51
|
Kaddour H, Lucchi H, Hervé G, Vergne J, Maurel MC. Kinetic Study of the Avocado Sunblotch Viroid Self-Cleavage Reaction Reveals Compensatory Effects between High-Pressure and High-Temperature: Implications for Origins of Life on Earth. BIOLOGY 2021; 10:720. [PMID: 34439952 PMCID: PMC8389264 DOI: 10.3390/biology10080720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022]
Abstract
A high pressure apparatus allowing one to study enzyme kinetics under pressure was used to study the self-cleavage activity of the avocado sunblotch viroid. The kinetics of this reaction were determined under pressure over a range up to 300 MPa (1-3000 bar). It appears that the initial rate of this reaction decreases when pressure increases, revealing a positive ΔV≠ of activation, which correlates with the domain closure accompanying the reaction and the decrease of the surface of the viroid exposed to the solvent. Although, as expected, temperature increases the rate of the reaction whose energy of activation was determined, it appeared that it does not significantly influence the ΔV≠ of activation and that pressure does not influence the energy of activation. These results provide information about the structural aspects or this self-cleavage reaction, which is involved in the process of maturation of this viroid. The behavior of ASBVd results from the involvement of the hammerhead ribozyme present at its catalytic domain, indeed a structural motif is very widespread in the ancient and current RNA world.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Honorine Lucchi
- Société PYMABS, 5 rue Henri Auguste Desbyeres, 91000 Évry-Courcouronnes, France;
| | - Guy Hervé
- Laboratoire BIOSIPE, Institut de biologie Paris-Seine, Sorbonne Université, 7 quai Saint-Bernard, 75005 Paris, France;
| | - Jacques Vergne
- Institut de Systématique, Evolution, Biodiversité, (ISYEB), Sorbonne Université, Museum National d’Histoire Naturelle, CNRS, EPHE, F 75005 Paris, France;
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité, (ISYEB), Sorbonne Université, Museum National d’Histoire Naturelle, CNRS, EPHE, F 75005 Paris, France;
| |
Collapse
|
52
|
da Silva Pereira GV, da Silva Pereira GV, Xavier Neves EMP, Albuquerque GA, de Arimatéia Rodrigues do Rêgo J, Cardoso DNP, do Socorro Barros Brasil D, Joele MRSP. Effect of the Mixture of Polymers on the Rheological and Technological Properties of Composite Films of Acoupa Weakfish (Cynoscion acoupa) and Cassava Starch (Manihot esculenta C.). FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02622-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
53
|
|
54
|
Cryo-EM to visualize the structural organization of viruses. Curr Opin Virol 2021; 49:86-91. [PMID: 34058526 DOI: 10.1016/j.coviro.2021.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
It is intriguing to think that over millions of years, groups of nucleic acids got the chance to hold together with groups of proteins to build up what today is called a virus. Their only goal is to guarantee a successful replication inside a host. If their genome information is preserved, the task is accomplished. Viruses have evolved to infect organisms and propagate with high degree of adaptation, as it is the case of the SARS-CoV-2, agent of the 2020 world pandemic. The technological progress observed in the field of structural biology, especially in cryo-EM, has offered scientists the possibility of a better understanding of virus origins, behavior, and structural organization. In this minireview we summarize few perspectives about the origins and organization of viruses and the advances of cryo-EM to aid structural virologists to sample the virosphere.
Collapse
|
55
|
Unraveling the binding characteristics of small ligands to telomeric DNA by pressure modulation. Sci Rep 2021; 11:9714. [PMID: 33958702 PMCID: PMC8102477 DOI: 10.1038/s41598-021-89215-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Recently, non-canonical DNA structures, such as G-quadruplexes (GQs), were found to be highly pressure sensitive, suggesting that pressure modulation studies can provide additional mechanistic details of such biomolecular systems. Using FRET and CD spectroscopy as well as binding equilibrium measurements, we investigated the effect of pressure on the binding reaction of the ligand ThT to the quadruplex 22AG in solutions containing different ionic species and a crowding agent mimicking the intracellular milieu. Pressure modulation helped us to identify the different conformational substates adopted by the quadruplex at the different solution conditions and to determine the volumetric changes during complex formation and the conformational transitions involved. The magnitudes of the binding volumes are a hallmark of packing defects and hydrational changes upon ligand binding. The conformational substates of the GQ as well as the binding strength and the stoichiometry of complex formation depend strongly on the solution conditions as well as on pressure. High hydrostatic pressure can also impact GQs inside living cells and thus affect expression of genetic information in deep sea organisms. We show that sub-kbar pressures do not only affect the conformational dynamics and structures of GQs, but also their ligand binding reactions.
Collapse
|
56
|
Fetahaj Z, Ostermeier L, Cinar H, Oliva R, Winter R. Biomolecular Condensates under Extreme Martian Salt Conditions. J Am Chem Soc 2021; 143:5247-5259. [PMID: 33755443 DOI: 10.1021/jacs.1c01832] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) are considered one of the early compartmentalization strategies of cells, which still prevail today forming nonmembranous compartments in biological cells. Studies of the effect of high pressures, such as those encountered in the subsurface salt lakes of Mars or in the depths of the subseafloor on Earth, on biomolecular LLPS will contribute to questions of protocell formation under prebiotic conditions. We investigated the effects of extreme environmental conditions, focusing on highly aggressive Martian salts (perchlorate and sulfate) and high pressure, on the formation of biomolecular condensates of proteins. Our data show that the driving force for phase separation of proteins is not only sensitively dictated by their amino acid sequence but also strongly influenced by the type of salt and its concentration. At high salinity, as encountered in Martian soil and similar harsh environments on Earth, attractive short-range interactions, ion correlation effects, hydrophobic, and π-driven interactions can sustain LLPS for suitable polypeptide sequences. Our results also show that salts across the Hofmeister series have a differential effect on shifting the boundary of immiscibility that determines phase separation. In addition, we show that confinement mimicking cracks in sediments and subsurface saline water pools in the Antarctica or on Mars can dramatically stabilize liquid phase droplets, leading to an increase in the temperature and pressure stability of the droplet phase.
Collapse
Affiliation(s)
- Zamira Fetahaj
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Lena Ostermeier
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Hasan Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Rosario Oliva
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| |
Collapse
|
57
|
Fields PA. Reductionism in the study of enzyme adaptation. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110574. [PMID: 33600949 DOI: 10.1016/j.cbpb.2021.110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
One of the principal goals of comparative biology is the elucidation of mechanisms by which organisms adapt to different environments. The study of enzyme structure, function, and stability has contributed significantly to this effort, by revealing adaptation at a molecular level. Comparative biochemistry, including enzymology, necessarily pursues a reductionist approach in describing the function and structure of biomolecules, allowing more straightforward study of molecular systems by removing much of the complexity of their biological milieu. Although this reductionism has allowed a remarkable series of discoveries linking chemical processes to metabolism and to whole-organism function in the context of the environment, it also has the potential to mislead when careful consideration is not made of the simplifying assumptions inherent to such research. In this review, a brief history of the growth of enzymology, its reliance on a reductionist philosophy, and its contributions to our understanding of biological systems is given. Examples then are provided of research techniques, based on a reductionist approach, that have advanced our knowledge about enzyme adaptation to environmental stresses, including stability assays, enzyme kinetics, and the impact of solute composition on enzyme function. In each case, the benefits of the reductionist nature of the approach is emphasized, notable advances are described, but potential drawbacks due to inherent oversimplification of the study system are also identified.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA.
| |
Collapse
|
58
|
Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Compr Rev Food Sci Food Saf 2021; 20:1800-1828. [PMID: 33594773 DOI: 10.1111/1541-4337.12724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
High pressure processing (HPP) as a nonthermal processing (NTP) technology can ensure microbial safety to some extent without compromising food quality. However, for vegetative microorganisms, the existence of pressure-resistant subpopulations, the revival of sublethal injury (SLI) state cells, and the resuscitation of viable but nonculturable (VBNC) state cells may constitute potential food safety risks and pose challenges for the further development of HPP application. HPP combined with selected hurdles, such as moderately elevated or low temperature, low pH, natural antimicrobials (bacteriocin, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils), or other NTP (CO2 , UV-TiO2 photocatalysis, ultrasound, pulsed electric field, ultrafiltration), have been highlighted as feasible alternatives to enhance microbial inactivation (synergistic or additive effect). These combinations can effectively eliminate the pressure-resistant subpopulation, reduce the population of SLI or VBNC state cells and inhibit their revival or resuscitation. This review provides an updated overview of the microbial inactivation by the combination of HPP and selected hurdles and restructures the possible inactivation mechanisms.
