51
|
Chen J, Zhang W, Yang W, Xi F, He H, Liang M, Dong Q, Hou J, Wang M, Yu G, Zhou J. Separation of benzene and toluene associated with vapochromic behaviors by hybrid[4]arene-based co-crystals. Nat Commun 2024; 15:1260. [PMID: 38341431 DOI: 10.1038/s41467-024-45592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The combination of macrocyclic chemistry with co-crystal engineering has promoted the development of materials with vapochromic behaviors in supramolecular science. Herein, we develop a macrocycle co-crystal based on hybrid[4]arene and 1,2,4,5-tetracyanobenzene that is able to construct vapochromic materials. After the capture of benzene and toluene vapors, activated hybrid[4]arene-based co-crystal forms new structures, accompanied by color changes from brown to yellow. However, when hybrid[4]arene-based co-crystal captures cyclohexane and pyridine, neither structures nor colors change. Interestingly, hybrid[4]arene-based co-crystal can separate benzene from a benzene/cyclohexane equal-volume mixture and allow toluene to be removed from a toluene/ pyridine equal-volume mixture with purities reaching 100%. In addition, the process of adsorptive separation can be visually monitored. The selectivity of benzene from a benzene/cyclohexane equal-volume mixture and toluene from a toluene/ pyridine equal-volume mixture is attributed to the different changes in the charge-transfer interaction between hybrid[4]arene and 1,2,4,5-tetracyanobenzene when hybrid[4]arene-based co-crystal captures different vapors. Moreover, hybrid[4]arene-based co-crystal can be reused without losing selectivity and performance. This work constructs a vapochromic material for hydrocarbon separation.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wenjie Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wenzhi Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Fengcheng Xi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Hongyi He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Qian Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Jiawang Hou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Mengbin Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
52
|
Shi B, Jiang J, An H, Qi L, Wei TB, Qu WJ, Lin Q. Clamparene: Synthesis, Structure, and Its Application in Spontaneous Formation of 3D Porous Crystals. J Am Chem Soc 2024; 146:2901-2906. [PMID: 38271666 DOI: 10.1021/jacs.3c13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Macrocyclic arenes have emerged as pivotal scaffolds in supramolecular chemistry. Despite their significant contributions to molecular recognition and diverse applications, challenges persist in the development of macrocyclic arene-based crystalline materials, particularly in achieving porosity and addressing limitations in adsorption efficiency resulting from the small cavity sizes of existing macrocyclic arenes. In this study, we present the design and synthesis of a novel macrocyclic arene, clamparene (CLP), featuring a rigid backbone, easy synthesis, and a sizable cavity. CLP self-assembles into one-dimensional sub-nanotubes that further organize into a three-dimensional porous framework in the solid state. The crystalline solid of CLP exhibits potential as a porous crystalline adsorbent for various benzene-based contaminants with rapid adsorption kinetics, large uptake amounts, and good recyclability.
Collapse
Affiliation(s)
- Bingbing Shi
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Jingxiong Jiang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Hui An
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Lijuan Qi
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Wen-Juan Qu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| |
Collapse
|
53
|
Mukherjee A, Ghosh G. Light-regulated morphology control in supramolecular polymers. NANOSCALE 2024; 16:2169-2184. [PMID: 38206133 DOI: 10.1039/d3nr04989b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Stimuli-responsive materials have gained significant recent interest owing to their versatility and wide applications in fields ranging from materials science to biology. In the majority of examples, external stimuli, including light, act as a remote source of energy to depolymerize/deconstruct certain nanostructures or provide energy for exploring their functional features. However, there is little emphasis on the creation and precise control of these materials. Although significant progress has been made in the last few decades in understanding the pros and cons of various directional non-covalent interactions and their specific molecular recognition ability, it is only in the recent past that the focus has shifted toward controlling the dimension, dispersity, and other macroscopic properties of supramolecular assemblies. Control over the morphology of supramolecular polymers is extremely crucial not only for material properties they manifest but also for effective interactions with biological systems for their potential application in the field of biomedicine. This could effectively be achieved using photoirradiation which has been demonstrated by some recent reports. The concept as such offers a broad scope for designing versatile stimuli-responsive supramolecular materials with precise structure-property control. However, there has not yet been a compilation that focuses on the present subject of employing light to impact and regulate the morphology of supramolecular polymers or categorize the functional motif for easy understanding. In this review, we have collated recent examples of how light irradiation can tune the morphology and nanostructures of supramolecular polymers and categorized them based on their chemical transformation such as cis-trans isomerization, cycloaddition, and photo-cleavage. We have also established a direct correlation among the structures of the building blocks, mesoscopic properties and functional behavior of such materials and suggested future directions.
Collapse
Affiliation(s)
- Anurag Mukherjee
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149 Münster, Germany
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
| |
Collapse
|
54
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
55
|
Hidalgo-Alvarez V, Madl CM. Leveraging Biomaterial Platforms to Study Aging-Related Neural and Muscular Degeneration. Biomolecules 2024; 14:69. [PMID: 38254669 PMCID: PMC10813704 DOI: 10.3390/biom14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a complex multifactorial process that results in tissue function impairment across the whole organism. One of the common consequences of this process is the loss of muscle mass and the associated decline in muscle function, known as sarcopenia. Aging also presents with an increased risk of developing other pathological conditions such as neurodegeneration. Muscular and neuronal degeneration cause mobility issues and cognitive impairment, hence having a major impact on the quality of life of the older population. The development of novel therapies that can ameliorate the effects of aging is currently hindered by our limited knowledge of the underlying mechanisms and the use of models that fail to recapitulate the structure and composition of the cell microenvironment. The emergence of bioengineering techniques based on the use of biomimetic materials and biofabrication methods has opened the possibility of generating 3D models of muscular and nervous tissues that better mimic the native extracellular matrix. These platforms are particularly advantageous for drug testing and mechanistic studies. In this review, we discuss the developments made in the creation of 3D models of aging-related neuronal and muscular degeneration and we provide a perspective on the future directions for the field.
Collapse
Affiliation(s)
| | - Christopher M. Madl
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
56
|
Sehgal V, Pandey SP, Singh PK. Prospects of charged cyclodextrins in biomedical applications. Carbohydr Polym 2024; 323:121348. [PMID: 37940240 DOI: 10.1016/j.carbpol.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrins (CDs), recognized for their unique ability to form inclusion complexes, have seen broad utilization across various scientific fields. Recently, there has been a surge of interest in the use of charged cyclodextrins for biomedical applications, owing to their enhanced properties, such as superior solubility and improved molecular recognition compared to neutral CDs. Despite the growing literature, a comprehensive review of the biomedical utilisations of multi-charged cyclodextrins is scarce. This review provides a comprehensive exploration of the emerging prospects of charged cyclodextrin-based assemblies in the field of biomedical applications. Focusing on drug delivery systems, the review details how charged CDs enhance drug solubility and stability, reduce toxicity, and enable targeted and controlled drug release. Furthermore, the review highlights the role of charged CDs in gene therapy, notably their potential for DNA/RNA binding, cellular uptake, degradation protection, and targeted gene delivery. The promising potential of charged CDs in antibacterial and antiviral therapies, including photodynamic therapies, biofilm control, and viral replication inhibition, is discussed. Concluding with a future outlook, this review highlights the potential challenges and advancements that could propel charged CDs to the forefront of biomedicine.
Collapse
Affiliation(s)
- Vidhi Sehgal
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), 400 056, India
| | - Shrishti P Pandey
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), 400 056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India.
| |
Collapse
|
57
|
Pan YC, Tian JH, Guo DS. Molecular Recognition with Macrocyclic Receptors for Application in Precision Medicine. Acc Chem Res 2023; 56:3626-3639. [PMID: 38059474 DOI: 10.1021/acs.accounts.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Macrocyclic receptors can serve as alternatives to natural recognition systems as recognition tools. They provide effectively preorganized cavities to encapsulate guests via host-guest interactions, thereby affecting the physiochemical properties of the guests. Macrocyclic receptors exhibit chemical and thermal stabilities higher than those of natural receptors and thus are expected to resist degradation inside the body. This reduces the risk of harmful degradation byproducts and ensures optimal levels of effectiveness. Macrocyclic receptors have precise molecular weights and well-defined structures; this ensures their batch-to-batch reproducibility, which is critical for ensuring quality and effectiveness levels. Moreover, macrocyclic receptors exhibit broad modification tunabilities, rendering them adaptable to various guests. Molecular recognition is the basis of numerous biological processes. Macrocyclic receptors may display considerable potential for application in diagnosing and treating diseases, depending on the host-guest recognition of bioactive molecules. However, the binding affinities and selectivities of macrocyclic receptors toward bioactive molecules are generally insufficient, which may lead to problems such as low diagnosis accuracies, off-target leaking, and interference with normal functions. Therefore, addressing the challenge of the strong and specific complexation of bioactive molecules and macrocyclic receptors is imperative.To overcome this challenge, we proposed the innovative strategies of longitudinal cavity extension and coassembled heteromultivalent recognition for application in the recognition of small molecules and biomacromolecules, respectively. The deepened cavity provides a stronger hydrophobic effect and a larger interaction area while maintaining the framework rigidity. By coassembling two macrocyclic amphiphiles into one ensemble, we achieved the desired heteromultivalent recognition. This strategy affords the necessary binding properties while preventing the requirement of tedious steps and site mismatch in covalent synthesis. Using these two strategies, we achieved specific and strong binding of macrocyclic receptors to various bioactive molecules including biomarkers, drugs, and disease-related peptides/proteins. We then applied these macrocyclic receptor-based recognition systems in biosensing and bioimaging, drug delivery, and therapeutics.In this Account, we summarize the strategies we used in the recognition of small molecules and biomacromolecules. Thereafter, we discuss their applications in precision medicine, involving the (1) sensing of biomarkers and imaging of lesion sites, which are critical in the early screening of diseases and accurate diagnoses; (2) precise loading and targeted delivery of drugs, which are crucial in improving their therapeutic efficacies and reducing their side effects; and (3) capture and removal of disease-related biomacromolecules, which are significant for precise intervention in life processes. Finally, we propose recommendations for the further development of macrocyclic receptor-based recognition systems in biomedicine. Macrocyclic receptors exhibit considerable potential for research, and continued investigation may not only expand the applications of supramolecular chemistry but also open novel avenues for the development of precision medicine.
