51
|
Priestman MA, Wang Q, Jernigan FE, Chowdhury R, Schmidt M, Lawrence DS. Multicolor monitoring of the proteasome's catalytic signature. ACS Chem Biol 2015; 10:433-40. [PMID: 25347733 PMCID: PMC4340355 DOI: 10.1021/cb5007322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The proteasome, a validated anticancer
target, participates in
an array of biochemical activities, which range from the proteolysis
of defective proteins to antigen presentation. We report the preparation
of biochemically and photophysically distinct green, red, and far-red
real-time sensors designed to simultaneously monitor the proteasome’s
chymotrypsin-, trypsin-, and caspase-like activities, respectively.
These sensors were employed to assess the effect of simultaneous multiple
active site catalysis on the kinetic properties of the individual
subunits. Furthermore, we have found that the catalytic signature
of the proteasome varies depending on the source, cell type, and disease
state. Trypsin-like activity is more pronounced in yeast than in mammals,
whereas chymotrypsin-like activity is the only activity detectable
in B-cells (unlike other mammalian cells). Furthermore, chymotrypsin-like
activity is more prominent in transformed B cells relative to their
counterparts from healthy donors.
Collapse
Affiliation(s)
- Melanie A. Priestman
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Qunzhao Wang
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Finith E. Jernigan
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Ruma Chowdhury
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Marion Schmidt
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - David S. Lawrence
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
52
|
Bisbenzimidazole derivatives as potent inhibitors of the trypsin-like sites of the immunoproteasome core particle. Biochimie 2015; 108:94-100. [DOI: 10.1016/j.biochi.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/05/2014] [Indexed: 02/05/2023]
|
53
|
Carroll B, Korolchuk VI, Sarkar S. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis. Amino Acids 2014; 47:2065-88. [PMID: 24965527 DOI: 10.1007/s00726-014-1775-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022]
Abstract
Maintenance of amino acid homeostasis is important for healthy cellular function, metabolism and growth. Intracellular amino acid concentrations are dynamic; the high demand for protein synthesis must be met with constant dietary intake, followed by cellular influx, utilization and recycling of nutrients. Autophagy is a catabolic process via which superfluous or damaged proteins and organelles are delivered to the lysosome and degraded to release free amino acids into the cytoplasm. Furthermore, autophagy is specifically activated in response to amino acid starvation via two key signaling cascades: the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and the general control nonderepressible 2 (GCN2) pathways. These pathways are key regulators of the integration between anabolic (amino acid depleting) and catabolic (such as autophagy which is amino acid replenishing) processes to ensure intracellular amino acid homeostasis. Here, we discuss the key roles that amino acids, along with energy (ATP, glucose) and oxygen, are playing in cellular growth and proliferation. We further explore how sophisticated methods are employed by cells to sense intracellular amino acid concentrations, how amino acids can act as a switch to dictate the temporal and spatial activation of anabolic and catabolic processes and how autophagy contributes to the replenishment of free amino acids, all to ensure cell survival. Relevance of these molecular processes to cellular and organismal physiology and pathology is also discussed.
Collapse
Affiliation(s)
- Bernadette Carroll
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Viktor I Korolchuk
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Sovan Sarkar
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA, 02142, USA.
| |
Collapse
|
54
|
Bringhen S, Gay F, Donato F, Troia R, Mina R, Palumbo A. Current Phase II investigational proteasome inhibitors for the treatment of multiple myeloma. Expert Opin Investig Drugs 2014; 23:1193-209. [DOI: 10.1517/13543784.2014.920821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
55
|
Fabre B, Lambour T, Garrigues L, Ducoux-Petit M, Amalric F, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP. Label-Free Quantitative Proteomics Reveals the Dynamics of Proteasome Complexes Composition and Stoichiometry in a Wide Range of Human Cell Lines. J Proteome Res 2014; 13:3027-37. [DOI: 10.1021/pr500193k] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bertrand Fabre
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Thomas Lambour
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Luc Garrigues
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Manuelle Ducoux-Petit
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - François Amalric
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Bernard Monsarrat
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Odile Burlet-Schiltz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| |
Collapse
|
56
|
Diao W, Yang X, Zhou H. Purification, crystallization and preliminary X-ray data collection of the N-terminal domain of the 26S proteasome regulatory subunit p27 and its complex with the ATPase domain of Rpt5 from Mus musculus. Acta Crystallogr F Struct Biol Commun 2014; 70:611-5. [PMID: 24817721 PMCID: PMC4014330 DOI: 10.1107/s2053230x14006815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/27/2014] [Indexed: 11/10/2022] Open
Abstract
The protein 26S proteasome regulatory subunit p27 is one of the four chaperones that help in the assembly of the 19S regulatory particle (RP) of the 26S proteasome. In the present work, the N-terminus of p27 (residues 1-128) from Mus musculus was cloned, expressed, purified and crystallized alone and in complex with the C-terminal ATPase domain of Rpt5 (residues 173-442). The crystals of p27((1-128)) diffracted to 1.7 Å resolution and belonged to space group P212121, with unit-cell parameters a = 26.79, b = 30.39, c = 145.06 Å. Resolution-dependent Matthews coefficient probability analysis suggested the presence of only one molecule per asymmetric unit, with 40.5% solvent content and a VM value of 2.02 Å(3) Da(-1). The crystal of the p27((1-128))-Rpt5((173-442)) complex diffracted to 4 Å resolution and belonged to space group P222, with unit-cell parameters a = 75.93, b = 76.08, c = 336.85 Å. The presence of four heterodimers in the asymmetric unit with 53.2% solvent content and a VM value of 2.63 Å(3) Da(-1) or five heterodimers in the asymmetric unit with 41.5% solvent content and a VM value of 2.10 Å(3) Da(-1) is assumed.