Collapse
Affiliation(s)
- Peiqing Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
59
|
Yamaguchi T, Fukuyama N, Yoshida K, Katayama Y. Ion Solvation and Water Structure in an Aqueous Sodium Chloride Solution in the Gigapascal Pressure Range. J Phys Chem Lett 2021; 12:250-256. [PMID: 33332130 DOI: 10.1021/acs.jpclett.0c03147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structure of a 3 m (= mol/kg) NaCl aqueous solution at 1.3 and 1.7 GPa and 300 K, as well as at an ambient condition, is determined by synchrotron X-ray diffraction measurements combined with an empirical potential structure refinement (EPSR) modeling. When the solution is pressurized to the gigapascal pressure range, the ice-like hydrogen-bonded water network at 300 K/0.1 MPa is drastically perturbed to give rise to a simple, liquid-like water molecules arrangement retaining the hydrogen bonds. The coordination number of the chloride ion increases from around 6 at 0.1 MPa to about 16 at 1.7 GPa, accompanied by the extended solvation shells' evolution. On the other hand, the sodium ion's solvation structure does not change significantly with pressure and consists of 6-fold water molecules' coordination. We discuss a structure makers/breakers' concept for the ion solvation concerning the water structure in the gigapascal pressure range.
Collapse
Affiliation(s)
- Toshio Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan, Fukuoka 814-0180, Japan
| | - Nami Fukuyama
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan, Fukuoka 814-0180, Japan
| | - Koji Yoshida
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan, Fukuoka 814-0180, Japan
| | - Yoshinori Katayama
- Synchrotron Radiation Research Center, National Institutes for Quantum and Radiological Science and Technology, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
60
|
Oliva R, Jahmidi-Azizi N, Mukherjee S, Winter R. Harnessing Pressure Modulation for Exploring Ligand Binding Reactions in Cosolvent Solutions. J Phys Chem B 2021; 125:539-546. [PMID: 33430595 DOI: 10.1021/acs.jpcb.0c10212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A comprehensive understanding of ligand-protein interactions requires information about all thermodynamic parameters that describe the complexation reaction, and they should be able to provide the necessary information to understand the molecular forces that drive complex formation. Usually, binding studies are performed at ambient pressure conditions. However, in addition to using temperature variation to reveal enthalpic and entropic contributions to ligand binding, complementary pressure-dependent studies providing volumetric properties of the reaction can be beneficial. Changes in partial molar volume can inform about changes in packing and hydration upon ligand binding. Here, after a general discussion of pressure effects on ligand binding reactions, we present a comprehensive study of the effect of pressure and a widely used organic cosolvent, dimethyl sulfoxide (DMSO), on the binding of a small aromatic ligand, proflavine, to the enzyme α-chymotrypsin. We found that DMSO, which acts as a competitive inhibitor for proflavine, has a strong impact on the interaction process, resulting in a decrease of the binding constant. While the reaction performed in neat buffer is basically pressure insensitive, the partial molar volume of the complex in the presence of DMSO is larger compared with the uncomplexed state, rendering the binding constant markedly smaller upon pressurization. We also show that the magnitude and sign of the binding volume provide valuable information about the interaction mechanism and hydration changes, which is of particular interest when cosolvents are present.
Collapse
Affiliation(s)
- Rosario Oliva
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Nisrine Jahmidi-Azizi
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Sanjib Mukherjee
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
61
|
Le Vay K, Carter BM, Watkins DW, Dora Tang TY, Ting VP, Cölfen H, Rambo RP, Smith AJ, Ross Anderson JL, Perriman AW. Controlling Protein Nanocage Assembly with Hydrostatic Pressure. J Am Chem Soc 2020; 142:20640-20650. [PMID: 33252237 DOI: 10.1021/jacs.0c07285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Controlling the assembly and disassembly of nanoscale protein cages for the capture and internalization of protein or non-proteinaceous components is fundamentally important to a diverse range of bionanotechnological applications. Here, we study the reversible, pressure-induced dissociation of a natural protein nanocage, E. coli bacterioferritin (Bfr), using synchrotron radiation small-angle X-ray scattering (SAXS) and circular dichroism (CD). We demonstrate that hydrostatic pressures of 450 MPa are sufficient to completely dissociate the Bfr 24-mer into protein dimers, and the reversibility and kinetics of the reassembly process can be controlled by selecting appropriate buffer conditions. We also demonstrate that the heme B prosthetic group present at the subunit dimer interface influences the stability and pressure lability of the cage, despite its location being discrete from the interdimer interface that is key to cage assembly. This indicates a major cage-stabilizing role for heme within this family of ferritins.
Collapse
Affiliation(s)
- Kristian Le Vay
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K
| | - Ben M Carter
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Daniel W Watkins
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - T-Y Dora Tang
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Valeska P Ting
- Bristol Composites Institute (ACCIS), Department of Mechanical Engineering, University of Bristol, Queen's Building, Bristol BS8 1TR, U.K
| | - Helmut Cölfen
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Robert P Rambo
- Diamond House, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Fermi Ave., Didcot OX11 0DE, U.K
| | - Andrew J Smith
- Diamond House, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Fermi Ave., Didcot OX11 0DE, U.K
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| |
Collapse
|
62
|
Xia Q, Zheng Y, Liu Z, Cao J, Chen X, Liu L, Yu H, Barba FJ, Pan D. Nonthermally driven volatilome evolution of food matrices: The case of high pressure processing. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
63
|
Ostermeier L, de Oliveira GAP, Dzwolak W, Silva JL, Winter R. Exploring the polymorphism, conformational dynamics and function of amyloidogenic peptides and proteins by temperature and pressure modulation. Biophys Chem 2020; 268:106506. [PMID: 33221697 DOI: 10.1016/j.bpc.2020.106506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 11/15/2022]
Abstract
Our understanding of amyloid structures and the mechanisms by which disease-associated peptides and proteins self-assemble into these fibrillar aggregates, has advanced considerably in recent years. It is also established that amyloid fibrils are generally polymorphic. The molecular structures of the aggregation intermediates and the causes of molecular and structural polymorphism are less understood, however. Such information is mandatory to explain the pathological diversity of amyloid diseases. What is also clear is that not only protein mutations, but also the physiological milieu, i.e. pH, cosolutes, crowding and surface interactions, have an impact on fibril formation. In this minireview, we focus on the effect of the less explored physical parameters temperature and pressure on the fibrillization propensity of proteins and how these variables can be used to reveal additional mechanistic information about intermediate states of fibril formation and molecular and structural polymorphism. Generally, amyloids are very stable and can resist harsh environmental conditions, such as extreme pH, high temperature and high pressure, and can hence serve as valuable functional amyloid. As an example, we discuss the effect of temperature and pressure on the catalytic activity of peptide amyloid fibrils that exhibit enzymatic activity.