Collapse
Affiliation(s)
- Yu-Chen Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Jia-Hong Tian
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
58
|
Kircheva N, Petkova V, Dobrev S, Nikolova V, Angelova S, Dudev T. N-Methyl- and N-Phenylpiperazine Functionalized Styryl Dyes Inside Cucurbiturils: Theoretical Assessment of the Factors Governing the Host-Guest Recognition. Molecules 2023; 28:8130. [PMID: 38138619 PMCID: PMC10746092 DOI: 10.3390/molecules28248130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The family of cucurbiturils (CBs), the unique pumpkin-shaped macrocycles, has received great attention over the past four decades owing to their remarkable recognition properties. They have found diverse applications including biosensing and drug delivery technologies. The cucurbituril complexation of guest molecules can modulate their pKas, improve their solubility in aqueous solution, and reduce the adverse effects of the drugs, as well as enhance the stability and/or enable targeted delivery of the drug molecule. Employing twelve cationic styryl dyes with N-methyl- and N-phenylpiperazine functionality as probes, we attempted to understand the factors that govern the host-guest complexation of such molecules within CB[7] and CB[8] host systems. Various key factors determining the process were recognized, such as the pH and dielectric constant of the medium, the cavity size of the host, the chemical characteristics of the substituents in the guest entity, and the presence/absence of metal cations. The presented results add to our understanding (at the molecular level) of the mechanism of encapsulation of styryl dyes by cucurbiturils, thus shedding new light on various aspects of the intriguing complexation chemistry and the underlying recognition processes.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (V.P.); (S.D.); (S.A.)
| | - Vladislava Petkova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (V.P.); (S.D.); (S.A.)
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (V.P.); (S.D.); (S.A.)
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (V.P.); (S.D.); (S.A.)
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
59
|
Baranowska K, Mońka M, Kowalczyk A, Kaczyński Z, Bojarski P, Józefowicz M. Spectroscopic studies on the supramolecular interactions of methyl benzoate derivatives with p-sulfocalix[6]arene macrocycles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123131. [PMID: 37459664 DOI: 10.1016/j.saa.2023.123131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 09/20/2023]
Abstract
This paper is a continuation of our previous research and aims to further investigate and elucidate the nature and mechanisms of noncovalent supramolecular interactions between four methyl benzoate derivatives (I-IV), which are capable of exhibiting Twisted Intramolecular Charge Transfer (TICT) and/or Excited State Intramolecular Proton Transfer (ESIPT)-type behavior, and chemical and biological nanocavities. Photophysical and photochemical properties of molecules I-IV in aqueous solution in the presence of well-recognized macrocyclic host p-sulfocalix[6]arenes (SCA[6]) have been studied using steady-state, time-resolved and 1H NMR spectroscopic techniques. The changes in the ground- and excited-state spectroscopic characteristics (absorption and fluorescence spectra, time-resolved fluorescence spectra, fluorescence decay times and 1H NMR spectra) undergo significant modifications upon encapsulation of the investigated methyl benzoate derivative in the macromolecular cavity. For the two compounds (I and II), the interactions with the macrocycles with a hydrophobic SCA[6] cavity lead to the formation of stable inclusion complexes with 1:1 stoichiometry, both in the ground and excited state, while the stoichiometry of the III-SCA[6] and IV-SCA[6] complexes in the ground and excited states is 1:2. The values of the equilibrium constants have been determined from the spectroscopic data using Benesi-Hildebrand and nonlinear regression procedures. The location of the organic molecule inside the SCA[6] has been investigated by 1H NMR experiments. The changes in macrocyclic compound-induced NMR chemical shifts clearly indicate that the chemical structure of inclusion complexes is very different for methyl benzoate derivative-SCA[6] and methyl benzoate derivative-CB[7] systems. Finally, we have shown, using time-dependent fluorescence Stokes shift, that very fast solvation dynamics of pure water is markedly different from that of the confined water molecule in SCA[6] system.
Collapse
Affiliation(s)
- Karolina Baranowska
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Michał Mońka
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Agnieszka Kowalczyk
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Zbigniew Kaczyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Bojarski
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Marek Józefowicz
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland.
| |
Collapse
|
60
|
Nisa K, Lone IA, Arif W, Singh P, Rehmen SU, Kumar R. Applications of supramolecular assemblies in drug delivery and photodynamic therapy. RSC Med Chem 2023; 14:2438-2458. [PMID: 38107171 PMCID: PMC10718592 DOI: 10.1039/d3md00396e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
One of the world's serious health challenges is cancer. Anti-cancer agents delivered to normal cells and tissues pose several problems and challenges. In this connection, photodynamic therapy (PDT) is a minimally invasive therapeutic technique used for selectively destroying malignant cells while sparing the normal tissues. Development in photosensitisers (PSs) and light sources have to be made for PDT as a first option treatment for patients. In the pursuit of developing new attractive molecules and their formulations for PDT, researchers are working on developing such type of PSs that perform better than those being currently used. For the widespread clinical utilization of PDT, effective PSs are of particular importance. Host-guest interactions based on nanographene assemblies such as functionalized hexa-cata-hexabenzocoronenes, hexa-peri-hexabenzocoronenes and coronene have attracted increasing attention owing to less complicated synthetic steps and purification processes (gel permeation chromatography) during fabrication. Noncovalent interactions provide easy and facile approaches for building supramolecular PSs and enable them to have sensitive and controllable photoactivities, which are important for maximizing photodynamic effects and minimizing side effects. Various versatile supramolecular assemblies based on cyclodextrins, cucurbiturils, calixarenes, porphyrins and pillararenes have been designed in order to make PDT an effective therapeutic technique for curing cancer and tumours. The supramolecular assemblies of porphyrins display efficient electron transfer and fluorescence for use in bioimaging and PDT. The multifunctionalization of supramolecular assemblies is used for designing biomedically active PSs, which are helpful in PDT. It is anticipated that the development of these functionalized supramolecular assemblies will provide more fascinating advances in PDT and will dramatically expand the potential and possibilities in cancer treatments.
Collapse
Affiliation(s)
- Kharu Nisa
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ishfaq Ahmad Lone
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Waseem Arif
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Preeti Singh
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University Meerut-250005 India
| | - Sajad Ur Rehmen
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ravi Kumar
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| |
Collapse
|
61
|
Sengupta A, Roy G, Likhar AR, Asthana D. A supramolecular assembly-based strategy towards the generation and amplification of photon up-conversion and circularly polarized luminescence. NANOSCALE 2023; 15:18999-19015. [PMID: 37991436 DOI: 10.1039/d3nr04184k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
For the molecular properties in which energy transfer/migration is determinantal, such as triplet-triplet annihilation-based photon up-conversion (TTAUC), the overall performance is largely affected by the intermolecular distance and relative molecular orientations. In such scenarios, tools that may steer the intermolecular interactions and provide control over molecular organisation in the bulk, become most valuable. Often these non-covalent interactions, found predominantly in supramolecular assemblies, enable pre-programming of the molecular network in the assembled structures. In other words, by employing supramolecular chemistry principles, an arrangement where molecular units are arranged in a desired fashion, very much like a Lego toy, could be achieved. This leads to enhanced energy transfer from one molecule to other. In recent past, chiral luminescent systems have attracted huge attention for producing circularly polarized luminescence (CPL). In such systems, chirality is a necessary requirement. Chirality induction/transfer through supramolecular interactions has been known for a long time. It was realized recently that it may help in the generation and amplification of CPL signals as well. In this review article we have discussed the applicability of self-/co-assembly processes for achieving maximum TTA-UC and CPL in various molecular systems.
Collapse
Affiliation(s)
- Alisha Sengupta
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | - Gargee Roy
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | | | - Deepak Asthana
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| |
Collapse
|
62
|
Chen XX, Huang SZ, Yang RP, Huang Y, Tang Q. Supramolecular fluorescent probe based on a host-guest complex for amino acids recognition and detection in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123079. [PMID: 37421696 DOI: 10.1016/j.saa.2023.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
A supramolecular fluorescent probe based on a host-guest complex has been developed for amino acid recognition and detection in aqueous solution. Cucurbit[7]uril (Q[7]) with 4-(4-dimethylamino-styrene) quinoline (DSQ) formed a fluorescent probe (DSQ@Q[7]). The DSQ@Q[7] fluorescent probe nearly generated changes in fluorescence in response to four amino acids (arginine, histidine, phenylalanine and tryptophan). These changes were attributed to the host-guest interaction between DSQ@Q[7] and amino acids, which occurred as a consequence of the subtle cooperation of ionic dipole and hydrogen bonding. Linear discriminant analysis showed that the fluorescent probe could recognize and distinguish four amino acids, and a mixture with different concentration ratios could be well categorized in ultrapure water and tap water.
Collapse
Affiliation(s)
- Xing-Xing Chen
- Department College of Tobacco Science, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory for Tobacco Quality, College of Tobacco Science, Guizhou Univ., Guiyang 550025, China
| | - Shu-Zhen Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ru-Pei Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ying Huang
- The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Qing Tang
- Department College of Tobacco Science, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory for Tobacco Quality, College of Tobacco Science, Guizhou Univ., Guiyang 550025, China.
| |
Collapse
|
63
|
Xu X, Li L, Ye L, Liu X, Feng Y, Chen G. Self-Assembly of Glycolipid Epimers: Their Supramolecular Morphology Control and Immunoactivation Function. Macromol Rapid Commun 2023; 44:e2300359. [PMID: 37496374 DOI: 10.1002/marc.202300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Although advances have been made in carbohydrate-based macromolecular self-assembly, harnessing epimers of carbohydrates to perform molecular assembly and further investigating the properties of supramolecular materials remain little explored. Herein, two classes of stereoisomeric glycolipid amphiphiles based on d-N-acetylgalactosamine (GalNAc) are reported, and they can aggregate into ribbon-like structures in the aqueous solution due to amphiphilic property, which allow to obtain glycocalyx-mimicking supramolecular materials. The subtle distinction in glycoside configuration of GalNAc-α-SSA and GalNAc-β-SSA dictates the different molecular packing in self-assembled structures. Since driven by the distinguishing carbohydrate-carbohydrate interactions, the ribbon-like architectures transform into spherical nanostructures via mixing GalNAc-α-SSA and GalNAc-β-SSA. The resulting spherical micelles fabricated by blending glycolipid epimers can potentiate the macrophage- and dendritic cell-mediated immune responses in vitro. Such glycolipid epimers will pave the way to create glycocalyx-mimicking immune modulators by incorporating stereochemistry into supramolecular self-assembly.