Collapse
Affiliation(s)
- Wentao Diao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| |
Collapse
|
57
|
Abstract
The 26S proteasome is responsible for most regulated protein turnover and for the degradation of aberrant proteins in eukaryotes. The assembly of this ~2.5 MDa multicatalytic protease requires several dedicated chaperones and, once assembled, substrate selectivity is mediated by ubiquitin conjugation. After modification with ubiquitin, substrates are escorted to the proteasome by myriad factors, including Cdc48 (cell-division cycle 48). Cdc48 also associates with numerous cofactors, but, to date, it is unclear whether each cofactor facilitates proteasome delivery. We discovered that yeast lacking a conserved Cdc48 cofactor, Vms1 [VCP (valosin-containing protein)/Cdc48-associated mitochondrial stress-responsive], accumulate proteasome-targeted ubiquitinated proteins. Vms1 mutant cells also contain elevated levels of unassembled 20S proteasome core particles and select 19S cap subunits. In addition, we found that the ability of Vms1 to support 26S proteasome assembly requires Cdc48 interaction, and that the loss of Vms1 reduced 26S proteasome levels and cell viability after prolonged culture in the stationary phase. The results of the present study highlight an unexpected link between the Cdc48-Vms1 complex and the preservation of proteasome architecture, and indicate how perturbed proteasome assembly affects the turnover of ubiquitinated proteins and maintains viability in aging cells.
Collapse
|
58
|
Miller Z, Ao L, Kim KB, Lee W. Inhibitors of the immunoproteasome: current status and future directions. Curr Pharm Des 2014. [PMID: 23181576 DOI: 10.2174/1381612811319220018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a vital role in maintaining protein homeostasis and regulating numerous cellular processes. The proteasome, a multi-protease complex, is the key component of the UPS and has been validated as a therapeutic target by the FDA's approval of bortezomib and carfilzomib. These proteasome inhibitor drugs have substantially improved outcomes in patients with hematological malignancies and are currently being investigated for other types of cancer as well as several other diseases. These approved proteasome inhibitors target the catalytic activity of both the constitutive proteasome and the immunoproteasome indiscriminately, and their inhibitory effects on the constitutive proteasome in normal cells are believed to contribute to unwanted side effects. In addition, selective immunoproteasome inhibition has been proposed to have unique effects on other diseases, including those involving aberrant immune function. Initially recognized for its role in the adaptive immune response, the immunoproteasome is often upregulated in disease states such as inflammatory diseases and cancer, suggesting functions beyond antigen presentation. In an effort to explore the immunoproteasome as a potential therapeutic target in these diseases, the development of immunoproteasome-specific inhibitors has become the focus of recent studies. Owing to considerable efforts by both academic and industry groups, immunoproteasome-selective inhibitors have now been identified and tested against several disease models. These inhibitors also provide a valuable set of chemical tools for investigating the biological function of the immunoproteasome. In this review, we will focus on the recent efforts towards the development of immunoproteasome-selective inhibitors.
Collapse
Affiliation(s)
- Zachary Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, USA
| | | | | | | |
Collapse
|
59
|
Abstract
The 20S core particle proteasome is a molecular machine playing an important role in cellular function by degrading protein substrates that no longer are required or that have become damaged. Regulation of proteasome activity occurs, in part, through a gating mechanism controlling the sizes of pores at the top and bottom ends of the symmetric proteasome barrel and restricting access to catalytic sites sequestered in the lumen of the structure. Although atomic resolution models of both open and closed states of the proteasome have been elucidated, the mechanism by which gates exchange between these states remains to be understood. Here, this is investigated by using magnetization transfer NMR spectroscopy focusing on the 20S proteasome core particle from Thermoplasma acidophilum. We show from viscosity-dependent proteasome gating kinetics that frictional forces originating from random solvent motions are critical for driving the gating process. Notably, a small effective hydrodynamic radius (EHR; <4Å) is obtained, providing a picture in which gate exchange proceeds through many steps involving only very small segment sizes. A small EHR further suggests that the kinetics of gate interconversion will not be affected appreciably by large viscogens, such as macromolecules found in the cell, so long as they are inert. Indeed, measurements in cell lysate reveal that the gate interconversion rate decreases only slightly, demonstrating that controlled studies in vitro provide an excellent starting point for understanding regulation of 20S core particle function in complex, biologically relevant environments.
Collapse
|
60
|
Abstract
Over the years, the proteasome has been extensively investigated due to its crucial roles in many important signaling pathways and its implications in diseases. Two proteasome inhibitors--bortezomib and carfilzomib--have received FDA approval for the treatment of multiple myeloma, thereby validating the proteasome as a chemotherapeutic target. As a result, further research efforts have been focused on dissecting the complex biology of the proteasome to gain the insight required for developing next-generation proteasome inhibitors. It is clear that chemical probes have made significant contributions to these efforts, mostly by functioning as inhibitors that selectively block the catalytic activity of proteasomes. Analogues of these inhibitors are now providing additional tools for visualization of catalytically active proteasome subunits, several of which allow real-time monitoring of proteasome activity in living cells as well as in in vivo settings. These imaging probes will provide powerful tools for assessing the efficacy of proteasome inhibitors in clinical settings. In this review, we will focus on the recent efforts towards developing imaging probes of proteasomes, including the latest developments in immunoproteasome-selective imaging probes.