Collapse
Affiliation(s)
- Lena Ostermeier
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur 1 Str., 02-093 Warsaw, Poland.
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| |
Collapse
|
64
|
The effects of cosolutes and crowding on the kinetics of protein condensate formation based on liquid-liquid phase separation: a pressure-jump relaxation study. Sci Rep 2020; 10:17245. [PMID: 33057154 PMCID: PMC7566631 DOI: 10.1038/s41598-020-74271-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023] Open
Abstract
Biomolecular assembly processes based on liquid-liquid phase separation (LLPS) are ubiquitous in the biological cell. To fully understand the role of LLPS in biological self-assembly, it is necessary to characterize also their kinetics of formation and dissolution. Here, we introduce the pressure-jump relaxation technique in concert with UV/Vis and FTIR spectroscopy as well as light microscopy to characterize the evolution of LLPS formation and dissolution in a time-dependent manner. As a model system undergoing LLPS we used the globular eye-lens protein γD-crystallin. As cosolutes and macromolecular crowding are known to affect the stability and dynamics of biomolecular condensates in cellulo, we extended our kinetic study by addressing also the impact of urea, the deep-sea osmolyte trimethylamine-N-oxide (TMAO) and a crowding agent on the transformation kinetics of the LLPS system. As a prerequisite for the kinetic studies, the phase diagram of γD-crystallin at the different solution conditions also had to be determined. The formation of the droplet phase was found to be a very rapid process and can be switched on and off on the 1-4 s timescale. Theoretical treatment using the Johnson-Mehl-Avrami-Kolmogorov model indicates that the LLPS proceeds via a diffusion-limited nucleation and growth mechanism at subcritical protein concentrations, a scenario which is also expected to prevail within biologically relevant crowded systems. Compared to the marked effect the cosolutes take on the stability of the LLPS region, their effect at biologically relevant concentrations on the phase transformation kinetics is very small, which might be a particular advantage in the cellular context, as a fast switching capability of the transition should not be compromised by the presence of cellular cosolutes.
Collapse
|
65
|
Gault S, Jaworek MW, Winter R, Cockell CS. High pressures increase α-chymotrypsin enzyme activity under perchlorate stress. Commun Biol 2020; 3:550. [PMID: 33009512 PMCID: PMC7532203 DOI: 10.1038/s42003-020-01279-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
Deep subsurface environments can harbour high concentrations of dissolved ions, yet we know little about how this shapes the conditions for life. We know even less about how the combined effects of high pressure influence the way in which ions constrain the possibilities for life. One such ion is perchlorate, which is found in extreme environments on Earth and pervasively on Mars. We investigated the interactions of high pressure and high perchlorate concentrations on enzymatic activity. We demonstrate that high pressures increase α-chymotrypsin enzyme activity even in the presence of high perchlorate concentrations. Perchlorate salts were shown to shift the folded α-chymotrypsin phase space to lower temperatures and pressures. The results presented here may suggest that high pressures increase the habitability of environments under perchlorate stress. Therefore, deep subsurface environments that combine these stressors, potentially including the subsurface of Mars, may be more habitable than previously thought. Gault et al. show that high pressures increase α-chymotrypsin enzyme activity in the presence of high perchlorate concentrations. These perchlorate salts shift the folded enzyme phase space to lower temperatures and pressure and may move the optimum enzyme activity towards lower temperatures in addition to higher pressures, which has implications for Martian habitability.
Collapse
Affiliation(s)
- Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Michel W Jaworek
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, D-44227, Dortmund, Germany
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, D-44227, Dortmund, Germany
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
66
|
Nanomechanics of graphene oxide-bacteriophage based self-assembled porous composites. Sci Rep 2020; 10:15618. [PMID: 32973218 PMCID: PMC7515913 DOI: 10.1038/s41598-020-72372-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Graphene oxide, integrated with the filamentous bacteriophage M13, forms a 3D large-scale multifunctional porous structure by self-assembly, with considerable potential for applications. We performed Raman spectroscopy under pressure on this porous composite to understand its fundamental mechanics. The results show that at low applied pressure, the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$sp^2$$\end{document}sp2 bonds of graphene oxide stiffen very little with increasing pressure, suggesting a complicated behaviour of water intercalated between the graphene layers. The key message of this paper is that water in a confined space can have a significant impact on the nanostructure that hosts it. We introduced carbon nanotubes during the self-assembly of graphene oxide and M13, and a similar porous macro-structure was observed. However, in the presence of carbon nanotubes, pressure is transmitted to the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$sp^2$$\end{document}sp2 bonds of graphene oxide straightforwardly as in graphite. The electrical conductivity of the composite containing carbon nanotubes is improved by about 30 times at a bias voltage of 10 V. This observation suggests that the porous structure has potential in applications where good electrical conductivity is desired, such as sensors and batteries.
Collapse
|
67
|
Cinar H, Oliva R, Lin Y, Chen X, Zhang M, Chan HS, Winter R. Pressure Sensitivity of SynGAP/PSD-95 Condensates as a Model for Postsynaptic Densities and Its Biophysical and Neurological Ramifications. Chemistry 2020; 26:11024-11031. [PMID: 31910298 PMCID: PMC7496680 DOI: 10.1002/chem.201905269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Biomolecular condensates consisting of proteins and nucleic acids can serve critical biological functions, so that some condensates are referred as membraneless organelles. They can also be disease-causing, if their assembly is misregulated. A major physicochemical basis of the formation of biomolecular condensates is liquid-liquid phase separation (LLPS). In general, LLPS depends on environmental variables, such as temperature and hydrostatic pressure. The effects of pressure on the LLPS of a binary SynGAP/PSD-95 protein system mimicking postsynaptic densities, which are protein assemblies underneath the plasma membrane of excitatory synapses, were investigated. Quite unexpectedly, the model system LLPS is much more sensitive to pressure than the folded states of typical globular proteins. Phase-separated droplets of SynGAP/PSD-95 were found to dissolve into a homogeneous solution already at ten-to-hundred bar levels. The pressure sensitivity of SynGAP/PSD-95 is seen here as a consequence of both pressure-dependent multivalent interaction strength and void volume effects. Considering that organisms in the deep sea are under pressures up to about 1 kbar, this implies that deep-sea organisms have to devise means to counteract this high pressure sensitivity of biomolecular condensates to avoid harm. Intriguingly, these findings may shed light on the biophysical underpinning of pressure-related neurological disorders in terrestrial vertebrates.