Collapse
Affiliation(s)
- Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Linfei Ye
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Xiaomei Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an, Shaanxi, 710119, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
64
|
Yu Y, Qu X, Li J, Huang F, Yang J. Arylazopyrazole as a photo-switch for controllable self-assembly of pillar[6]arene-based supramolecular amphiphiles. Chem Commun (Camb) 2023; 59:14265-14268. [PMID: 37961865 DOI: 10.1039/d3cc05018a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A photo-responsive host-guest molecular recognition between a cationic pillar[6]arene host and an arylazopyrazole derived guest was established. Based on this novel recognition motif, a photo-controllable supra-amphiphile was constructed. The spontaneous aggregation can be reversibly controlled by irradiation with UV (365 nm) and green light (520 nm), leading to a switch between spherical nanoparticles and vesicle-like aggregates.
Collapse
Affiliation(s)
- Yishu Yu
- College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xiaotian Qu
- College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Junran Li
- College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jie Yang
- College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China.
| |
Collapse
|
65
|
Yu X, Qi S, Cao F, Yang K, Li H, Peng K, Liu Z, Bai B, Buljan M, Chen X, Yu G. Fabrication of An Immunostimulatory Supramolecular Nanomedicine for Potent Cancer Chemoimmunotherapy. JACS AU 2023; 3:3181-3193. [PMID: 38034980 PMCID: PMC10685430 DOI: 10.1021/jacsau.3c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Chemoimmunotherapy can boost strong antitumor immune responses by triggering immunogenic cell death (ICD), which highlights a promising prospect in clinical applications. However, current chemoimmunotherapy shows limited efficacy due to the low delivery efficiency and insufficient immunogenicity of available chemotherapeutic drugs. A supramolecular polymeric nanomedicine (Pt-Tu@NP) is herein reported using cucurbit[7]uril-based host-guest recognition and noncovalent self-assembly. Pt-Tu@NPs have excellent biodistribution and strongly evoke the endoplasmic reticulum stress-mediated ICD of tumor cells, triggering potent antitumor immune responses by promoting dendritic cell (DC) maturation and cytotoxic T cell infiltration. The coordinated butyrate promotes a positive feedback regulation between DCs and CD8+ T cells. Pt-Tu@NPs stimulate immune cold tumors into hot ones, working in synergy with an immune checkpoint blockade to effectively suppress tumor growth and metastasis, which suggests a promising approach for cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Xinyang Yu
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shaolong Qi
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Fangfang Cao
- Yong
Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Kai Yang
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hongjian Li
- School
of Medicine, Tsinghua University, Beijing 100084, P. R. China
| | - Kun Peng
- School
of Medicine, Tsinghua University, Beijing 100084, P. R. China
| | - Zhida Liu
- Shanxi
Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
| | - Bing Bai
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Marija Buljan
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Xiaoyuan Chen
- Yong
Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Guocan Yu
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- School
of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
66
|
Li X, Jin Y, Zhu N, Jin LY. Applications of Supramolecular Polymers Generated from Pillar[ n]arene-Based Molecules. Polymers (Basel) 2023; 15:4543. [PMID: 38231964 PMCID: PMC10708374 DOI: 10.3390/polym15234543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular chemistry enables the manipulation of functional components on a molecular scale, facilitating a "bottom-up" approach to govern the sizes and structures of supramolecular materials. Using dynamic non-covalent interactions, supramolecular polymers can create materials with reversible and degradable characteristics and the abilities to self-heal and respond to external stimuli. Pillar[n]arene represents a novel class of macrocyclic hosts, emerging after cyclodextrins, crown ethers, calixarenes, and cucurbiturils. Its significance lies in its distinctive structure, comparing an electron-rich cavity and two finely adjustable rims, which has sparked considerable interest. Furthermore, the straightforward synthesis, uncomplicated functionalization, and remarkable properties of pillar[n]arene based on supramolecular interactions make it an excellent candidate for material construction, particularly in generating interpenetrating supramolecular polymers. Polymers resulting from supramolecular interactions involving pillar[n]arene find potential in various applications, including fluorescence sensors, substance adsorption and separation, catalysis, light-harvesting systems, artificial nanochannels, and drug delivery. In this context, we provide an overview of these recent frontier research fields in the use of pillar[n]arene-based supramolecular polymers, which serves as a source of inspiration for the creation of innovative functional polymer materials derived from pillar[n]arene derivatives.
Collapse
Affiliation(s)
| | | | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| |
Collapse
|
67
|
Pal I, Pathak NK, Majumdar S, Lepcha G, Dey A, Yatirajula SK, Tripathy U, Dey B. Solvent-Driven Variations of Third-Order Nonlinear Thermo-Optical Features of Glutaric Acid-Directed Self-Healing Supramolecular Ni(II) Metallogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16584-16595. [PMID: 37934977 DOI: 10.1021/acs.langmuir.3c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The generation of solvent-directed self-healing supramolecular Ni(II) metallogels of glutaric acid (i.e., Ni-Glu-DMF and Ni-Glu-DMSO) is described in this article. Polar aprotic solvents like N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) are separately entrapped into the Ni(II)-acetate salt and glutaric acid-mediated networks to attain the semisolid flexible scaffolds. The gel nature of the fabricated materials is experimentally proven through different rheological tests such as amplitude sweep, frequency sweep, and thixotropic (time sweep) measurements. The self-repairing strategy and load-bearing features of the synthesized metallogel are studied in this work. The different supramolecular noncovalent interactions working within the soft scaffold are clearly explored. The formation strategy and the microstructural features of these synthesized metallogels are scrutinized through a Fourier transform infrared (FT-IR) spectroscopy study and field-emission scanning electron microscopy (FESEM) morphological analyses. The FT-IR spectroscopy observation displays a considerable amount of shifting of the infrared (IR) peaks of the xerogel samples of both the metallogels Ni-Glu-DMF and Ni-Glu-DMSO. The electrospray ionization (ESI)-mass spectroscopy result demonstrates the plausible construction of the metallogel network. In order to examine the nonlinear optical characteristics of the two synthesized self-healing metallogels Ni-Glu-DMSO and Ni-Glu-DMF, Z-scan measurements are carried out with a continuous wave (CW) diode-pumped solid-state (DPSS) laser at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels were evaluated by analyzing the experimental data from the Sheik-Bahae formalism. The nonlinear thermo-optical study reveals that these solvent-dependent metallogels show negative signs of nonlinear refractive index and nonlinear absorption coefficient. The figure of merit calculated for these compounds shows good agreement for their use in nonlinear photonic devices.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
68
|
Giordano S, Gallo E, Diaferia C, Rosa E, Carrese B, Borbone N, Scognamiglio PL, Franzese M, Oliviero G, Accardo A. Multicomponent Peptide-Based Hydrogels Containing Chemical Functional Groups as Innovative Platforms for Biotechnological Applications. Gels 2023; 9:903. [PMID: 37998993 PMCID: PMC10671135 DOI: 10.3390/gels9110903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Multicomponent hydrogels (HGs) based on ultrashort aromatic peptides have been exploited as biocompatible matrices for tissue engineering applications, the delivery of therapeutic and diagnostic agents, and the development of biosensors. Due to its capability to gel under physiological conditions of pH and ionic strength, the low molecular-weight Fmoc-FF (Nα-fluorenylmethoxycarbonyl-diphenylalanine) homodimer is one of the most studied hydrogelators. The introduction into the Fmoc-FF hydrogel of additional molecules like protein, organic compounds, or other peptide sequences often allows the generation of novel hydrogels with improved mechanical and functional properties. In this perspective, here we studied a library of novel multicomponent Fmoc-FF based hydrogels doped with different amounts of the tripeptide Fmoc-FFX (in which X= Cys, Ser, or Thr). The insertion of these tripeptides allows to obtain hydrogels functionalized with thiol or alcohol groups that can be used for their chemical post-derivatization with bioactive molecules of interest like diagnostic or biosensing agents. These novel multicomponent hydrogels share a similar peptide organization in their supramolecular matrix. The hydrogels' biocompatibility, and their propensity to support adhesion, proliferation, and even cell differentiation, assessed in vitro on fibroblast cell lines, allows us to conclude that the hybrid hydrogels are not toxic and can potentially act as a scaffold and support for cell culture growth.
Collapse
Affiliation(s)
- Sabrina Giordano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Carlo Diaferia
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Elisabetta Rosa
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Nicola Borbone
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | | | - Monica Franzese
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Antonella Accardo
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| |
Collapse
|
69
|
Banerjee A, Kajol, Bajaj G, Singhal NK, Pathak RK. Synthetically Tunable Suprahybrid Nanoparticle Platform for the Efficacious Delivery of Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37927061 DOI: 10.1021/acsami.3c11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The discovery of lipid-hybrid nanosystems has offered potential solutions to various drug delivery and theranostic challenges. However, in many instances, the commonly used lipids and other components in these systems often pose challenges related to their solubility, physicochemical properties, immune compatibility, and limited synthetic tunability. In this work, we introduce a synthetically tunable supramolecular scaffold with amphiphilic characteristics based on the calix[4]arene macrocyclic system. We designed and synthesized two novel calix[4]arene-polyethylene glycol (PEG) conjugates, termed Cal-P1 and Cal-P2, and these were characterized utilizing a wide range of spectroscopic and analytical methods. The rational design of Cal-P1 and Cal-P2 demonstrates their utility in forming stable blended nanospheres with sustained drug release characteristics. The synergistic blending of PLGA and the calixarene scaffold (Cal-P1 and Cal-P2) in constructing long-lasting and controlled-release nanoparticles (NPs), which are optimized for encapsulating Nile Red dye, and their successful internalization and retention in HeLa cancer cells are demonstrated through in vitro assays. The potential of these NPs as sustained therapeutic carriers is investigated in vivo, showing improved retention compared to free dye with negligible toxicity. The successful design and construction of Cal-P1 and Cal-P2 nanosystems represent a new paradigm for addressing drug loading challenges, opening up opportunities for the development of highly efficient, synthetically tunable alternative adjuvants for drug encapsulation and delivery.