Collapse
|
61
|
Strikoudis A, Guillamot M, Aifantis I. Regulation of stem cell function by protein ubiquitylation. EMBO Rep 2014; 15:365-82. [PMID: 24652853 DOI: 10.1002/embr.201338373] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue homeostasis depends largely on the ability to replenish impaired or aged cells. Thus, tissue-resident stem cells need to provide functional progeny throughout the lifetime of an organism. Significant work in the past years has characterized how stem cells integrate signals from their environment to shape regulatory transcriptional networks and chromatin-regulating factors that control stem cell differentiation or maintenance. There is increasing interest in how post-translational modifications, and specifically ubiquitylation, control these crucial decisions. Ubiquitylation modulates the stability and function of important factors that regulate key processes in stem cell behavior. In this review, we analyze the role of ubiquitylation in embryonic stem cells and different adult multipotent stem cell systems and discuss the underlying mechanisms that control the balance between quiescence, self-renewal, and differentiation. We also discuss deregulated processes of ubiquitin-mediated protein degradation that lead to the development of tumor-initiating cells.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- Howard Hughes Medical Institute New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
62
|
Buckley DL, Crews CM. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system. Angew Chem Int Ed Engl 2014; 53:2312-30. [PMID: 24459094 PMCID: PMC4348030 DOI: 10.1002/anie.201307761] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Indexed: 12/25/2022]
Abstract
Traditionally, biological probes and drugs have targeted the activities of proteins (such as enzymes and receptors) that can be readily controlled by small molecules. The remaining majority of the proteome has been deemed "undruggable". By using small-molecule modulators of the ubiquitin proteasome, protein levels, rather than protein activity, can be targeted instead, thus increasing the number of druggable targets. Whereas targeting of the proteasome itself can lead to a global increase in protein levels, the targeting of other components of the UPS (e.g., the E3 ubiquitin ligases) can lead to an increase in protein levels in a more targeted fashion. Alternatively, multiple strategies for inducing protein degradation with small-molecule probes are emerging. With the ability to induce and inhibit the degradation of targeted proteins, small-molecule modulators of the UPS have the potential to significantly expand the druggable portion of the proteome beyond traditional targets, such as enzymes and receptors.
Collapse
Affiliation(s)
- Dennis L. Buckley
- Departments of Chemistry; Molecular, Cellular & Developmental, Biology; Pharmacology, Yale University, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Chemistry; Molecular, Cellular & Developmental, Biology; Pharmacology, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
63
|
Hovhannisyan A, Pham TH, Bouvier D, Piroyan A, Dufau L, Qin L, Cheng Y, Melikyan G, Reboud-Ravaux M, Bouvier-Durand M. New C(4)- and C(1)-derivatives of furo[3,4-c]pyridine-3-ones and related compounds: evidence for site-specific inhibition of the constitutive proteasome and its immunoisoform. Bioorg Med Chem Lett 2014; 24:1571-80. [PMID: 24534487 DOI: 10.1016/j.bmcl.2014.01.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 01/24/2023]
Abstract
A set of 18 new C(4) and C(1) derivatives of nor-cerpegin (1,1-dimethyl furo[3,4-c]pyridine-3-one), 6 model compounds (γ- and δ-lactones) and 20 furo- or thieno[2,3-d]-pyrimidine-4-one related compounds were designed and synthesized. Each compound was assayed for inhibition of CT-L, T-L and PA proteolytic activities of 20S constitutive proteasome (c20S). Most performant compounds were also assayed on 20S immunoproteasome (i20S). Compound 10 with a benzylamino group at C(4) and dimethylated at C(1) of the furopyridine ring was the most efficient PA site-specific inhibitor of the c20S (IC50(cPA) of 600nM) without noticeable inhibition of the i20S PA site (iPA). In silico docking assays for 10 at the iPA catalytic site revealed the absence of poses normally observed for this compound and related ones at the constitutive PA site (cPA). The thieno[2,3-d]pyrimidine-4-one 40 was T-L site-specific with a mild inhibition of both c20S and i20S in vitro (IC50(cT-L) of 9.9μM and IC50(iT-L) of 6.7μM). In silico docking assays of 40 at T-L sites of c20S and i20S revealed almost identical first rank poses in the two types of sites with no possibility left for nucleophilic attack by Thr1 as observed for the fused furopyridine-3-one 10.
Collapse
Affiliation(s)
- Anna Hovhannisyan
- Department of Organic Chemistry, Yerevan State University, A. Manoogian Str. 1, 0025 Yerevan, Armenia.
| | - The Hien Pham
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| | - Dominique Bouvier
- Sorbonne Universités, UPMC Univ Paris 06, Atelier de Bioinformatique, Case courrier 1202, 4 Place Jussieu, F 75252 Paris Cedex 05, France.
| | - Alexander Piroyan
- Department of Organic Chemistry, Yerevan State University, A. Manoogian Str. 1, 0025 Yerevan, Armenia.
| | - Laure Dufau
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| | - Lixian Qin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| | - Yan Cheng
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| | - Gagik Melikyan
- Department of Organic Chemistry, Yerevan State University, A. Manoogian Str. 1, 0025 Yerevan, Armenia.