Collapse
Affiliation(s)
- Hasan Cinar
- Physical Chemistry I—Biophysical ChemistryFaculty of Chemistry and Chemical BiologyTU DortmundOtto-Hahn-Strasse 4a44227DortmundGermany
| | - Rosario Oliva
- Physical Chemistry I—Biophysical ChemistryFaculty of Chemistry and Chemical BiologyTU DortmundOtto-Hahn-Strasse 4a44227DortmundGermany
| | - Yi‐Hsuan Lin
- Department of BiochemistryFaculty of MedicineUniversity of TorontoTorontoOntarioM5S 1A8Canada
- Molecular MedicineHospital for Sick ChildrenTorontoOntarioM5G 0A4Canada
| | - Xudong Chen
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyClear Water BayKowloon, Hong KongChina
| | - Mingjie Zhang
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyClear Water BayKowloon, Hong KongChina
| | - Hue Sun Chan
- Department of BiochemistryFaculty of MedicineUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Roland Winter
- Physical Chemistry I—Biophysical ChemistryFaculty of Chemistry and Chemical BiologyTU DortmundOtto-Hahn-Strasse 4a44227DortmundGermany
| |
Collapse
|
68
|
Mukherjee SK, Knop J, Möbitz S, Winter RHA. Alteration of the Conformational Dynamics of a DNA Hairpin by α-Synuclein in the Presence of Aqueous Two-Phase Systems. Chemistry 2020; 26:10987-10991. [PMID: 32453478 PMCID: PMC7496936 DOI: 10.1002/chem.202002119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Indexed: 11/08/2022]
Abstract
The effect of an amyloidogenic intrinsically disordered protein, α-synuclein, which is associated with Parkinson's disease (PD), on the conformational dynamics of a DNA hairpin (DNA-HP) was studied by employing the single-molecule Förster resonance energy transfer method. The open-to-closed conformational equilibrium of the DNA-HP is drastically affected by binding of monomeric α-synuclein to the loop region of the DNA-HP. Formation of a protein-bound intermediate conformation is fostered in the presence of an aqueous two-phase system mimicking intracellular liquid-liquid phase separation. Using pressure modulation, additional mechanistic information about the binding complex could be retrieved. Hence, in addition to toxic amyloid formation, α-synuclein may alter expression profiles of disease-modifying genes in PD. Furthermore, these findings might also have significant bearings on the understanding of the physiology of organisms thriving at high pressures in the deep sea.
Collapse
Affiliation(s)
- Sanjib K. Mukherjee
- Physical Chemistry I–Biophysical ChemistryFaculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Jim‐Marcel Knop
- Physical Chemistry I–Biophysical ChemistryFaculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Simone Möbitz
- Physical Chemistry I–Biophysical ChemistryFaculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Roland H. A. Winter
- Physical Chemistry I–Biophysical ChemistryFaculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| |
Collapse
|
69
|
Jaworek MW, Winter R. Exploring Enzymatic Activity in Multiparameter Space: Cosolvents, Macromolecular Crowders and Pressure. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michel W. Jaworek
- Physical Chemistry I – Biophysical Chemistry Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
70
|
Cheng L, Zhu Z, Sun DW. Impacts of high pressure assisted freezing on the denaturation of polyphenol oxidase. Food Chem 2020; 335:127485. [PMID: 32763785 DOI: 10.1016/j.foodchem.2020.127485] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
The mechanism of enzyme protein denaturation induced by high pressure freezing is complicated and unclear as this process involves Pressure-Factors (pressure and time) and Freezing-Factors (temperature, phase transition, recrystallization, and ice crystal types). In this study, the thermodynamics and conformation changes of mushroom polyphenol oxidase (PPO) under high pressure freezing treatments (HPF, 100,150,200,300,400,500MPaP-20°C/30min) and high pressure processes (HPP) followed with normal pressure immersion freezing (HPP-IF, 100-500MPaP25°C/30min - 0.1MPaP-20°C/30min) are investigated as compared with that processed under high pressure processes (HPP, 100-500MPaP25°C/30min) and normal pressure immersion freezing process (IF, 0.1MPaP-20°C/30min). The results suggested that the treated PPO with the same enzyme activity may have various thermodynamic characteristics and conformations; Pressure-Factors play the main roles in the denaturation of the PPO during the HPF treatment, and Freezing-Factors can weak the effect of Pressure-Factors on PPO denaturation; The treated PPO may be transferred into a partially fold intermediate state.
Collapse
Affiliation(s)
- Lina Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Sericulture & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
71
|
Chen G, Zhang Q, Chen H, Lu Q, Miao M, Campanella OH, Feng B. In situ and real-time insight into Rhizopus chinensis lipase under high pressure and temperature: Conformational traits and biobehavioural analysis. Int J Biol Macromol 2020; 154:1314-1323. [PMID: 31733249 DOI: 10.1016/j.ijbiomac.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022]
Abstract
An in situ and real-time investigation was performed using an optical cell system and in-silico analysis to reveal the impacts of pressure and temperature on the conformational state and behaviours of Rhizopus chinensis lipase (RCL). The fluorescence intensity (FI) of RCL increased remarkably under high pressure, and part of this increase was recovered after depressurization. This result displayed the partially reversible conformational change of RCL, which may be associated with the local change of Trp224 near the catalytic centre. High temperature caused a significant loss of secondary structure, whereas the α-helical segments including the lid were preserved by high pressure even at temperatures over 60 °C. The parameters of enzymatic reaction monitored by UV showed that the hydrolysis rate was remarkably enhanced by the pressure of 200 MPa. In the pressure range of 0.1-200 MPa, the active volume measured by the in situ system decreased from -2.85 to -6.73 mL/mol with the temperature increasing from 20 °C to 40 °C. The high catalytic capacity of the lipase under high pressure and high temperature was primarily attributed to pressure protection on RCL.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; School of Food Science, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, Henan, PR China
| | - Qiupei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Haitao Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, PR China
| | - Qiyu Lu
- School of Food Science, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, Henan, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
72
|
Oliva R, Banerjee S, Cinar H, Ehrt C, Winter R. Alteration of Protein Binding Affinities by Aqueous Two-Phase Systems Revealed by Pressure Perturbation. Sci Rep 2020; 10:8074. [PMID: 32415277 PMCID: PMC7228918 DOI: 10.1038/s41598-020-65053-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 01/29/2023] Open
Abstract
Interactions between proteins and ligands, which are fundamental to many biochemical processes essential to life, are mostly studied at dilute buffer conditions. The effects of the highly crowded nature of biological cells and the effects of liquid-liquid phase separation inducing biomolecular droplet formation as a means of membrane-less compartmentalization have been largely neglected in protein binding studies. We investigated the binding of a small ligand (ANS) to one of the most multifunctional proteins, bovine serum albumin (BSA) in an aqueous two-phase system (ATPS) composed of PEG and Dextran. Also, aiming to shed more light on differences in binding mode compared to the neat buffer data, we examined the effect of high hydrostatic pressure (HHP) on the binding process. We observe a marked effect of the ATPS on the binding characteristics of BSA. Not only the binding constants change in the ATPS system, but also the integrity of binding sites is partially lost, which is most likely due to soft enthalpic interactions of the BSA with components in the dense droplet phase of the ATPS. Using pressure modulation, differences in binding sites could be unravelled by their different volumetric and hydration properties. Regarding the vital biological relevance of the study, we notice that extreme biological environments, such as HHP, can markedly affect the binding characteristics of proteins. Hence, organisms experiencing high-pressure stress in the deep sea need to finely adjust the volume changes of their biochemical reactions in cellulo.
Collapse
Affiliation(s)
- Rosario Oliva
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany.
| | - Sudeshna Banerjee
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Hasan Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Christiane Ehrt
- Medicinal Chemistry - Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany.