Collapse
Affiliation(s)
- Arka Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
| | - Kajol
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
| | - Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
- Department of Biotechnology, Punjab University, Sector 25, Chandigarh 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Rakesh Kumar Pathak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
| |
Collapse
|
70
|
Weng G, Yang X, Wang Z, Xu Y, Liu R. Hydrogel Electrolyte Enabled High-Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303949. [PMID: 37530198 DOI: 10.1002/smll.202303949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Indexed: 08/03/2023]
Abstract
To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.
Collapse
Affiliation(s)
- Gao Weng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xianzhong Yang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Zhiqi Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Yan Xu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
71
|
Zhao RN, Zhu BW, Xu Y, Yu SF, Wang WJ, Liu DH, Hu JN. Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems. Carbohydr Polym 2023; 319:121198. [PMID: 37567724 DOI: 10.1016/j.carbpol.2023.121198] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination compounds that possess an adjustable structure and controllable function. Despite their wide applications in various industries, the use of MOFs in the fields of food and biomedicine is limited mainly due to their potential biological toxicity. Researchers have thus focused on developing biocompatible MOFs to address this issue. Among them, cyclodextrin-based metal-organic frameworks (CD-MOFs) have emerged as a promising alternative. CD-MOFs are novel MOFs synthesized using naturally carbohydrate cyclodextrin and alkali metal cations, and possess renewable, non-toxic, and edible characteristics. Due to their high specific surface area, controllable porosity, great biocompatibility, CD-MOFs have been widely used in various delivery systems, such as encapsulation of nutraceuticals, flavors, and antibacterial agents. Although the field of CD-MOF materials is still in its early stages, they provide a promising direction for the development of MOF materials in the delivery field. This review describes classification and structural characteristics, followed by an introduction to formation mechanism and commonly used synthetic methods for CD-MOFs. Additionally, we discuss the status of the application of various delivery systems based on CD-MOFs. Finally, we address the challenges and prospects of CD-MOF materials, with the aim of providing new insights and ideas for their future development.
Collapse
Affiliation(s)
- Ru-Nan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Song-Feng Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Wen-Jun Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Dong-Hong Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Jiang-Ning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
72
|
Shi B, Qin P, Li W, Feng H, Zhou Y, Chai Y, Qu WJ, Wei TB, Zhang YM, Lin Q. A Two-Step Fluorescence-Resonance Energy Transfer System Constructed by Platinum(II) Metallacycle Based Molecular Recognition. Inorg Chem 2023; 62:17236-17240. [PMID: 37816176 DOI: 10.1021/acs.inorgchem.3c02430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Considerable progress in the construction of efficient fluorescence-resonance energy transfer (FRET) systems has promoted the development of artificial energy transfer materials. However, despite recent advances, the exploration of efficient and easy strategies to fabricate novel supramolecular systems with FRET activities is still a challenge. Here, we report that a two-step FRET system was successfully achieved, driven by platinum metallacycle based host-guest interactions. The two-step FRET system is used for the preparation of a white-light-emitting diode and serves as a nanoreactor for the photosynthetic process. This work offers a strategy for the fabrication of FRET systems and opens opportunities for functional materials constructed by platinum(II) metallacycle based host-guest interactions.
Collapse
Affiliation(s)
- Bingbing Shi
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Peng Qin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Weichun Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Hua Feng
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yi Zhou
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yongping Chai
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Wen-Juan Qu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - You-Ming Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
73
|
Wagay SA, Ali R. Facile synthesis and anion binding studies of fluorescein/benzo-12-crown-4 ether based bis-dipyrromethane (DPM) receptors. RSC Adv 2023; 13:30420-30428. [PMID: 37849701 PMCID: PMC10578460 DOI: 10.1039/d3ra05171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Two novel fluorescein as well as benzo-12-crown-4 ether functionalized dipyrromethane receptors (DPM3 and DPM4) have successfully been synthesized. The anion (used as their TBA salts) binding studies of thus prepared DPM3 and DPM4 receptors were evaluated by the UV-visible spectrophotometric titrations. Binding affinities as well as the stoichiometry were determined through the UV-visible titrations data with the involvement of the BindFit (v0.5) package available online at https://supramolecular.org. Moreover, binding events were validated by means of the comparison of the partial 1H-NMR spectrum of the simple host molecule with that of the host-guest complex, and the 1 : 1 stoichiometry were further confirmed by the Job's method of continuous variation. From the results, we observed the binding constant (Ka) values of DPM3/DPM4 with various tested anions in the range of 516.07 M-1 to 63789.81 M-1, depending upon the nature/shape/size of the anions. Moreover, the anion-π interactions were confirmed by the partial 1H-NMR spectral data, and further supported by the literature reported systems. The authors hope that such types of valued receptors will be benefitted in future for the recognizing/binding of a variety of biologically important anions.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry Jamia Millia Islamia, Okhla New Delhi 110025 India +91-7011867613
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry Jamia Millia Islamia, Okhla New Delhi 110025 India +91-7011867613
| |
Collapse
|
74
|
Poudel H, RanguMagar AB, Singh P, Oluremi A, Ali N, Watanabe F, Batta-Mpouma J, Kim JW, Ghosh A, Ghosh A. Guar-Based Injectable Hydrogel for Drug Delivery and In Vitro Bone Cell Growth. Bioengineering (Basel) 2023; 10:1088. [PMID: 37760190 PMCID: PMC10525255 DOI: 10.3390/bioengineering10091088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Injectable hydrogels offer numerous advantages in various areas, which include tissue engineering and drug delivery because of their unique properties such as tunability, excellent carrier properties, and biocompatibility. These hydrogels can be administered with minimal invasiveness. In this study, we synthesized an injectable hydrogel by rehydrating lyophilized mixtures of guar adamantane (Guar-ADI) and poly-β-cyclodextrin (p-βCD) in a solution of phosphate-buffered saline (PBS) maintained at pH 7.4. The hydrogel was formed via host-guest interaction between modified guar (Guar-ADI), obtained by reacting guar gum with 1-adamantyl isocyanate (ADI) and p-βCD. Comprehensive characterization of all synthesized materials, including the hydrogel, was performed using nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and rheology. The in vitro drug release study demonstrated the hydrogel's efficacy in controlled drug delivery, exemplified by the release of bovine serum albumin (BSA) and anastrozole, both of which followed first-order kinetics. Furthermore, the hydrogel displayed excellent biocompatibility and served as an ideal scaffold for promoting the growth of mouse osteoblastic MC3T3 cells as evidenced by the in vitro biocompatibility study.
Collapse
Affiliation(s)
- Humendra Poudel
- Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA; (H.P.); (A.G.)
| | - Ambar B. RanguMagar
- Department of Chemistry, Philander Smith University, 900 W Daisy L Gatson Bates Dr, Little Rock, AR 72202, USA;
| | - Pooja Singh
- Department of Biology, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA; (P.S.); (A.O.); (N.A.)
| | - Adeolu Oluremi
- Department of Biology, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA; (P.S.); (A.O.); (N.A.)
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA; (P.S.); (A.O.); (N.A.)
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA;
| | - Joseph Batta-Mpouma
- Department of Biological and Agricultural Engineering, Bell Engineering Center, University of Arkansas, 4183 Fayetteville, Little Rock, AR 72701, USA; (J.B.-M.); (J.W.K.)
| | - Jin Woo Kim
- Department of Biological and Agricultural Engineering, Bell Engineering Center, University of Arkansas, 4183 Fayetteville, Little Rock, AR 72701, USA; (J.B.-M.); (J.W.K.)
| | - Ahona Ghosh
- Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA; (H.P.); (A.G.)
| | - Anindya Ghosh
- Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA; (H.P.); (A.G.)
| |
Collapse
|
75
|
Ma R, Zheng YD, Tian HW, Chen MM, Yue YX, Bian Q, Li HB, Guo DS. A general supramolecular adjuvant for pesticides based on host-guest recognition. PEST MANAGEMENT SCIENCE 2023; 79:3133-3140. [PMID: 37013803 DOI: 10.1002/ps.7492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Pesticides are indispensable in agriculture and can effectively improve the yields and quality of crops. Due to their weak water solubility, most pesticides need to be dissolved by adding solubilizing adjuvants. In this work, based on molecular recognition of the macrocyclic host, we developed a novel supramolecular adjuvant, called sulfonated azocalix[4]arene (SAC4A), which significantly improves the water solubility of pesticides. RESULTS SAC4A presents multiple advantages, including high water solubility, strong binding affinity, universality, and simple preparation. SAC4A showed an average binding constant value of 1.66 × 105 M-1 for 25 pesticides. Phase solubility results indicated that SAC4A increased the water solubility of pesticides by 80-1310 times. The herbicidal, fungicidal, and insecticidal activities of supramolecular formulations were found to be superior to those of technical pesticides, and the herbicidal effects were even better than those of commercial formulations. CONCLUSION Overall results revealed the potential of SAC4A to improve the solubility and effectiveness of pesticides, providing a new development idea for the application of adjuvants in agriculture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rong Ma
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Yue-Dan Zheng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Han-Wen Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Meng-Meng Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Yu-Xin Yue
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Qiang Bian
- College of Chemistry, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| |
Collapse
|
76
|
Ravi A, Pathigoolla A, Balan H, Gupta R, Raj G, Varghese R, Sureshan KM. Adamantoid Scaffolds for Multiple Cargo Loading and Cellular Delivery as β-Cyclodextrin Inclusion Complexes. Angew Chem Int Ed Engl 2023; 62:e202307324. [PMID: 37384430 DOI: 10.1002/anie.202307324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
There is huge demand for developing guests that bind β-CD and can conjugate multiple cargos for cellular delivery. We synthesized trioxaadamantane derivatives, which can conjugate up to three cargos per guest. 1 H NMR titration and isothermal titration calorimetry revealed these guests form 1 : 1 inclusion complexes with β-CD with association constants in the order of 103 M-1 . Co-crystallization of β-CD with guests yielded crystals of their 1 : 1 inclusion complexes as determined by single-crystal X-ray diffraction. In all cases, trioxaadamantane core is buried within the hydrophobic cavity of β-CD and three hydroxyl groups are exposed outside. We established biocompatibility using representative candidate G4 and its inclusion complex with β-CD (β-CD⊂G4), by MTT assay using HeLa cells. We incubated HeLa cells with rhodamine-conjugated G4 and established cellular cargo delivery using confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting (FACS) analysis. For functional assay, we incubated HeLa cells with β-CD-inclusion complexes of G4-derived prodrugs G6 and G7, containing one and three units of the antitumor drug (S)-(+)-camptothecin, respectively. Cells incubated with β-CD⊂G7 displayed the highest internalization and uniform distribution of camptothecin. β-CD⊂G7 showed higher cytotoxicity than G7, camptothecin, G6 and β-CD⊂G6, affirming the efficiency of adamantoid derivatives in high-density loading and cargo delivery.