| | - Michèle Reboud-Ravaux
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| | - Michelle Bouvier-Durand
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| |
Collapse
|
64
|
Park JE, Wu Y, Carmony KC, Miller Z, Sharma LK, Lee DM, Kim DY, Lee W, Kim KB. A FRET-based approach for identification of proteasome catalytic subunit composition. MOLECULAR BIOSYSTEMS 2014; 10:196-200. [PMID: 24301521 PMCID: PMC3898201 DOI: 10.1039/c3mb70471h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammalian cells have two main types of proteasomes, the constitutive proteasome and the immunoproteasome, each containing a distinct set of three catalytic subunits. Recently, additional proteasome subtypes containing a non-standard mixture of catalytic subunits have gained increasing attention, especially due to their presence in cancer settings. However, practical methods for identifying proteasome subtypes have been lacking. Here, we report the development of the first fluorescence resonance energy transfer (FRET)-based strategy that can be utilized to identify different proteasome subtypes present within cells. We have developed FRET donor- and acceptor-probes that are based on previously reported peptide epoxyketones and selectively target individual proteasome catalytic subunits. Using the purified proteasome and cancer cell lysates, we demonstrate the feasibility of a FRET-based approach for determining the catalytic subunit composition of individual 20S proteasome subtypes. Ultimately, this approach may be utilized to study the functions of individual proteasome subtypes in cells.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA 40536-0596.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Tracing an allosteric pathway regulating the activity of the HslV protease. Proc Natl Acad Sci U S A 2014; 111:2140-5. [PMID: 24469799 DOI: 10.1073/pnas.1318476111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HslU-HslV complex functions as a bacterial proteasome, degrading substrate polypeptides to preserve cellular homeostasis. Here, we use methyl-Transverse Relaxation-Optimized Spectroscopy (TROSY) and highly deuterated, methyl-protonated samples to study the 230 kDa dodecameric HslV protease component that is structurally homologous to the stacked pair of β7-rings of the proteasome. Chemical shift assignments for over 95% of the methyl groups are reported. From the pH dependence of methyl chemical shifts, a pKa of 7.7 is measured for the amine group of the catalytic residue T1, confirming that it can act as a proton acceptor during the initial step in substrate proteolysis. Analyses involving a series of single site mutants in HslV, localized to HslU binding sites or regions undergoing significant changes on HslU binding, have identified hot spots whose perturbation leads to an allosteric pathway of propagated changes in structure and ultimately, substrate proteolysis efficiency. HslV plasticity is explored through methyl-TROSY (13)C relaxation dispersion experiments that are sensitive to millisecond timescale dynamics. The data support a dynamic coupling between residues involved in both HslU and substrate binding and residues localized to the active sites of HslV that facilitate the allostery between these distal sites. An important role for dynamics has also been observed in the archaeal proteasome, suggesting a more generally conserved role of motion in the function of these barrel-like protease structures.
Collapse
|
66
|
Modulation of apoptosis sensitivity through the interplay with autophagic and proteasomal degradation pathways. Cell Death Dis 2014; 5:e1011. [PMID: 24457955 PMCID: PMC4040655 DOI: 10.1038/cddis.2013.520] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/16/2013] [Accepted: 11/21/2013] [Indexed: 12/24/2022]
Abstract
Autophagic and proteasomal degradation constitute the major cellular proteolysis pathways. Their physiological and pathophysiological adaptation and perturbation modulates the relative abundance of apoptosis-transducing proteins and thereby can positively or negatively adjust cell death susceptibility. In addition to balancing protein expression amounts, components of the autophagic and proteasomal degradation machineries directly interact with and co-regulate apoptosis signal transduction. The influence of autophagic and proteasomal activity on apoptosis susceptibility is now rapidly gaining more attention as a significant modulator of cell death signalling in the context of human health and disease. Here we present a concise and critical overview of the latest knowledge on the molecular interplay between apoptosis signalling, autophagy and proteasomal protein degradation. We highlight that these three pathways constitute an intricate signalling triangle that can govern and modulate cell fate decisions between death and survival. Owing to rapid research progress in recent years, it is now possible to provide detailed insight into the mechanisms of pathway crosstalk, common signalling nodes and the role of multi-functional proteins in co-regulating both protein degradation and cell death.
Collapse
|
67
|
Buckley DL, Crews CM. Steuerung der intrazellulären Proteinmenge durch niedermolekulare Modulatoren des Ubiquitin-Proteasom-Systems. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201307761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
68
|
Allegra A, Alonci A, Gerace D, Russo S, Innao V, Calabrò L, Musolino C. New orally active proteasome inhibitors in multiple myeloma. Leuk Res 2013; 38:1-9. [PMID: 24239172 DOI: 10.1016/j.leukres.2013.10.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 12/25/2022]
Abstract
Bortezomib is the first proteasome inhibitor approved for the therapy of multiple myeloma (MM). Although Bortezomib has renovated the treatment of MM, a considerable proportion of subjects fail to respond to Bortezomib treatment and almost all patients relapse from this drug either alone or when used in combination therapies. However, the good clinical outcome of Bortezomib treatment in MM patients gave impulsion for the development of second generation proteasome inhibitors with the ambition of improving efficacy of proteasome inhibition, enhancing antitumor activity, and decreasing toxicity, as well as providing flexible dosing schedules and patient convenience. This review provides an overview of the role of oral proteasome inhibitors including Marizomib, Oprozomib, Delanzomib, chemical proteasome inhibitors, and cinnabaramides, in the therapy of MM, focusing on developments over the past five years. These emerging drugs with different mechanisms of action have exhibited promising antitumor activity in patients with relapsed/refractory MM, and they are creating chances to target multiple pathways, overcome resistance, and improve clinical outcomes, mainly for those subjects who are refractory to approved agents. Future steps in the clinical development of oral inhibitors include the optimization of the schedule and the definition of their antitumor activity in MM.