| |
Collapse
|
73
|
Osae R, Essilfie G, Alolga RN, Akaba S, Song X, Owusu-Ansah P, Zhou C. Application of non-thermal pretreatment techniques on agricultural products prior to drying: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2585-2599. [PMID: 31975406 DOI: 10.1002/jsfa.10284] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Most agricultural crops contain high moisture content (80-95% wet basis (wb)) which makes them very susceptible to microbial damage leading to shorter shelf-life and high postharvest losses. The high perishability of these agricultural products requires preservation techniques to prolong their shelf-lives. Drying remains an important component of processing in this regard. Therefore, any pretreatment methods for drying agricultural product that decreases the moisture content and minimizes drying time by conserving the quality of the crop product is of prime significance. This article is a comprehensive review of recent developments of non-thermal pretreatment (NTP) methods. A summary of their significance, emerging and innovative methods of this technology together with its applications and limitations are discussed. This article further examines the environmental impact of NTP techniques. RESULTS NTP techniques, such as high pressure, ultrasound, pulsed electric field and osmotic dehydration methods are essential operations for pre-dehydration of agricultural products prior to drying. These techniques can avoid the deleterious effects of heat on nutritive value, colour and flavour of agricultural products compared to thermal pretreatments. They also enhance the inactivation of the enzymes, improve energy efficiency and mass transfer, reduce processing time, preserve bioactive compounds, improve drying kinetics and drying rate, minimize enzymatic browning, and enhance product quality. CONCLUSION These findings will provide a better understanding of different NTP methods and also make available more information for selecting pretreatment techniques for drying of agricultural products. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Richard Osae
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang P. R., China
- Technology Integration Base for Vegetable Dehydration Processing Ministry of Agriculture, Jiangsu University, Zhenjiang P. R., China
| | - Gloria Essilfie
- College of Basic and Applied Sciences, Department of Crop Science, University of Ghana, Accra, Ghana
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, Nanjing P. R., China
| | - Selorm Akaba
- Department of Agricultural Economics and Extension, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Xiaoqian Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang P. R., China
| | - Patrick Owusu-Ansah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang P. R., China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang P. R., China
- Technology Integration Base for Vegetable Dehydration Processing Ministry of Agriculture, Jiangsu University, Zhenjiang P. R., China
| |
Collapse
|
74
|
Busignies V, Arruda DC, Charrueau C, Ribeiro MCS, Lachagès AM, Malachias A, Finet S, Rehman AU, Bigey P, Tchoreloff P, Escriou V. Compression of Vectors for Small Interfering RNAs Delivery: Toward Oral Administration of siRNA Lipoplexes in Tablet Forms. Mol Pharm 2020; 17:1159-1169. [PMID: 32125867 DOI: 10.1021/acs.molpharmaceut.9b01190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Currently, most nonviral nucleic acid vectors are in the form of colloidal suspensions administered primarily parenterally. This type of formulation and the mode of administration impose strong constraints such as the size of the administered vectors or the production of sterile preparations. The tablet form provides access to easy oral administration, well accepted by patients; As regards nucleic acid vectors, a dry form represents an advance in terms of stability. Using an optimized lipid-based small interfering RNA-delivery system, we studied the tabletability of a liquid suspension of these vectors. We optimized the conditions of freeze-drying by choosing excipients and process, allowing for the conservation of both the gene-silencing efficacy of the formulated siRNAs and the supramolecular structure of the lipid particulate system. Gene-silencing efficacy was assayed on luciferase-expressing cells and the structure of the siRNA vector in freeze-dried and tablet forms was examined using small-angle X-ray scattering (SAXS) synchrotron radiation. The freeze-dried powders were then mixed with excipients necessary for the good progress of the compression by allowing for a regular supply of the matrix and the reduction of friction. The compression was carried out using a rotary press simulator that allows for complete monitoring of the compression conditions. After compression, formulated siRNAs retained more than 60% of their gene-silencing efficacy. Within the tablets, a specific SAXS signal was detectable and the lamellar and cubic phases of the initial liquid suspension were restored after resuspension of siRNA vectors by disintegration of the tablets. These results show that the bilayer lipid structures of the particles were preserved despite the mechanical constraints imposed by the compression. If such a result could be expected after the freeze-drying step, it was never shown, to our knowledge, that siRNA-delivery systems could retain their efficacy and structure after mechanical stress such as compression. This opens promising perspectives to oral administration of siRNA as an alternative to parenteral administration.
Collapse
Affiliation(s)
- Virginie Busignies
- Univ. Bordeaux, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE I2M, Bordeaux F-33400, Talence, France
| | - Danielle Campiol Arruda
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.,Université de Paris, UTCBS, CNRS, INSERM, F-75006 Paris, France
| | | | - Marcela Coelho Silva Ribeiro
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.,Université de Paris, UTCBS, CNRS, INSERM, F-75006 Paris, France
| | | | - Angelo Malachias
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Stéphanie Finet
- Sorbonne Université, IMPMC, CNRS, MNHN, F-75005 Paris, France
| | - Asad Ur Rehman
- Université de Paris, UTCBS, CNRS, INSERM, F-75006 Paris, France
| | - Pascal Bigey
- Université de Paris, UTCBS, CNRS, INSERM, F-75006 Paris, France.,PSL University, ChimieParisTech, F-75005 Paris, France
| | - Pierre Tchoreloff
- Univ. Bordeaux, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE I2M, Bordeaux F-33400, Talence, France
| | | |
Collapse
|
75
|
Yancey PH. Cellular responses in marine animals to hydrostatic pressure. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:398-420. [DOI: 10.1002/jez.2354] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Paul H. Yancey
- Department of BiologyWhitman CollegeWalla Walla Washington
| |
Collapse
|
76
|
Jaworek MW, Möbitz S, Gao M, Winter R. Stability of the chaperonin system GroEL-GroES under extreme environmental conditions. Phys Chem Chem Phys 2020; 22:3734-3743. [PMID: 32010904 DOI: 10.1039/c9cp06468k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chaperonin system GroEL-GroES is present in all kingdoms of life and rescues proteins from improper folding and aggregation upon internal and external stress conditions, including high temperatures and pressures. Here, we set out to explore the thermo- and piezostability of GroEL, GroES and the GroEL-GroES complex in the presence of cosolvents, nucleotides and salts employing quantitative FTIR spectroscopy and small-angle X-ray scattering. Owing to its high biological relevance and lack of data, our focus was especially on the effect of pressure on the chaperonin system. The experimental results reveal that the GroEL-GroES complex is remarkably temperature stable with an unfolding temperature beyond 70 °C, which can still be slightly increased by compatible cosolutes like TMAO. Conversely, the pressure stability of GroEL and hence the GroEL-GroES complex is rather limited and much less than that of monomeric proteins. Whereas GroES is pressure stable up to ∼5 kbar, GroEl and the GroEl-GroES complex undergo minor structural changes already beyond 1 kbar, which can be attributed to a dissociation-induced conformational drift. Quite unexpectedly, no significant unfolding of GroEL is observed even up to 10 kbar, however, i.e., the subunits themselves are very pressure stable. As for the physiological relevance, the structural integrity of the chaperonin system is retained in a relatively narrow pressure range, from about 1 to 1000 bar, which is just the pressure range encountered by life on Earth.
Collapse
Affiliation(s)
- Michel W Jaworek
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Simone Möbitz
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Mimi Gao
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| |
Collapse
|
77
|
Abe H, Kishimura H, Takekiyo T, Hanasaki T, Yoshimura Y, Hamaya N. Low-temperature and high-pressure phase changes of room-temperature ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
78
|
Pedrote MM, Motta MF, Ferretti GDS, Norberto DR, Spohr TCLS, Lima FRS, Gratton E, Silva JL, de Oliveira GAP. Oncogenic Gain of Function in Glioblastoma Is Linked to Mutant p53 Amyloid Oligomers. iScience 2020; 23:100820. [PMID: 31981923 PMCID: PMC6976948 DOI: 10.1016/j.isci.2020.100820] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated p53 mutations endow cells with malignant phenotypes, including chemoresistance. Amyloid-like oligomers of mutant p53 transform this tumor suppressor into an oncogene. However, the composition and distribution of mutant p53 oligomers are unknown and the mechanism involved in the conversion is sparse. Here, we report accumulation of a p53 mutant within amyloid-like p53 oligomers in glioblastoma-derived cells presenting a chemoresistant gain-of-function phenotype. Statistical analysis from fluorescence fluctuation spectroscopy, pressure-induced measurements, and thioflavin T kinetics demonstrates the distribution of oligomers larger than the active tetrameric form of p53 in the nuclei of living cells and the destabilization of native-drifted p53 species that become amyloid. Collectively, these results provide insights into the role of amyloid-like mutant p53 oligomers in the chemoresistance phenotype of malignant and invasive brain tumors and shed light on therapeutic options to avert cancer. Amyloid oligomers transform p53 tumor suppressor into an oncogene Amyloid-like mutant p53 oligomers occur in chemoresistant glioblastoma cells p53 oligomer larger than tetramers is detected in the nuclei of living cells Gain-of-function p53 phenotypes is attributed to p53 amyloid oligomers
Collapse
Affiliation(s)
- Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Michelle F Motta
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Douglas R Norberto
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas. Av. dos Estados, 5001 Sta. Terezinha, Santo André, São Paulo 21941-590, Brazil
| | - Tania C L S Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, CA 92697-2717, USA
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
79
|
Oliva R, Banerjee S, Cinar H, Winter R. Modulation of enzymatic activity by aqueous two-phase systems and pressure – rivalry between kinetic constants. Chem Commun (Camb) 2020; 56:395-398. [DOI: 10.1039/c9cc08065a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both, pressure and aqueous two-phase systems are able to modulate the kinetic parameters of enzymatic reactions.