Collapse
Affiliation(s)
- Arthi Ravi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Atchutarao Pathigoolla
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Haripriya Balan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Ria Gupta
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Gowtham Raj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Vithura, 695551, India
| |
Collapse
|
77
|
Degirmenci A, Sanyal R, Sanyal A. Plug-and-Play Biointerfaces: Harnessing Host-Guest Interactions for Fabrication of Functional Polymeric Coatings. Biomacromolecules 2023; 24:3568-3579. [PMID: 37406159 PMCID: PMC10428160 DOI: 10.1021/acs.biomac.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Polymeric surface coatings capable of effectively integrating desired functional molecules and ligands are attractive for fabricating bio-interfaces necessary for various applications. Herein, we report the design of a polymeric platform amenable to such modifications in a modular fashion through host-guest chemistry. Copolymers containing adamantane (Ada) moieties, diethylene glycol (DEG) units, and silyloxy groups to provide functionalization handles, anti-biofouling character, and surface attachment, respectively, were synthesized. These copolymers were employed to modify silicon/glass surfaces to enable their functionalization using beta-cyclodextrin (βCD) containing functional molecules and bioactive ligands. Moreover, surface functionalization could be spatially controlled using a well-established technique like microcontact printing. Efficient and robust functionalization of polymer-coated surfaces was demonstrated by immobilizing a βCD-conjugated fluorescent rhodamine dye through the specific noncovalent binding between Ada and βCD units. Furthermore, biotin, mannose, and cell adhesive peptide-modified βCD were immobilized onto the Ada-containing polymer-coated surfaces to direct noncovalent conjugation of streptavidin, concanavalin A (ConA), and fibroblast cells, respectively. It was demonstrated that the mannose-functionalized coating could selectively bind to the target lectin ConA, and the interface could be regenerated and reused several times. Moreover, the polymeric coating was adaptable for cell attachment and proliferation upon noncovalent modification with cell-adhesive peptides. One can envision that the facile synthesis of the Ada-based copolymers, mild conditions for coating surfaces, and their effective transformation to various functional interfaces in a modular fashion offers an attractive approach to engineering functional interfaces for several biomedical applications.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Türkiye
| |
Collapse
|
78
|
Rajapaksha H, Augustine LJ, Mason SE, Forbes TZ. Guiding Principles for the Rational Design of Hybrid Materials: Use of DFT Methodology for Evaluating Non-Covalent Interactions in a Uranyl Tetrahalide Model System. Angew Chem Int Ed Engl 2023; 62:e202305073. [PMID: 37177866 DOI: 10.1002/anie.202305073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Together with the synthesis and experimental characterization of 14 hybrid materials containing [UO2 X4 ]2- (X=Cl- and Br- ) and organic cations, we report on novel methods for determining correlation trends in their formation enthalpy (ΔHf ) and observed vibrational signatures. ΔHf values were analyzed through isothermal acid calorimetry and a Density Functional Theory+Thermodynamics (DFT+T) approach with results showing good agreement between theory and experiment. Three factors (packing efficiency, cation protonation enthalpy, and hydrogen bonding energy [E H , norm total ${{E}_{H,{\rm { norm}}}^{{\rm { total}}}}$ ]) were assessed as descriptors for trends in ΔHf . Results demonstrated a strong correlation betweenE H , norm total ${E_{{\rm{H}},{\rm{norm}}}^{{\rm{total}}} }$ and ΔHf , highlighting the importance of hydrogen bonding networks in determining the relative stability of solid-state hybrid materials. Lastly, we investigate how hydrogen bonding networks affect the vibrational characteristics of uranyl solid-state materials using experimental Raman and IR spectroscopy and theoretical bond orders and find that hydrogen bonding can red-shift U≡O stretching modes. Overall, the tightly integrated experimental and theoretical studies presented here bridge the trends in macroscopic thermodynamic energies and spectroscopic features with molecular-level details of the geometry and electronic structure. This modeling framework forms a basis for exploring 3D hydrogen bonding as a tunable design feature in the pursuit of supramolecular materials by rational design.
Collapse
Affiliation(s)
- Harindu Rajapaksha
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| | - Logan J Augustine
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| | - Sara E Mason
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
- Center for Funtional Nanomaterials (CFN), Brookhaven National Labotatory, Upton, NY 52242, USA
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| |
Collapse
|
79
|
Santra S, Das S, Sengupta A, Molla MR. Tumor acidity-induced surface charge modulation in covalent nanonetworks for activated cellular uptake: targeted delivery of anticancer drugs and selective cancer cell death. Biomater Sci 2023; 11:5549-5559. [PMID: 37401615 DOI: 10.1039/d3bm00491k] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
A β-thioester and tertiary amine based covalently cross-linked nanoassembly coined as a nanonetwork (NN) endowed with dual pH responsive features (tumor acidity induced surface charge modulation and endosomal pH triggered controlled degradation) has been designed and synthesized for stable sequestration and sustained release of drug molecules in response to endosomal pH. An amphiphile integrated with tertiary amine and acrylate (ATA) functionalities was synthesized to fabricate the nanonetwork. This amphiphile showed entropically driven self-assembly and micellar nanostructures (nanoassemblies), which can sequester hydrophobic drug molecules at neutral pH. To further stabilize the nanoassemblies and the sequestered drug molecules even below its critical aggregation concentration (CAC), the micellar core was cross-linked via the thiol-acrylate Michael addition click reaction to generate multiple copies of acid labile β-thioester functionalities in the core, which undergo slow hydrolysis at endosomal pH (∼5.0), thus enabling sustained release of the anti-cancer drug doxorubicin at endosomal pH. The nanonetworks showed a significant decrease in drug leakage compared to the nanoassemblies (NAs), which was also justified by a low leakage coefficient calculated from the fluorescence resonance energy transfer experiment. The NN also exhibited dilution insensitivity and high serum stability, whereas the NA disassembled upon dilution and during serum treatment. The biological evaluation revealed tumor extracellular matrix pH (∼6.4-6.8) induced surface charge modulation and cancer cell (HeLa) selective activated cellular uptake of the doxorubicin loaded nanonetwork (NN-DOX). In contrast, the benign nature of NN-DOX towards normal cells (H9c2) suggests excellent cell specificity. Thus, we believe that the ease of synthesis, nanonetwork fabrication reproducibility, robust stability, smart nature of tumor microenvironment sensitive surface charge modulation, boosted tumoral-cell uptake, and triggered drug release will make this system a potential nanomedicine for chemotherapeutic treatments.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Shreya Das
- Department of Life Science & Biotechnology, Jadavpur University, Kolkata-700032, India
| | - Arunima Sengupta
- Department of Life Science & Biotechnology, Jadavpur University, Kolkata-700032, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
80
|
Yang X, Qiao S, Zhao W, Li S, Qiao Y, Jiang Y, Zhou Y, Li Y. Homogeneous Electrochemiluminescence for Highly Sensitive Determination of Demethylase FTO Based on Target-Regulated DNAzyme Cleavage and Host-Guest Interaction. Anal Chem 2023. [PMID: 37486003 DOI: 10.1021/acs.analchem.3c01661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Fat mass and obesity-associated protein (FTO) is the first reported N6-methyladenosine (m6A) RNA demethylase. The dysregulation of FTO demethylation is strongly associated with various human cancers in a m6A-dependent manner. Herein, a homogeneous electrochemiluminescence (ECL) method for the determination of FTO was proposed based on the target-regulated DNAzyme cleavage. Moreover, the ECL signal was highly enhanced by host-guest interaction between β-cyclodextrin (β-CD) and tri-n-propylamine (TPrA). The m6A caged DNAzyme 17E-Me acted as a padlock, while the FTO served as the corresponding key. As the key, FTO could specifically remove m6A modification, restoring the cleavage activity of DNAzyme 17E. With the assistance of the Zn2+ cofactor, the substrate strand was cleaved at a specific site, and the ECL indicator of Ru(phen)32+ was discharged to produce an ECL signal. On the contrary, 17E-Me was blocked and no cleavage reaction occurred without the key. For the ECL detection, the electrode modification of β-CD@AuNPs concentrated Ru(phen)32+ species through electrostatic adsorption and gathered TPrA molecules through host-guest interaction with β-CD, which resulted in an intense ECL response. The results demonstrated the ECL intensity linearly correlated with the logarithm of the FTO concentration (from 0.0001 to 100 nM) with a low detection limit (30 fM). The IC50 value for FTO inhibitors rhein and meclofenamic acid were 35.6 μM and 20.3 μM, respectively. The strategy was further validated for FTO detection in MCF-7 cell lysates and Hela cell lysates. This work reveals that this strategy is promising for developing homogeneous ECL method for detection of FTO and screening of the demethylase inhibitors.