Collapse
Affiliation(s)
| | - Andrea Alonci
- Division of Hematology University of Messina, Messina, Italy
| | - Demetrio Gerace
- Division of Hematology University of Messina, Messina, Italy
| | - Sabina Russo
- Division of Hematology University of Messina, Messina, Italy
| | - Vanessa Innao
- Division of Hematology University of Messina, Messina, Italy
| | - Laura Calabrò
- Division of Hematology University of Messina, Messina, Italy
| | | |
Collapse
|
69
|
Sridhar S, Bhat G, Guruprasad K. Analysis of bortezomib inhibitor docked within the catalytic subunits of the Plasmodium falciparum 20S proteasome. SPRINGERPLUS 2013; 2:566. [PMID: 24255860 PMCID: PMC3825223 DOI: 10.1186/2193-1801-2-566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022]
Abstract
The three-dimensional fold of Plasmodium falciparum (Pf) 20S proteasome is similar to yeast Saccharomyces cerevisiae 20S proteasome. The twenty eight subunits complex corresponding to two copies of seven distinct α and seven distinct β subunits shares >35% sequence identity with equivalent subunits of the yeast 20S proteasome. Bortezomib (Velcade®) - a known inhibitor of the three catalytic subunits; β1, β2, β5 of the yeast 20S proteasome can bind in the equivalent subunits of the Pf 20S proteasome and is in agreement with experimental results. The model defines the binding mode of the bortezomib inhibitor within the catalytic subunits of the Pf 20S proteasome and provides the structural basis for the design of Pf 20S proteasome-specific inhibitors. The substitutions associated within the catalytic subunits of Pf 20S proteasome relative to yeast 20S proteasome; Thr21-Ser, Thr22-Ser, Thr31-Ser, Thr35-Asn, Ala49-Ser (in β1 subunit), Ser20-Ala, Gln22-Glu (β2) and Thr21-Ser, Ala22-Met, Gln53-Leu (β5) may influence the relative caspase-like, tryptic-like and chymotryptic-like activities of the Pf 20S proteasome. The plasmodia-specific 'large' insert comprising fifty four amino acid residues (in β1 subunit) of the Pf 20S proteasome is distant from the catalytic sites.
Collapse
Affiliation(s)
- Settu Sridhar
- Bioinformatics, Centre for Cellular and Molecular Biology, Hyderabad, 500 007 India
| | - Gayathri Bhat
- Bioinformatics, Centre for Cellular and Molecular Biology, Hyderabad, 500 007 India
| | - Kunchur Guruprasad
- Bioinformatics, Centre for Cellular and Molecular Biology, Hyderabad, 500 007 India
| |
Collapse
|
70
|
Suderman R, Deeds EJ. Machines vs. ensembles: effective MAPK signaling through heterogeneous sets of protein complexes. PLoS Comput Biol 2013; 9:e1003278. [PMID: 24130475 PMCID: PMC3794900 DOI: 10.1371/journal.pcbi.1003278] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/30/2013] [Indexed: 01/08/2023] Open
Abstract
Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective, namely that signaling proceeds via heterogeneous pleiomorphic ensembles of transient complexes. Since many hypotheses regarding network function rely on how we conceptualize signaling complexes, resolving this issue is a central problem in systems biology. Unfortunately, direct experimental characterization of these complexes has proven technologically difficult, while combinatorial complexity has prevented traditional modeling methods from approaching this question. Here we employ rule-based modeling, a technique that overcomes these limitations, to construct a model of the yeast pheromone signaling network. We found that this model exhibits significant ensemble character while generating reliable responses that match experimental observations. To contrast the ensemble behavior, we constructed a model that employs hierarchical assembly pathways to produce scaffold-based signaling machines. We found that this machine model could not replicate the experimentally observed combinatorial inhibition that arises when the scaffold is overexpressed. This finding provides evidence against the hierarchical assembly of machines in the pheromone signaling network and suggests that machines and ensembles may serve distinct purposes in vivo. In some cases, e.g. core enzymatic activities like protein synthesis and degradation, machines assembled via hierarchical energy landscapes may provide functional stability for the cell. In other cases, such as signaling, ensembles may represent a form of weak linkage, facilitating variation and plasticity in network evolution. The capacity of ensembles to signal effectively will ultimately shape how we conceptualize the function, evolution and engineering of signaling networks. Intracellular signaling networks are central to a cell's ability to adapt to its environment. Developing the capacity to effectively manipulate such networks would have a wide range of applications, from cancer therapy to synthetic biology. This requires a thorough understanding of the mechanisms of signal transduction, particularly the kinds of protein complexes that are formed during transmission of extracellular information to the nucleus. Traditionally, signaling complexes have been largely perceived (albeit often implicitly) as machine-like structures. However, the number of molecular complexes that could theoretically be formed by complex signaling networks is astronomically large. This has led to the pleiomorphic ensemble hypothesis, which posits that diverse and rapidly changing sets of transient protein complexes can transmit and process information. Our goal was to use computational approaches, specifically rule-based modeling, to test these hypotheses. We constructed a model of the prototypical yeast mating pathway and found significant ensemble-like behavior. Our results thus demonstrated that ensembles can in fact transmit extracellular signals with minimal noise. Additionally, a comparison of this model with one tailored to generate machine-like complexes displayed notable phenotypic differences, revealing potential advantages for ensemble-like signaling. Our demonstration that ensembles can function effectively will have a significant impact on how we conceptualize signaling and other processes inside cells.