Collapse
Affiliation(s)
- Rosario Oliva
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Sudeshna Banerjee
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Hasan Cinar
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| |
Collapse
|
80
|
Ostermeier L, Oliva R, Winter R. The multifaceted effects of DMSO and high hydrostatic pressure on the kinetic constants of hydrolysis reactions catalyzed by α-chymotrypsin. Phys Chem Chem Phys 2020; 22:16325-16333. [DOI: 10.1039/d0cp03062g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cosolvent DMSO and high pressure have antagonistic effects on the kinetic constants of α-chymotrypsin-catalyzed hydrolysis reactions.
Collapse
Affiliation(s)
- Lena Ostermeier
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Rosario Oliva
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| |
Collapse
|
81
|
Maurel MC, Leclerc F, Hervé G. Ribozyme Chemistry: To Be or Not To Be under High Pressure. Chem Rev 2019; 120:4898-4918. [DOI: 10.1021/acs.chemrev.9b00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, EPHE, F-75005 Paris, France
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Guy Hervé
- Laboratoire BIOSIPE, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Campus Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
82
|
Effects of high pressure on activities and properties of superoxide dismutase from chestnut rose. Food Chem 2019; 294:557-564. [DOI: 10.1016/j.foodchem.2019.05.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022]
|
83
|
de Oliveira GAP, Cordeiro Y, Silva JL, Vieira TCRG. Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:289-331. [PMID: 31928729 DOI: 10.1016/bs.apcsb.2019.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) and phase transition (LLPT) of proteins and nucleic acids have emerged as a new paradigm in cell biology. Here we will describe the recent findings about LLPS and LLPT, including the molecular and physical determinants leading to their formation, the resulting functions and their implications in cell physiology and disease. Amyloid aggregation is implicated in many neurodegenerative diseases and cancer, and LLPS of proteins involved in these diseases appear to be related to their function in different cell contexts. Amyloid formation would correspond to an irreversible liquid-to-solid transition, as clearly observed in the case of PrP, TDP43, FUS/TLS and tau protein in neurodegenerative pathologies as well as with the mutant tumor suppressor p53 in cancer. Nucleic acids play a modulatory effect on both LLPS and amyloid aggregation. Understanding the molecular events regulating how the demixing process advances to solid-like fibril materials is crucial for the development of novel therapeutic strategies against cancer and neurodegenerative maladies.
Collapse
Affiliation(s)
- Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tuane C R G Vieira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
84
|
Kumar N, Marx D. How do ribozymes accommodate additional water molecules upon hydrostatic compression deep into the kilobar pressure regime? Biophys Chem 2019; 252:106192. [DOI: 10.1016/j.bpc.2019.106192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
|
85
|
Cinar H, Fetahaj Z, Cinar S, Vernon RM, Chan HS, Winter RHA. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chemistry 2019; 25:13049-13069. [PMID: 31237369 DOI: 10.1002/chem.201902210] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/23/2019] [Indexed: 01/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) of proteins and other biomolecules play a critical role in the organization of extracellular materials and membrane-less compartmentalization of intra-organismal spaces through the formation of condensates. Structural properties of such mesoscopic droplet-like states were studied by spectroscopy, microscopy, and other biophysical techniques. The temperature dependence of biomolecular LLPS has been studied extensively, indicating that phase-separated condensed states of proteins can be stabilized or destabilized by increasing temperature. In contrast, the physical and biological significance of hydrostatic pressure on LLPS is less appreciated. Summarized here are recent investigations of protein LLPS under pressures up to the kbar-regime. Strikingly, for the cases studied thus far, LLPSs of both globular proteins and intrinsically disordered proteins/regions are typically more sensitive to pressure than the folding of proteins, suggesting that organisms inhabiting the deep sea and sub-seafloor sediments, under pressures up to 1 kbar and beyond, have to mitigate this pressure-sensitivity to avoid unwanted destabilization of their functional biomolecular condensates. Interestingly, we found that trimethylamine-N-oxide (TMAO), an osmolyte upregulated in deep-sea fish, can significantly stabilize protein droplets under pressure, pointing to another adaptive advantage for increased TMAO concentrations in deep-sea organisms besides the osmolyte's stabilizing effect against protein unfolding. As life on Earth might have originated in the deep sea, pressure-dependent LLPS is pertinent to questions regarding prebiotic proto-cells. Herein, we offer a conceptual framework for rationalizing the recent experimental findings and present an outline of the basic thermodynamics of temperature-, pressure-, and osmolyte-dependent LLPS as well as a molecular-level statistical mechanics picture in terms of solvent-mediated interactions and void volumes.
Collapse
Affiliation(s)
- Hasan Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Zamira Fetahaj
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Süleyman Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Robert M Vernon
- Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada
| | - Roland H A Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
86
|
Patra S, Schuabb V, Kiesel I, Knop JM, Oliva R, Winter R. Exploring the effects of cosolutes and crowding on the volumetric and kinetic profile of the conformational dynamics of a poly dA loop DNA hairpin: a single-molecule FRET study. Nucleic Acids Res 2019; 47:981-996. [PMID: 30418613 PMCID: PMC6344865 DOI: 10.1093/nar/gky1122] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
We investigated the volumetric and kinetic profile of the conformational landscape of a poly dA loop DNA hairpin (Hp) in the presence of salts, osmolytes and crowding media, mimicking the intracellular milieu, using single-molecule FRET methodology. Pressure modulation was applied to explore the volumetric and hydrational characteristics of the free-energy landscape of the DNA Hp, but also because pressure is a stress factor many organisms have to cope with, e.g. in the deep sea where pressures even up to the kbar level are encountered. Urea and pressure synergistically destabilize the closed conformation of the DNA Hp due to a lower molar partial volume in the unfolded state. Conversely, multivalent salts, trimethylamine-N-oxide and Ficoll strongly populate the closed state and counteract deteriorating effects of pressure. Complementary smFRET measurements under immobilized conditions at ambient pressure allowed us to dissect the equilibrium data in terms of folding and unfolding rate constants of the conformational transitions, leading to a deeper understanding of the stabilization mechanisms of the cosolutes. Our results show that the free-energy landscape of the DNA Hp is a rugged one, which is markedly affected by the ionic strength of the solution, by preferential interaction and exclusion of cosolvents as well as by pressure.