Collapse
Affiliation(s)
- Xia Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
- Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, P. R. China
| | - Shuai Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wei Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Sijia Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yanxia Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yang Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yaqian Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
81
|
Gokaltun AA, Fan L, Mazzaferro L, Byrne D, Yarmush ML, Dai T, Asatekin A, Usta OB. Supramolecular hybrid hydrogels as rapidly on-demand dissoluble, self-healing, and biocompatible burn dressings. Bioact Mater 2023; 25:415-429. [PMID: 37056249 PMCID: PMC10087110 DOI: 10.1016/j.bioactmat.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022] Open
Abstract
Despite decades of efforts, state-of-the-art synthetic burn dressings to treat partial-thickness burns are still far from ideal. Current dressings adhere to the wound and necessitate debridement. This work describes the first "supramolecular hybrid hydrogel (SHH)" burn dressing that is biocompatible, self-healable, and on-demand dissoluble for easy and trauma-free removal, prepared by a simple, fast, and scalable method. These SHHs leverage the interactions of a custom-designed cationic copolymer via host-guest chemistry with cucurbit[7]uril and electrostatic interactions with clay nanosheets coated with an anionic polymer to achieve enhanced mechanical properties and fast on-demand dissolution. The SHHs show high mechanical strength (>50 kPa), self-heal rapidly in ∼1 min, and dissolve quickly (4-6 min) using an amantadine hydrochloride (AH) solution that breaks the supramolecular interactions in the SHHs. Neither the SHHs nor the AH solution has any adverse effects on human dermal fibroblasts or epidermal keratinocytes in vitro. The SHHs also do not elicit any significant cytokine response in vitro. Furthermore, in vivo murine experiments show no immune or inflammatory cell infiltration in the subcutaneous tissue and no change in circulatory cytokines compared to sham controls. Thus, these SHHs present excellent burn dressing candidates to reduce the time of pain and time associated with dressing changes.
Collapse
Affiliation(s)
- A. Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02474, USA
- Department of Chemical Engineering, Hacettepe University, 06532, Beytepe, Ankara, Turkey
| | - Letao Fan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| | - Luca Mazzaferro
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02474, USA
| | - Delaney Byrne
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02474, USA
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| |
Collapse
|
82
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
83
|
García-Romero Á, Miguel D, Wright DS, Álvarez CM, García-Rodríguez R. Structural and dimensional control of porphyrin capsules using Group 15 tris(3-pyridyl) linkers. Chem Sci 2023; 14:6522-6530. [PMID: 37350820 PMCID: PMC10283503 DOI: 10.1039/d3sc02151c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
While supramolecular chemistry involving organic and metallo-organic host assemblies is a well-established and important field with applications in gas-storage, drug-delivery and the regio- and stereo-control of organic reactions, the use of main group elements in this setting (beyond the second row of the p-block) has been little explored. In this paper we show how periodic trends in the p-block can provide the means for systematic size and structural control in an important class of supramolecular porphyrin-based capsules. The formation of molecular and extended 2D capsule arrangements between the heavier Group 15 tris(3-pyridyl) linkers Sb(3-py)3 and Bi(3-py)3 and the metallo-porphyrins MTPP (M = Zn, Mg; TPP = tetraphenylporphyrin, 3-py = 3-pyridyl) is the first study involving heavier Group 15 pyridyl linkers. The increase in C-E bond length in the E(3-py)3 linkers moving down Group 15 (from E = P, to Sb, to Bi) can be used to alter the dimensions and structural preference of the capsules, as can oxidation of the Group 15 bridgehead atoms themselves. The subtle changes in the dimensions and Lewis acidity of the encapsulates have a dramatic effect on the rate and selectivity of the catalytic oxidative cleavage of organic diols and catalytic oxidation of α-hydroxyketones. By providing simple tools for modulating the chemical and steric properties of the capsules this work should have direct applications for the tuning of the activity and specificity of a range of catalytic systems based on main-group-based capsules of this type.
Collapse
Affiliation(s)
- Álvaro García-Romero
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes, 47011 Valladolid Spain
| | - Daniel Miguel
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes, 47011 Valladolid Spain
| | - Dominic S Wright
- Chemistry Department, Cambridge University Lensfield Road Cambridge CB2 1EW UK
| | - Celedonio M Álvarez
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes, 47011 Valladolid Spain
| | - Raúl García-Rodríguez
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes, 47011 Valladolid Spain
| |
Collapse
|
84
|
Triolo A, Lo Celso F, Fourmentin S, Russina O. Liquid Structure Scenario of the Archetypal Supramolecular Deep Eutectic Solvent: Heptakis(2,6-di- O-methyl)-β-cyclodextrin/levulinic Acid. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9103-9110. [PMID: 37351462 PMCID: PMC10283020 DOI: 10.1021/acssuschemeng.3c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Indexed: 06/24/2023]
Abstract
The concept of supramolecular solvents has been recently introduced, and the extended liquid-state window accessible for mixtures of functionalized cyclodextrins (CDs) with hydrogen bond (HB) donor species, e.g., levulinic acid, led to the debut of supramolecular deep eutectic solvents (SUPRA-DES). These solvents retain CD's inclusion ability and complement it with enhanced solvation effectiveness due to an extended HB network. However, so far, these promising features were not rationalized in terms of a microscopic description, thus hindering a more complete capitalization. This is the first joint experimental and computational study on the archetypal SUPRA-DES: heptakis(2,6-di-O-methyl)-β-CD/levulinic acid (1:27). We used X-ray scattering to probe CD's aggregation level and molecular dynamics simulation to determine the nature of interactions between SUPRA-DES components. We discover that CDs are homogeneously distributed in bulk and that HB interactions, together with the electrostatic ones, play a major role in determining mutual interaction between components. However, dispersive forces act in synergy with HB to accomplish a fundamental task in hindering hydrophobic interactions between neighbor CDs and maintaining the system homogeneity. The mechanism of mutual solvation of CD and levulinic acid is fully described, providing fundamental indications on how to extend the spectrum of SUPRA-DES combinations. Overall, this study provides the key to interpreting structural organization and solvation tunability in SUPRA-DES to extend the range of sustainable applications for these new, unique solvents.
Collapse
Affiliation(s)
- Alessandro Triolo
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
| | - Fabrizio Lo Celso
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
- Department
of Physics and Chemistry, Università
di Palermo, Palermo 90133, Italy
| | - Sophie Fourmentin
- Unité
de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR
4492), Université du Littoral Côte
d’Opale (ULCO), 59140 Dunkerque, France
| | - Olga Russina
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
- Department
of Chemistry, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
85
|
Sun X, Li Y, Yu H, Jin X, Ma X, Cheng Y, Wei Y, Wang Y. Evaluation on the inclusion behavior of β-cyclodextrins with lycorine and its hydrochloride. J Mol Liq 2023; 379:121658. [PMID: 36969830 PMCID: PMC10023205 DOI: 10.1016/j.molliq.2023.121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023]
Abstract
Lycorine (Lyc) and its hydrochloride (Lyc∙HCl) as effective drugs can fight against many diseases including novel coronavirus (COVID-19) based on their antiviral and antitumor mechanism. Beta-cyclodextrin (β-CD) is considered a promising carrier in improving its efficacy while minimizing cytotoxicity due to the good spatial compatibility with Lyc. However, the detailed mechanism of inclusion interaction still remains to be further evaluated. In this paper, six inclusion complexes based on β-CDs, Lyc and Lyc∙HCl were processed through ultrasound in the mixed solvent of ethanol and water, and their inclusion behavior was characterized after lyophilization. It was found that the inclusion complexes based on sulfobutyl-beta-cyclodextrin (SBE-β-CD) and Lyc∙HCl had the best encapsulation effect among prepared inclusion complexes, which may be attributed to the electrostatic interaction between sulfonic group of SBE-β-CD and quaternary amino group of Lyc∙HCl. Moreover, the complexes based on SBE-β-CD displayed pH-sensitive drug release property, good solubilization, stability and blood compatibility, indicating their potential as suitable drug carriers for Lyc and Lyc∙HCl.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yuan Li
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoning Jin
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Xiaofei Ma
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yue Cheng
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| |
Collapse
|
86
|
Han L, Ji J, Zhang C, Sun B, Chao Z, Zhu H, Gao X, Ren J, Ji F, Ma L, Jia L. One-Step Assembly of Versatile Multifunctional Coatings Based on Host-Guest and Polyphenol Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206943. [PMID: 36755211 DOI: 10.1002/smll.202206943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Indexed: 06/02/2023]
Abstract
Developing a facile, efficient, and versatile polyphenol coating strategy and exploring its novel applications are of great significance in the fields of material surfaces and interfaces. Herein, a one-step assembly strategy for constructing novel tannic acid (TA) coatings via a solvent evaporation method is reported using TA and polycyclodextrin (PCD) particles (TPP). TPP with a high phenolic group activity of 88% integrates the advantages of host-guest and polyphenol chemistry. The former can drive TPP dynamically assemble into a large and collective aggregation activated by high temperature or density, and the latter provides excellent adhesion properties to substrates (0.9 mg cm-2 ). TPP can assemble into a coating (TPC) rapidly on various substrates within 1 h at 37 °C while with a high availability of feed TPP (≈90%). The resulting TPC is not only high-temperature steam-sensitive for use as an anti-fake mask but also pH-sensitive for transforming into a free-standing film under physiological conditions. Moreover, various metal ions and functional particles can incorporate into TPC to extend its versatile properties including antibacterial activity, enhanced stability, and conductivity. This work expands the polyphenol coating strategy and builds up a one-step and efficient preparation platform of polyphenol coating for multiapplication prospects in various fields.