Collapse
Affiliation(s)
- Ryan Suderman
- Center for Bioinformatics, University of Kansas, Lawrence, Kansas, United States of America
| | - Eric J. Deeds
- Center for Bioinformatics, University of Kansas, Lawrence, Kansas, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
71
|
Wei D, Fang L, Tang M, Zhan CG. Fundamental reaction pathway for peptide metabolism by proteasome: insights from first-principles quantum mechanical/molecular mechanical free energy calculations. J Phys Chem B 2013; 117:13418-34. [PMID: 24111489 DOI: 10.1021/jp405337v] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteasome is the major component of the crucial non-lysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-O(γ). The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-O(γ), followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-N(z). Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-N(z) to Thr1-O(γ). According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3(b)) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally derived activation free energy of ∼18.3-19.4 kcal/mol, suggesting that the computational results are reasonable.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University , 75 Daxue Road, Zhengzhou, Henan 450052, China
| | | | | | | |
Collapse
|
72
|
Ferrington DA, Gregerson DS. Immunoproteasomes: structure, function, and antigen presentation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 109:75-112. [PMID: 22727420 DOI: 10.1016/b978-0-12-397863-9.00003-1] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Immunoproteasomes contain replacements for the three catalytic subunits of standard proteasomes. In most cells, oxidative stress and proinflammatory cytokines are stimuli that lead to elevated production of immunoproteasomes. Immune system cells, especially antigen-presenting cells, express a higher basal level of immunoproteasomes. A well-described function of immunoproteasomes is to generate peptides with a hydrophobic C terminus that can be processed to fit in the groove of MHC class I molecules. This display of peptides on the cell surface allows surveillance by CD8 T cells of the adaptive immune system for pathogen-infected cells. Functions of immunoproteasomes, other than generating peptides for antigen presentation, are emerging from studies in immunoproteasome-deficient mice, and are complemented by recently described diseases linked to mutations or single-nucleotide polymorphisms in immunoproteasome subunits. Thus, this growing body of literature suggests a more pleiotropic role in cell function for the immunoproteasome.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
73
|
Sá-Moura B, Simões AM, Fraga J, Fernandes H, Abreu IA, Botelho HM, Gomes CM, Marques AJ, Dohmen RJ, Ramos PC, Macedo-Ribeiro S. Biochemical and biophysical characterization of recombinant yeast proteasome maturation factor ump1. Comput Struct Biotechnol J 2013; 7:e201304006. [PMID: 24688736 PMCID: PMC3962104 DOI: 10.5936/csbj.201304006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 11/22/2022] Open
Abstract
Protein degradation is essential for maintaining cellular homeostasis. The proteasome is the central enzyme responsible for non-lysosomal protein degradation in eukaryotic cells. Although proteasome assembly is not yet completely understood, a number of cofactors required for proper assembly and maturation have been identified. Ump is a short-lived maturation factor required for the efficient biogenesis of the 20S proteasome. Upon the association of the two precursor complexes, Ump is encased and is rapidly degraded after the proteolytic sites in the interior of the nascent proteasome are activated. In order to further understand the mechanisms behind proteasomal maturation, we expressed and purified yeast Ump in E. coli for biophysical and structural analysis. We show that recombinant Ump is purified as a mixture of different oligomeric species and that oligomerization is mediated by intermolecular disulfide bond formation involving the only cysteine residue present in the protein. Furthermore, a combination of bioinformatic, biochemical and structural analysis revealed that Ump shows characteristics of an intrinsically disordered protein, which might become structured only upon interaction with the proteasome subunits.