Collapse
Affiliation(s)
- Satyajit Patra
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Vitor Schuabb
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Irena Kiesel
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Jim-Marcel Knop
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cinita, 80126 Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| |
Collapse
|
87
|
Zou H, Ma Y, Liao X, Wang Y. Effects of high pressure processing on the copigmentation reaction of pelargonidin-3-glucoside and catechin. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
88
|
Zou H, Xu Z, Zhao L, Wang Y, Liao X. Effects of high pressure processing on the interaction of α-lactalbumin and pelargonidin-3-glucoside. Food Chem 2019; 285:22-30. [DOI: 10.1016/j.foodchem.2019.01.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/09/2023]
|
89
|
Knierbein M, Venhuis M, Held C, Sadowski G. Thermodynamic properties of aqueous osmolyte solutions at high-pressure conditions. Biophys Chem 2019; 253:106211. [PMID: 31280070 DOI: 10.1016/j.bpc.2019.106211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
Abstract
Living organisms can be encountered in nature under extreme conditions. At the seabed, pressure may reach 1000 bar. Yet microorganisms can be found that still function under these conditions. On the one hand, it is known that high pressure even has a positive effect on piezophile enzymes increasing their activity. On the other hand, such microorganisms might contain up to very high concentrations of osmolytes that counteract osmotic stress. To better understand high-pressure influences on biochemical systems, fundamental knowledge about pressure effects on thermodynamic properties of such osmolytes is important. However, literature data is scarce and experiments at high-pressure conditions are challenging. Hence, new high-pressure density data of aqueous osmolyte solutions were measured in this work at temperatures between 298.15 K and 318.15 K and at osmolyte concentrations up to 3 mol/kg water. Further, the thermodynamic model PC-SAFT has been applied recently to successfully model vapor pressures of water and density of water up to 10 kbar [M. Knierbein et al., Density variations of TMAO solutions in the kilobar range: experiments, PC-SAFT predictions, and molecular dynamics simulations, Biophysical chemistry, (2019)]. This allowed accurately predicting effects of temperature and osmolyte concentration on thermodynamic properties (especially mixture densities) up to very high pressures. Common osmolytes (trimethylamine-N-oxide, urea, ectoine, glycerol, glycine) as well as the dipeptides acetyl-N-methylglycine amide, acetyl-N-methylalanine amide, and acetyl-N-methylleucine amide were under investigation.
Collapse
Affiliation(s)
| | | | - Christoph Held
- Laboratory of Thermodynamics, TU Dortmund, 44227 Dortmund, Germany
| | | |
Collapse
|
90
|
Foglia F, Hazael R, Meersman F, Wilding MC, Sakai VG, Rogers S, Bove LE, Koza MM, Moulin M, Haertlein M, Forsyth VT, McMillan PF. In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure. Sci Rep 2019; 9:8716. [PMID: 31213614 PMCID: PMC6581952 DOI: 10.1038/s41598-019-44704-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/15/2019] [Indexed: 11/10/2022] Open
Abstract
Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Rachael Hazael
- Survivability and Advanced Materials group, Centre for Defence Engineering, Cranfield University at the Defence Academy of the UK, Shrivenham, SN6 8LA, UK
| | - Filip Meersman
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Martin C Wilding
- Materials Engineering, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | | | - Sarah Rogers
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK
| | - Livia E Bove
- Dipartimento di Fisica, Università di Roma "La Sapienza", 00185, Roma, Italy.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR 7590, Université Pierre et Marie Curie, F-75252, Paris, France
| | - Michael Marek Koza
- Institut Laue Langevin, 6 Rue Jules Horowitz, BP 156, 38042, Grenoble, Cedex, France
| | - Martine Moulin
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France
| | - Michael Haertlein
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France
| | - V Trevor Forsyth
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France.,Faculty of Natural Sciences/ISTM, Keele University, Staffordshire, ST5 5BG, UK
| | - Paul F McMillan
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
91
|
de Souza AR, Yamin M, Gava D, Zanella JRC, Gatti MSV, Bonafe CFS, de Lima Neto DF. Porcine parvovirus VP1/VP2 on a time series epitope mapping: exploring the effects of high hydrostatic pressure on the immune recognition of antigens. Virol J 2019; 16:75. [PMID: 31159841 PMCID: PMC6547530 DOI: 10.1186/s12985-019-1165-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/17/2019] [Indexed: 11/24/2022] Open
Abstract
Porcine parvovirus (PPV) is a DNA virus that causes reproductive failure in gilts and sows, resulting in embryonic and fetal losses worldwide. Epitope mapping of PPV is important for developing new vaccines. In this study, we used spot synthesis analysis for epitope mapping of the capsid proteins of PPV (NADL-2 strain) and correlated the findings with predictive data from immunoinformatics. The virus was exposed to three conditions prior to inoculation in pigs: native (untreated), high hydrostatic pressure (350 MPa for 1 h) at room temperature and high hydrostatic pressure (350 MPa for 1 h) at − 18 °C, and was compared with a commercial vaccine produced using inactivated PPV. The screening of serum samples detected 44 positive spots corresponding to 20 antigenic sites. Each type of inoculated antigen elicited a distinct epitope set. In silico prediction located linear and discontinuous epitopes in B cells that coincided with several epitopes detected in spot synthesis of sera from pigs that received different preparations of inoculum. The conditions tested elicited antibodies against the VP1/VP2 antigen that differed in relation to the response time and the profile of structurally available regions that were recognized.
Collapse
Affiliation(s)
- Ancelmo Rabelo de Souza
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campimas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Marriam Yamin
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campimas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Danielle Gava
- Embrapa Suínos e Aves, Laboratório de Virologia de Suínos, Concórdia, SC, 89715-899, Brazil
| | | | - Maria Sílvia Viccari Gatti
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campimas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Carlos Francisco Sampaio Bonafe
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campimas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Daniel Ferreira de Lima Neto
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campimas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil. .,Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
92
|
Kumar N, Marx D. Mechanistic role of nucleobases in self-cleavage catalysis of hairpin ribozyme at ambient versus high-pressure conditions. Phys Chem Chem Phys 2019; 20:20886-20898. [PMID: 30067263 DOI: 10.1039/c8cp03142h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribozymes catalyze the site-specific self-cleavage of intramolecular phosphodiester bonds. Initially thought to act as metalloenzymes, they are now known to be functional even in the absence of divalent metal ions and specific nucleobases directly participate in the self-cleavage reaction. Here, we use extensive replica exchange molecular dynamics simulations to probe the precise mechanistic role of nucleobases by simulating precatalytic reactant and active precursor states of a hairpin ribozyme along its reaction path at ambient as well as high-pressure conditions. The results provide novel key insights into the self-cleavage of ribozymes. We find that deprotonation of the hydroxyl group is crucial and might be the penultimate step to the self-cleavage. The G8 nucleobase is found to stabilize the activated precursor into inline arrangement for facile nucleophilic attack of the scissile phosphate only after deprotonation of the hydroxyl group. The protonated A38 nucleobase, in contrast, mainly acts a proton donor to the O5'-oxygen leaving group that eventually leads to the self-cleavage. Indeed, systematic high-pressure simulations of catalytically relevant states confirm these findings and, moreover, provide support to the role of ribozymes as piezophilic biocatalysts with regard to their relevance in early life under extreme conditions in the realm of RNA world hypothesis.
Collapse
Affiliation(s)
- Narendra Kumar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | |
Collapse
|
93
|
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 2019; 134:1022-1037. [PMID: 31128177 DOI: 10.1016/j.ijbiomac.2019.05.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.
Collapse
|
94
|
Winter R. Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation. Annu Rev Biophys 2019; 48:441-463. [DOI: 10.1146/annurev-biophys-052118-115601] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High hydrostatic pressure affects the structure, dynamics, and stability of biomolecular systems and is a key parameter in the context of the exploration of the origin and the physical limits of life. This review lays out the conceptual framework for exploring the conformational fluctuations, dynamical properties, and activity of biomolecular systems using pressure perturbation. Complementary pressure-jump relaxation studies are useful tools to study the kinetics and mechanisms of biomolecular phase transitions and structural transformations, such as membrane fusion or protein and nucleic acid folding. Finally, the advantages of using pressure to explore biomolecular assemblies and modulate enzymatic reactions are discussed.