Collapse
Affiliation(s)
- Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiaxin Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chong Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bingjian Sun
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zhenhua Chao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hua Zhu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Liming Ma
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
87
|
Zhang YH, Liu CS, Tian Y, Wang J, Xin S, Sheng X. An eco-friendly photo-responsive hyaluronic acid-based supramolecular polysaccharide hybrid hydrogels for plant growth regulation and heavy metal ions adsorption. Int J Biol Macromol 2023:125194. [PMID: 37270137 DOI: 10.1016/j.ijbiomac.2023.125194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Agrochemicals are widely used in agricultural production, but they may cause agrochemicals residues and environmental pollution. Polysaccharide-based materials have emerged as a promising biopolymer carrier for agrochemicals delivery. Herein, an eco-friendly, photo-responsive supramolecular polysaccharide hybrid hydrogels (HA-AAP-Guano-CD@LP) was constructed from arylazopyrazole-modified hyaluronic acid (HA-AAP), guanidinium functionalized β-cyclodextrin (Guano-CD), and laponite clay (LP) via synergistic host-guest and electrostatic interactions, which could realize the controlled release of plant growth regulators such as naphthalene acetic acid (NAA) and gibberellin (GA) and promote the growth of Chinese cabbage and alfalfa. More interestingly, after releasing the cargo, the hydrogels could be used to capture heavy metal ions via strong complexation between the ions and carboxyl groups. This polysaccharide-based supramolecular hybrid hydrogels may provide a new strategy to realize the precision agriculture by the controlled delivery of plant growth regulators and synergetic adsorption of pollutants.
Collapse
Affiliation(s)
- Yu-Hui Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China; College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| | - Chen-Shuang Liu
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Ye Tian
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Jie Wang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Siqintana Xin
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China; College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| |
Collapse
|
88
|
Lepcha G, Majumdar S, Pal B, Ahmed KT, Pal I, Satpati B, Biswas SR, Ray PP, Dey B. Suberic Acid-Based Supramolecular Metallogels of Ni(II), Zn(II), and Cd(II) for Anti-Pathogenic Activity and Semiconducting Diode Fabrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7469-7483. [PMID: 37192598 DOI: 10.1021/acs.langmuir.3c00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The importance of three synthesized metallogels of suberic acid distinctly with nickel, zinc, and cadmium acetate salts has been uncovered. For the creation of these soft materials, N,N'-dimethyl formamide was utilized as a source of the trapped solvent. The synthesized metallogels display intriguing viscoelasticity, and the interpretation of experimental parameters obtained from rheological results advocates the gel behavior. Microstructural analysis combined with energy-dispersive X-ray confirms the occurrence of individual gel-developing constituents as observed in different hierarchical microstructural patterns. Significant variations in microstructural arrangements with diverse extent of supramolecular non-covalent patterns inside gel networks were perceived through field emission scanning electron microscopy, atomic force microscopy, and transmission electron microscopy analyses. Fourier transform infrared and electrospray ionization-mass spectral analyses and powder X-ray diffraction analysis of metallogel samples of different gel-establishing ingredients help to investigate the possible supramolecular interactions dictating the metallogel scaffolds. Thermogravimetric analysis of xerogel samples was collected from the synthesized metallogels to understand the thermal stability. These gel materials were characterized by their potential antibacterial efficiency. The potency of metallogels against selective Gram-positive and Gram-negative bacteria was visualized via a spectrophotometer. Human pathogens like Klebsiella pneumoniae (MTCC 109), Salmonella typhi (MTCC 733), Vibrio parahaemolyticus, Bacillus cereus (MTCC 1272), Lactobacillus fermentum (NCDO 955), and Staphylococcus aureus (MTCC 96) are employed in this study. Apart from the biological significance, our metallogels demonstrate as incredible diode performance of fabricated semiconducting systems, which exhibit a considerable amount of non-linearity demonstrating a non-ohmic conduction mechanism at room temperature in dark conditions. Device fabrication was achieved from these metallogels employing the sandwich model with indium tin oxide-coated glass substrates/metallogel/Al structure.
Collapse
Affiliation(s)
- Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Baishakhi Pal
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Kazi Tawsif Ahmed
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Biswarup Satpati
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | | | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
89
|
Hong D, Shi L, Liu X, Ya H, Han X. Photocatalysis in Water-Soluble Supramolecular Metal Organic Complex. Molecules 2023; 28:molecules28104068. [PMID: 37241809 DOI: 10.3390/molecules28104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
As an emerging subset of organic complexes, metal complexes have garnered considerable attention owing to their outstanding structures, properties, and applications. In this content, metal-organic cages (MOCs) with defined shapes and sizes provide internal spaces to isolate water for guest molecules, which can be selectively captured, isolated, and released to achieve control over chemical reactions. Complex supramolecules are constructed by simulating the self-assembly behavior of the molecules or structures in nature. For this purpose, massive amounts of cavity-containing supramolecules, such as metal-organic cages (MOCs), have been extensively explored for a large variety of reactions with a high degree of reactivity and selectivity. Because sunlight and water are necessary for the process of photosynthesis, water-soluble metal-organic cages (WSMOCs) are ideal platforms for photo-responsive stimulation and photo-mediated transformation by simulating photosynthesis due to their defined sizes, shapes, and high modularization of metal centers and ligands. Therefore, the design and synthesis of WSMOCs with uncommon geometries embedded with functional building units is of immense importance for artificial photo-responsive stimulation and photo-mediated transformation. In this review, we introduce the general synthetic strategies of WSMOCs and their applications in this sparking field.
Collapse
Affiliation(s)
- Dongfeng Hong
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang 471934, China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghui Liu
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang 471934, China
| | - Huiyuan Ya
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang 471934, China
| | - Xin Han
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
90
|
Maity D. Recent advances in the modulation of amyloid protein aggregation using the supramolecular host-guest approaches. Biophys Chem 2023; 297:107022. [PMID: 37058879 DOI: 10.1016/j.bpc.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Misfolding of proteins is associated with many incurable diseases in human beings. Understanding the process of aggregation from monomers to fibrils, the characterization of all intermediate species, and the origin of toxicity is very challenging. Extensive research including computational and experimental shed some light on these tricky phenomena. Non-covalent interactions between amyloidogenic domains of proteins play a major role in their self-assembly which can be disrupted by designed chemical tools. This will lead to the development of inhibitors of detrimental amyloid formations. In supramolecular host-guest chemistry approaches, different macrocycles function as hosts for encapsulating hydrophobic guests, i.e. phenylalanine residues of proteins, in their hydrophobic cavities via non-covalent interactions. In this way, they can disrupt the interactions between adjacent amyloidogenic proteins and prevent their self-aggregation. This supramolecular approach has also emerged as a prospective tool to modify the aggregation of several amyloidogenic proteins. In this review, we discussed recent supramolecular host-guest chemistry-based strategies for the inhibition of amyloid protein aggregation.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
91
|
Sahu KM, Patra S, Swain SK. Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review. Int J Biol Macromol 2023; 240:124338. [PMID: 37030461 DOI: 10.1016/j.ijbiomac.2023.124338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Among different form of cyclodextrin (CD), β-CD has been taken a special attraction in pharmaceutical science due to lowest aqueous solubility and adequate cavity size. When β-CD forms inclusion complex with drugs then biopolymers such as polysaccharides in combination plays a vital role as a vehicle for safe release of drugs. It is noticed that, β-CD assisted polysaccharide-based composite achieves better drug release rate through host-guest mechanism. Present review is a critical analysis of this host-guest mechanism for release of drugs from polysaccharide supported β-CD inclusion complex. Various important polysaccharides such as cellulose, alginate, chitosan, dextran, etc. in relevant to drug delivery are logically compared in present review by their association with β-CD. Efficacy of mechanism of drug delivery by different polysaccharides with β-CD is analytically examined in schematic form. Drug release capacity at different pH conditions, mode of drug release, along with characterization techniques adopted by individual polysaccharide-based CD complexes are comparatively established in tabular form. This review may explore better visibility for researchers those are working in the area of controlled release of drugs by vehicle consist of β-CD associated polysaccharide composite through host-guest mechanism.
Collapse
Affiliation(s)
- Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
92
|
Jogadi W, Zheng YR. Supramolecular platinum complexes for cancer therapy. Curr Opin Chem Biol 2023; 73:102276. [PMID: 36878171 PMCID: PMC10033446 DOI: 10.1016/j.cbpa.2023.102276] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
The rise of supramolecular chemistry offers new tools to design therapeutics and delivery platforms for biomedical applications. This review aims to highlight the recent developments that harness host-guest interactions and self-assembly to design novel supramolecular Pt complexes as anticancer agents and drug delivery systems. These complexes range from small host-guest structures to large metallosupramolecules and nanoparticles. These supramolecular complexes integrate the biological properties of Pt compounds and novel supramolecular structures, which inspires new designs of anticancer approaches that overcome problems in conventional Pt drugs. Based on the differences in Pt cores and supramolecular structures, this review focuses on five different types of supramolecular Pt complexes, and they include host-guest complexes of the FDA-approved Pt(II) drugs, supramolecular complexes of nonclassical Pt(II) metallodrugs, supramolecular complexes of fatty acid-like Pt(IV) prodrugs, self-assembled nanotherapeutics of Pt(IV) prodrugs, and self-assembled Pt-based metallosupramolecules.
Collapse
Affiliation(s)
- Wjdan Jogadi
- 236 Integrated Sciences Building, Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Yao-Rong Zheng
- 236 Integrated Sciences Building, Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
93
|
Zhou S, Chen Y, Xu J, Yin Y, Yu J, Liu W, Chen S, Wang L. Supramolecular detoxification of nitrogen mustard via host-guest encapsulation by carboxylatopillar[5]arene. J Mater Chem B 2023; 11:2706-2713. [PMID: 36876404 DOI: 10.1039/d2tb02211g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nitrogen mustard (NM), a kind of alkylating agent similar to sulfur mustard, remains a threat to public health. However, there is nearly no satisfactory antidote for nitrogen mustard. Herein, we developed a supramolecular antidote to nitrogen mustard through efficient complexation of NM by carboxylatopillar[5]arene potassium salts (CP[5]AK). The cavity of methoxy pillar[5]arene (P5A) is sufficient to encapsulate NM with an association constant of 1.27 × 102 M-1, which was investigated by 1H NMR titration, density functional theory studies and independent gradient model studies. NM degrades to the reactive aziridinium salt (2) in the aqueous phase which irreversibly alkylates DNA and proteins, causing severe tissue damage. Considering the size/charge matching with toxic intermediate 2, water-soluble CP[5]AK was selected to encapsulate the toxic aziridinium salt (2), resulting in a high association constant of 4.10 × 104 M-1. The results of protection experiments of guanosine 5'-monophosphate (GMP) by CP[5]AK indicated that the formation of a complex could effectively inhibit the alkylation of DNA. Besides, in vitro and in vivo experiments also indicated that the toxicity of the aziridinium salt (2) is inhibited with the formation of a stable host-guest complex, and CP[5]AK has a good therapeutic effect on the damage caused by NM. This study provides a new mechanism and strategy for the treatment of NM exposure-induced skin injuries.