Collapse
Affiliation(s)
- Bebiana Sá-Moura
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Ana Marisa Simões
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Joana Fraga
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Humberto Fernandes
- Centre for Molecular and Structural Biomedicine, CBME/IBB, LA, Portugal ; Current address: Biophysics Section, Department of Life Sciences, Imperial College, London, UK
| | - Isabel A Abreu
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal ; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
| | - Hugo M Botelho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal ; Current address: BioFIG - Centre for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisboa, Campo Grande 1749-016 Lisboa, Portugal
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
| | - António J Marques
- Centre for Molecular and Structural Biomedicine, CBME/IBB, LA, Portugal ; Current address: Immunodiagnostic Systems, Core Technology, 10 Didcot Way, Boldon, NE35 9PD, UK
| | - R Jürgen Dohmen
- Institute for Genetics, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany
| | - Paula C Ramos
- Centre for Molecular and Structural Biomedicine, CBME/IBB, LA, Portugal ; Institute for Genetics, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|
74
|
Park JE, Ao L, Miller Z, Kim K, Wu Y, Jang ER, Lee EY, Kim KB, Lee W. PSMB9 codon 60 polymorphisms have no impact on the activity of the immunoproteasome catalytic subunit B1i expressed in multiple types of solid cancer. PLoS One 2013; 8:e73732. [PMID: 24040045 PMCID: PMC3767749 DOI: 10.1371/journal.pone.0073732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/20/2013] [Indexed: 11/18/2022] Open
Abstract
The proteasome is a key regulator of cellular protein homeostasis and is a clinically validated anticancer target. The immunoproteasome, a subtype of proteasome expressed mainly in hematopoietic cells, was initially recognized for its role in antigen presentation during the immune response. Recently, the immunoproteasome has been implicated in several disease conditions including cancer and autoimmune disorders, but many of the factors contributing to these pathological processes remain unknown. In particular, the codon 60 polymorphism of the PSMB9 gene encoding the β1i immunoproteasome catalytic subunit has been investigated in the context of a variety of diseases. Despite this, previous studies have so far reported inconsistent findings regarding the impact of this polymorphism on proteasome activity. Thus, we set out to investigate the impact of the PSMB9 codon 60 polymorphism on the expression and activity of the β1i immunoproteasome subunit in a panel of human cancer cell lines. The β1i-selective fluorogenic substrate Acetyl-Pro-Ala-Leu-7-amino-4-methylcoumarin was used to specifically measure β1i catalytic activity. Our results indicate that the codon 60 Arg/His polymorphism does not significantly alter the expression and activity of β1i among the cell lines tested. Additionally, we also examined the expression of β1i in clinical samples from colon and pancreatic cancer patients. Our immunohistochemical analyses showed that ∼70% of clinical colon cancer samples and ∼53% of pancreatic cancer samples have detectable β1i expression. Taken together, our results indicate that the β1i subunit of the immunoproteasome is frequently expressed in colon and pancreatic cancers but that the codon 60 genetic variants of β1i display similar catalytic activities and are unlikely to contribute to the significant inter-cell-line and inter-individual variabilities in the immunoproteasome activity.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lin Ao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zachary Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kyungbo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ying Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eun Ryoung Jang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eun Young Lee
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wooin Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
75
|
The RNA exosome and proteasome: common principles of degradation control. Nat Rev Mol Cell Biol 2013; 14:654-60. [PMID: 23989960 DOI: 10.1038/nrm3657] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Defective RNAs and proteins are swiftly degraded by cellular quality control mechanisms. A large fraction of their degradation is mediated by the exosome and the proteasome. These complexes have a similar architectural framework based on cylindrical, hollow structures that are conserved from bacteria and archaea to eukaryotes. Mechanistic similarities have also been identified for how RNAs and proteins are channelled into these structures and prepared for degradation. Insights gained from studies of the proteasome should now set the stage for elucidating the regulation, assembly and small-molecule inhibition of the exosome.
Collapse
|
76
|
Relative quantification of proteasome activity by activity-based protein profiling and LC-MS/MS. Nat Protoc 2013; 8:1155-68. [DOI: 10.1038/nprot.2013.065] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
77
|
Zhou B, Zuo Y, Li B, Wang H, Liu H, Wang X, Qiu X, Hu Y, Wen S, Du J, Bu X. Deubiquitinase inhibition of 19S regulatory particles by 4-arylidene curcumin analog AC17 causes NF-κB inhibition and p53 reactivation in human lung cancer cells. Mol Cancer Ther 2013; 12:1381-92. [PMID: 23696216 DOI: 10.1158/1535-7163.mct-12-1057] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteasome inhibitors have been suggested as potential anticancer agents in many clinical trials. Recent evidence indicates that proteasomal deubiquitinase (DUB) inhibitors, bearing a different mechanism from that of traditional proteasome inhibitors, would be appropriate candidates for new anticancer drug development. In the present study, we describe the deubiquitinase inhibition of 19S regulatory particles (19S RP) by AC17, a 4-arylidene curcumin analog synthesized in our laboratory. Although 4-arylidene curcumin analogs were reported to act as inhibitory κB (IκB) kinase (IKK) inhibitors, AC17 instead induced a rapid and marked accumulation of ubiquitinated proteins without inhibiting proteasome proteolytic activities. In contrast to its parent compound, curcumin, which is a proteasome proteolytic inhibitor, AC17 serves as an irreversible deubiquitinase inhibitor of 19S RP, resulting in inhibition of NF-κB pathway and reactivation of proapoptotic protein p53. In addition, in a murine xenograft model of human lung cancer A549, treatment with AC17 suppresses tumor growth in a manner associated with proteasome inhibition, NF-κB blockage, and p53 reactivation. These results suggest that 4-arylidene curcumin analogs are novel 19S deubiquitinase inhibitors with great potential for anticancer drug development.
Collapse
Affiliation(s)
- Binhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Velyvis A, Kay LE. Measurement of active site ionization equilibria in the 670 kDa proteasome core particle using methyl-TROSY NMR. J Am Chem Soc 2013; 135:9259-62. [PMID: 23800213 DOI: 10.1021/ja403091c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 20S proteasome core particle is a molecular machine that plays a central role in the regulation of cellular function through proteolysis, and it has emerged as a valuable drug target for certain classes of cancers. Central to the development of new and potent pharmaceuticals is an understanding of the mechanism by which the proteasome cleaves substrates. A number of high-resolution structures of the 20S proteasome with and without inhibitors have emerged that provide insight into the chemistry of peptide bond cleavage and establish the role of Thr1 Oγ1 as the catalytic nucleophile. The source of the base that accepts the Thr1 Hγ1 is less clear. Using a highly deuterated sample of the proteasome labeled with (13)CH3 at the Thr-γ positions, the pKA of the Thr1 amino group has been measured to be 6.3 and hence deprotonated in the range of maximal enzyme activity. This provides strong evidence that the terminal amino group of Thr1 serves as the base in the first step of the peptide bond cleavage reaction.