Collapse
Affiliation(s)
- Roland Winter
- Faculty of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44227 Dortmund, Germany
| |
Collapse
|
95
|
Cinar S, Cinar H, Chan HS, Winter R. Pressure-Sensitive and Osmolyte-Modulated Liquid–Liquid Phase Separation of Eye-Lens γ-Crystallins. J Am Chem Soc 2019; 141:7347-7354. [DOI: 10.1021/jacs.8b13636] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Süleyman Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hasan Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hue Sun Chan
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
96
|
Chen G, Wang S, Feng B, Jiang B, Miao M. Interaction between soybean protein and tea polyphenols under high pressure. Food Chem 2019; 277:632-638. [PMID: 30502197 DOI: 10.1016/j.foodchem.2018.11.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/29/2018] [Accepted: 11/04/2018] [Indexed: 11/23/2022]
Abstract
Tea polyphenols (TP) and soybean proteins (SP) are important materials in food industry. High hydrostatic pressure (HHP) is a useful tool for improvement of protein's function. This study evaluated the interactions between the polyphenol and HHP-treated protein using circular dichroism, fluorescence spectroscopy and molecular modeling. The high pressure at 400 MPa significantly modified the secondary structure of SP by increasing the β-sheet content and decreasing the α-helix content, while the addition of 0.1% (w/v) tea ployphenol appeared to protect the α-helix structure. The surface hydrophobicity decreased with HHP treatment and the addition of TP. The optimal solubility of native SP was 0.258 g/mL at 0.08% (w/v) TP. Together with HHP treatment; TP increased the protein solubility to 0.50 g/mL and the emulsifying activity was enhanced approximately three times, up to 43.5%. The micro-texture of SP matrix was also improved with TP and HHP treatment. Both the hydrogen bonding and hydrophobic interaction between TP and SP were elucidated using docking method. Apart from the hydrogen bonding, the Pi-Pi interaction was observed in the binding of phenolic compounds to 7S or 11S globular protein.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; School of Food Science and Technology, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, PR China
| | - Shuting Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
97
|
Espinosa YR, Caffarena ER, Grigera JR. The role of hydrophobicity in the cold denaturation of proteins under high pressure: A study on apomyoglobin. J Chem Phys 2019; 150:075102. [PMID: 30795674 DOI: 10.1063/1.5080942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An exciting debate arises when microscopic mechanisms involved in the denaturation of proteins at high pressures are explained. In particular, the issue emerges when the hydrophobic effect is invoked, given that hydrophobicity cannot elucidate by itself the volume changes measured during protein unfolding. In this work, we study by the use of molecular dynamics simulations and essential dynamics analysis the relation between the solvation dynamics, volume, and water structure when apomyoglobin is subjected to a hydrostatic pressure regime. Accordingly, the mechanism of cold denaturation of proteins under high-pressure can be related to the disruption of the hydrogen-bond network of water favoring the coexistence of two states, low-density and high-density water, which directly implies in the formation of a molten globule once the threshold of 200 MPa has been overcome.
Collapse
Affiliation(s)
- Yanis R Espinosa
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), Calle 59 Nro 789, B1900BTE La Plata, Argentina
| | - Ernesto R Caffarena
- Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Manguinhos, CEP 21040-360 Rio de Janeiro, Brazil
| | - J Raúl Grigera
- CEQUINOR, Universidad de La Plata and CONICET, 47 y 115, B1900 La Plata, Argentina
| |
Collapse
|
98
|
Gao M, Berghaus M, Möbitz S, Schuabb V, Erwin N, Herzog M, Julius K, Sternemann C, Winter R. On the Origin of Microtubules' High-Pressure Sensitivity. Biophys J 2019. [PMID: 29539395 DOI: 10.1016/j.bpj.2018.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
For over 50 years, it has been known that the mitosis of eukaryotic cells is inhibited already at high hydrostatic pressure conditions of 30 MPa. This effect has been attributed to the disorganization of microtubules, the main component of the spindle apparatus. However, the structural details of the depolymerization and the origin of the pressure sensitivity have remained elusive. It has also been a puzzle how complex organisms could still successfully inhabit extreme high-pressure environments such as those encountered in the depth of oceans. We studied the pressure stability of microtubules at different structural levels and for distinct dynamic states using high-pressure Fourier-transform infrared spectroscopy and Synchrotron small-angle x-ray scattering. We show that microtubules are hardly stable under abyssal conditions, where pressures up to 100 MPa are reached. This high-pressure sensitivity can be mainly attributed to the internal voids and packing defects in the microtubules. In particular, we show that lateral and longitudinal contacts feature different pressure stabilities, and they define also the pressure stability of tubulin bundles. The intactness of both contact types is necessary for the functionality of microtubules in vivo. Despite being known to dynamically stabilize microtubules and prevent their depolymerization, we found that the anti-cancer drug taxol and the accessory protein MAP2c decrease the pressure stability of microtubule protofilaments. Moreover, we demonstrate that the cellular environment itself is a crowded place and accessory proteins can increase the pressure stability of microtubules and accelerate their otherwise highly pressure-sensitive de novo formation.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology
| | - Melanie Berghaus
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology
| | - Simone Möbitz
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology
| | - Vitor Schuabb
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology
| | - Nelli Erwin
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology
| | - Marius Herzog
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology
| | - Karin Julius
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | | | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology.
| |
Collapse
|
99
|
Julius K, Weine J, Gao M, Latarius J, Elbers M, Paulus M, Tolan M, Winter R. Impact of Macromolecular Crowding and Compression on Protein–Protein Interactions and Liquid–Liquid Phase Separation Phenomena. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02476] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Karin Julius
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Jonathan Weine
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Mimi Gao
- Physical Chemistry I−Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Jan Latarius
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Mirko Elbers
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Michael Paulus
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Metin Tolan
- Experimental Physics EIA/DELTA−Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I−Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| |
Collapse
|
100
|
Chen G, Zhang Q, Lu Q, Feng B. Protection effect of polyols on Rhizopus chinensis lipase counteracting the deactivation from high pressure and high temperature treatment. Int J Biol Macromol 2019; 127:555-562. [PMID: 30664969 DOI: 10.1016/j.ijbiomac.2019.01.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
The influence of polyols on Rhizopus chinensis lipase (RCL) was investigated under high pressure. The poor stability of RCL was observed at 500 MPa at 60 °C without polyols which protected RCL against the loss of activity. The lipase is more stable in phosphate buffer than in tris buffer despite the protection of polyols. The activity was maintained 63% by the sorbitol of 2 mol/L in Tris-HCl buffer but 73% in phosphate buffer after the treatment at 500 MPa and 60 °C for 25 min. The same protective effects could be observed at 1 mol/L of sorbitol, erythritol, xylitol, and mannitol. However, further increase of hydroxyl group number could not significantly improve the enzyme stability. The protection of polyols on RCL appears to depend on both of the polyol nature and the hydroxyl group number. Together with fluorescence spectra, circular dichroism spectra indicated that the chaotic conformation of RCL under high pressure became more ordered with 1 mol/L sorbitol. The results showed that sorbitol effectively stabilized the lipase conformation including the hydrophobic core under extreme conditions. It might be attributed to the interaction of polyols with RCL surface to modify intra-/intermolecular hydrogen bonds, maintaining the hydrophobic interactions within RCL.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, Henan, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Qiupei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Qiyu Lu
- School of Food Science, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, Henan, China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|