanistic experiments were carried out to gain insights into the reaction mechanism.
Collapse
Affiliation(s)
- Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Salman Khan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
95
|
Liu Y, Yi Z, Yang X, Wang H, Yin C, Wang M, Dong XQ, Zhang X. Efficient Access to Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation: Scope Study, Mechanistic Explanation, and Origin of Enantioselectivity. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02569] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuanhua Liu
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhiyuan Yi
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xuanliang Yang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Heng Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Congcong Yin
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
96
|
Koleoso OK, Turner M, Plasser F, Kimber MC. A complementary approach to conjugated N-acyliminium formation through photoredox-catalyzed intermolecular radical addition to allenamides and allencarbamates. Beilstein J Org Chem 2020; 16:1983-1990. [PMID: 32831955 PMCID: PMC7431758 DOI: 10.3762/bjoc.16.165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
An intermolecular radical addition, using photoredox catalysis, to allenamides and allencarbamates is reported. This transformation synthesizes N-acyl-N’-aryl-N,N’-allylaminals, and proceeds by a conjugated N-acyliminium intermediate that previously has principally been generated by electrophilic activation methods. The radical adds to the central carbon of the allene giving a conjugated N-acyliminium that undergoes nucleophilic addition by arylamines and alcohols.
Collapse
Affiliation(s)
- Olusesan K Koleoso
- School of Science, Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK.,Department of Pharmaceutical Technology, Moshood Abiola Polytechnic, Abeokuta, Nigeria
| | - Matthew Turner
- School of Science, Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Felix Plasser
- School of Science, Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Marc C Kimber
- School of Science, Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
97
|
Shukla RK, Nair AM, Khan S, Volla CMR. Cobalt‐Catalyzed C8‐Dienylation of Quinoline‐
N
‐Oxides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Akshay M. Nair
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Salman Khan
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Chandra M. R. Volla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| |
Collapse
|
98
|
Yuan Y, Zhang X, Qian H, Ma S. Catalytic enantioselective allene-anhydride approach to β,γ-unsaturated enones bearing an α-all-carbon-quarternary center. Chem Sci 2020; 11:9115-9121. [PMID: 34094192 PMCID: PMC8161143 DOI: 10.1039/d0sc03227a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A protocol of highly regio- and enantioselective copper-catalyzed hydroacylation of the non-terminal C[double bond, length as m-dash]C bond in 1,1-disubstituted terminal allenes with anhydrides has been developed. Both aromatic and aliphatic carboxylic anhydrides are applicable to the efficient construction of all carbon quarternary centers connected with a versatile C[double bond, length as m-dash]C bond and a useful ketone functionality. The synthetic potentials of the enantioenriched products have also been demonstrated. Density functional theory (DFT) calculations were performed to explain the steric outcome of the products: the hydroacylation proceeds through a six-membered transition state and the ligand-substrate steric interactions account for the observed enantioselectivity although the chiral ligand is far away from the to-be-genetated chiral center.
Collapse
Affiliation(s)
- Yuan Yuan
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 P. R. China
| |
Collapse
|
99
|
Wang C, Xu G, Shao Y, Tang S, Sun J. Gold-Catalyzed Intermolecular Formal [4 + 2 + 2]-Cycloaddition of Anthranils with Allenamides. Org Lett 2020; 22:5990-5994. [PMID: 32678606 DOI: 10.1021/acs.orglett.0c02083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The construction of eight-membered rings is a challenging issue due to unfavorable transannular strain and entropic barriers. We report herein a gold-catalyzed formal [4 + 2 + 2] cycloaddition reaction of anthranils with allenamides to deliver oxa-bridged eight-membered heterocycles in accepted yields with unique E/Z configuration. Moreover, the asymmetric [4 + 2 + 2] cycloaddition by using chiral phosphoramidite gold catalyst has also been conducted.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
100
|
Hirokane T, Watanabe S, Matsumoto K, Yoshida M. A facile synthesis of trisubstituted allenamides by DBU-promoted isomerization of propargylamides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|