Collapse
Affiliation(s)
- Siyuan Zhou
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Yi Chen
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Jie Xu
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430072, P. R. China
| | - Yongfei Yin
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Jianqing Yu
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430072, P. R. China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China.
| | - Shigui Chen
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Lu Wang
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| |
Collapse
|
94
|
Twum K, Nadimi S, Osei FB, Puttreddy R, Ojong YB, Hayward JJ, Rissanen K, Trant JF, Beyeh NK. The "Nitrogen Effect": Complexation with Macrocycles Potentiates Fused Heterocycles to Form Halogen Bonds in Competitive Solvents. Chem Asian J 2023; 18:e202201308. [PMID: 36705487 DOI: 10.1002/asia.202201308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
Weak intermolecular forces are typically very difficult to observe in highly competitive polar protic solvents as they are overwhelmed by the quantity of competing solvent. This is even more challenging for three-component ternary assemblies of pure organic compounds. In this work, we overcome these complications by leveraging the binding of fused aromatic N-heterocycles in an open resorcinarene cavity to template the formation of a three-component halogen-bonded ternary assembly in a protic polar solvent system.
Collapse
Affiliation(s)
- Kwaku Twum
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309, USA
| | - Sanaz Nadimi
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Frank Boateng Osei
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309, USA
| | - Rakesh Puttreddy
- Department of Chemistry, University of Jyvaskyla, Survontie 9 B, FI-40014, Jyvaskyla, Finland
| | - Yvonne Bessem Ojong
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309, USA
| | - John J Hayward
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, Survontie 9 B, FI-40014, Jyvaskyla, Finland
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Ngong Kodiah Beyeh
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309, USA
| |
Collapse
|
95
|
Wu Q, Lei Q, Zhong HC, Ren TB, Sun Y, Zhang XB, Yuan L. Fluorophore-based host-guest assembly complexes for imaging and therapy. Chem Commun (Camb) 2023; 59:3024-3039. [PMID: 36785939 DOI: 10.1039/d2cc06286k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, supramolecular chemistry with its unique properties has received considerable attention in many fields. Supramolecular fluorescent systems constructed on the basis of macrocyclic hosts are not only effective in overcoming the limitations of imaging and diagnostic reagents, but also in enhancing their performances. This paper summarizes the recent advances in supramolecular fluorescent systems based on host-guest interactions and their application in bioimaging and therapy as well as the challenges and prospects in developing novel supramolecular fluorescent systems.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Qian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hai-Chen Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
96
|
Islam MS, Mitra S. Synthesis of Microwave Functionalized, Nanostructured Polylactic Co-Glycolic Acid ( nfPLGA) for Incorporation into Hydrophobic Dexamethasone to Enhance Dissolution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:943. [PMID: 36903820 PMCID: PMC10005067 DOI: 10.3390/nano13050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The low solubility and slow dissolution of hydrophobic drugs is a major challenge for the pharmaceutical industry. In this paper, we present the synthesis of surface-functionalized poly(lactic-co-glycolic acid) (PLGA) nanoparticles for incorporation into corticosteroid dexamethasone to improve its in vitro dissolution profile. The PLGA crystals were mixed with a strong acid mixture, and their microwave-assisted reaction led to a high degree of oxidation. The resulting nanostructured, functionalized PLGA (nfPLGA), was quite water-dispersible compared to the original PLGA, which was non-dispersible. SEM-EDS analysis showed 53% surface oxygen concentration in the nfPLGA compared to the original PLGA, which had only 25%. The nfPLGA was incorporated into dexamethasone (DXM) crystals via antisolvent precipitation. Based on SEM, RAMAN, XRD, TGA and DSC measurements, the nfPLGA-incorporated composites retained their original crystal structures and polymorphs. The solubility of DXM after nfPLGA incorporation (DXM-nfPLGA) increased from 6.21 mg/L to as high as 87.1 mg/L and formed a relatively stable suspension with a zeta potential of -44.3 mV. Octanol-water partitioning also showed a similar trend as the logP reduced from 1.96 for pure DXM to 0.24 for DXM-nfPLGA. In vitro dissolution testing showed 14.0 times higher aqueous dissolution of DXM-nfPLGA compared to pure DXM. The time for 50% (T50) and 80% (T80) of gastro medium dissolution decreased significantly for the nfPLGA composites; T50 reduced from 57.0 to 18.0 min and T80 reduced from unachievable to 35.0 min. Overall, the PLGA, which is an FDA-approved, bioabsorbable polymer, can be used to enhance the dissolution of hydrophobic pharmaceuticals and this can lead to higher efficacy and lower required dosage.
Collapse
|
97
|
Liu Y, Chen L, Yang Y, Chen H, Zhang X, Liu S. High Mechanical Strength and Multifunctional Microphase-Separated Supramolecular Hydrogels Fabricated by Liquid-Crystalline Block Copolymer. Macromol Rapid Commun 2023; 44:e2200829. [PMID: 36482796 DOI: 10.1002/marc.202200829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The development of multifunctional supramolecular hydrogels with high mechanical strength and multifunction is in high demand. In this work, the diblock copolymer poly(acrylamide-co-1-benzyl-3-vinylimidazolium bromide)-block-polyAzobenzene is synthesized through reversible addition-fragmentation chain transfer polymerization. The dynamic host-guest interactions between the host molecule cucurbit[8] uril and guest units are used to fabricate a 3D network of supramolecular hydrogels. Investigations on the properties of the supramolecular hydrogels show that the tensile stress of the sample is 1.46 MPa, eight times higher than that of hydrogel without liquid-crystalline block copolymer, and the self-healing efficiency of the supramolecular hydrogels at room temperature is 88.3% (fracture stress) and 100% (fracture strain) after 24 h. Results show that microphase-separated structure plays a key role in the high-strength hydrogel, whereas the host-guest interaction endows the hydrogel with self-healing properties. The supramolecular hydrogels with high mechanical strength, photo-responsivity, injectability, and biocompatibility can be used in various potential applications.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lv Chen
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuxuan Yang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hongxiang Chen
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiongzhi Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
98
|
Cyclodextrin regulated natural polysaccharide hydrogels for biomedical applications-a review. Carbohydr Polym 2023; 313:120760. [PMID: 37182939 DOI: 10.1016/j.carbpol.2023.120760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Cyclodextrin and its derivative (CDs) are natural building blocks for linking with other components to afford functional biomaterials. Hydrogels are polymer network systems that can form hydrophilic three-dimensional network structures through different cross-linking methods and are developing as potential materials in biomedical applications. Natural polysaccharide hydrogels (NPHs) are widely adopted in biomedical field with good biocompatibility, biodegradability, low cytotoxicity, and versatility in emulating natural tissue properties. Compared with conventional NPHs, CD regulated natural polysaccharide hydrogels (CD-NPHs) maintain good biocompatibility, while improving poor mechanical qualities and unpredictable gelation times. Recently, there has been increasing and considerable usage of CD-NPHs while there is still no review comprehensively introducing their construction, classification, and application of these hydrogels from the material point of view regarding biomedical fields. To draw a complete picture of the current and future development of CD-NPHs, we systematically overview the classification of CD-NPHs, and provide a holistic view on the role of CD-NPHs in different biomedical fields, especially in drug delivery, wound dressing, cell encapsulation, and tissue engineering. Moreover, the current challenges and prospects of CD-NPHs are discussed rationally, providing an insight into developing vibrant fields of CD-NPHs-based biomedicine, and facilitating their translation from bench to clinical medicine.
Collapse
|
99
|
Galindres DM, Ribeiro AC, Esteso MA, Vargas EF. Standard molar properties of ionic resorcinarenes in water and dimethysulfoxide. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
100
|
Singh G, Pandey SP, Singh PK. Guest Binding with Sulfated Cyclodextrins: Does the Size of Cavity Matter? Chemphyschem 2023; 24:e202200421. [PMID: 36228089 DOI: 10.1002/cphc.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/01/2022] [Indexed: 01/19/2023]
Abstract
Sulfated cyclodextrins have recently emerged as potential candidates for producing host-induced guest aggregation with properties better than p-sulfonatocalixarenes that have previously shown numerous applications involving the phenomena of host-induced guest aggregation. In the class of sulfated cyclodextrins (SCD), sulfated β-cyclodextrin (β-SCD) remains the most extensively investigated host molecule. Although it is assumed that the host-induced guest aggregation is predominantly an outcome of interaction of the guest molecule with the charges on the exterior of SCD cavity, it has not been deciphered whether the variation in the cavity size will make a difference in the efficiency of host-induced guest-aggregation process. In this investigation, we present a systematic study of host-induced guest aggregation of a cationic molecular rotor dye, Thioflavin T (ThT) with three different sulfated cyclodextrin molecules, α-SCD, β-SCD and γ-SCD, which differ in their cavity size, using steady-state emission, ground-state absorption and time-resolved emission measurements. The obtained photophysical properties of ThT, upon interaction with different SCD molecules, indicate that the binding strength of ThT with different SCD molecules correlate with the cavity size of the host molecule, giving rise to the strongest complexation of ThT with the largest host molecule (γ-SCD). The binding affinity of ThT towards different host molecules has been supported by molecular docking calculations. The results obtained are further supported with the temperature and ionic strength dependent studies performed on the host-guest complex. Our results indicate that for host-induced guest aggregation, involving oppositely charged molecules, the size of the cavity also plays a crucial role beside the charge density on the exterior of host cavity.
Collapse
Affiliation(s)
- Gaurav Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400 085, India
| | - Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan Panvel, Mumbai, 410206, India.,Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|