Collapse
Affiliation(s)
- Algirdas Velyvis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | |
Collapse
|
79
|
Proteasomal cleavage site prediction of protein antigen using BP neural network based on a new set of amino acid descriptor. J Mol Model 2013; 19:3045-52. [PMID: 23584554 DOI: 10.1007/s00894-013-1827-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/18/2013] [Indexed: 11/27/2022]
Abstract
The accurate identification of cytotoxic T lymphocyte epitopes is becoming increasingly important in peptide vaccine design. The ubiquitin-proteasome system plays a key role in processing and presenting major histocompatibility complex class I restricted epitopes by degrading the antigenic protein. To enhance the specificity and efficiency of epitope prediction and identification, the recognition mode between the ubiquitin-proteasome complex and the protein antigen must be considered. Hence, a model that accurately predicts proteasomal cleavage must be established. This study proposes a new set of parameters to characterize the cleavage window and uses a backpropagation neural network algorithm to build a model that accurately predicts proteasomal cleavage. The accuracy of the prediction model, which depends on the window sizes of the cleavage, reaches 95.454% for the N-terminus and 95.011% for the C-terminus. The results show that the identification of proteasomal cleavage sites depends on the sequence next to it and that the prediction performance of the C-terminus is better than that of the N-terminus on average. Thus, models based on the properties of amino acids can be highly reliable and reflect the structural features of interactions between proteasomes and peptide sequences.
Collapse
|
80
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
81
|
Kunjappu MJ, Hochstrasser M. Assembly of the 20S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:2-12. [PMID: 23507199 DOI: 10.1016/j.bbamcr.2013.03.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Mary J Kunjappu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue P.O. Box 208114, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
82
|
Abstract
The eukaryotic ubiquitin-proteasome system is responsible for most aspects of regulatory and quality-control protein degradation in cells. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6-MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. Although many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy, biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic-resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently emerged. Here we review these novel findings.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
83
|
Hovhannisyan A, Pham TH, Bouvier D, Qin L, Melikyan G, Reboud-Ravaux M, Bouvier-Durand M. C1 and N5 derivatives of cerpegin: synthesis of a new series based on structure-activity relationships to optimize their inhibitory effect on 20S proteasome. Bioorg Med Chem Lett 2013; 23:2696-703. [PMID: 23541650 DOI: 10.1016/j.bmcl.2013.02.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 11/25/2022]
Abstract
Thirty-two new derivatives of cerpegin (1,1,5-trimethylfuro[3,4-c]pyridine-3,4-dione) were designed and synthesized in high yield by a new method, combining several C(1) and N(5) substituents. All compounds were tested for their inhibitory effect on the CT-L, T-L and PA proteolytic activities of a purified mammalian 20S proteasome. Only one molecule inhibited both CT-L and PA activities. Sixteen molecules specifically inhibited PA at the micromolar range, out of which fourteen had IC50 values around 5 μM and two had IC50 values closer to 2 μM. Except in one case, neither calpain I nor cathepsin B was inhibited. In silico docking suggests a unique mode of binding of the most efficient compounds to the β1 catalytic site (PA activity) in relation to the chemical nature of C(1) substituents.
Collapse
Affiliation(s)
- Anna Hovhannisyan
- Department of Organic Chemistry, Yerevan State University, A. Manoogian Str. 1, 0025 Yerevan, Armenia.
| | | | | | | | | | | | | |
Collapse
|
84
|
Neilsen PM, Pehere AD, Pishas KI, Callen DF, Abell AD. New 26S proteasome inhibitors with high selectivity for chymotrypsin-like activity and p53-dependent cytotoxicity. ACS Chem Biol 2013. [PMID: 23190346 DOI: 10.1021/cb300549d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 26S proteasome has emerged over the past decade as an attractive therapeutic target in the treatment of cancers. Here, we report new tripeptide aldehydes that are highly specific for the chymotrypsin-like catalytic activity of the proteasome. These new specific proteasome inhibitors demonstrated high potency and specificity for sarcoma cells, with therapeutic windows superior to those observed for benchmark proteasome inhibitors, MG132 and Bortezomib. Constraining the peptide backbone into the β-strand geometry, known to favor binding to a protease, resulted in decreased activity in vitro and reduced anticancer activity. Using these new proteasome inhibitors, we show that the presence of an intact p53 pathway significantly enhances cytotoxic activity, thus suggesting that this tumor suppressor is a critical downstream mediator of cell death following proteasomal inhibition.
Collapse
Affiliation(s)
- Paul M. Neilsen
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - Ashok D. Pehere
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - Kathleen I. Pishas
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - David F. Callen
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - Andrew D. Abell
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| |
Collapse
|
85
|
Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation. Biochem J 2013; 448:55-65. [PMID: 22906049 PMCID: PMC3481250 DOI: 10.1042/bj20120542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ubiquitin–proteasome system targets selected proteins for degradation by the 26S proteasome. Rpn12 is an essential component of the 19S regulatory particle and plays a role in recruiting the extrinsic ubiquitin receptor Rpn10. In the present paper we report the crystal structure of Rpn12, a proteasomal PCI-domain-containing protein. The structure helps to define a core structural motif for the PCI domain and identifies potential sites through which Rpn12 might form protein–protein interactions. We demonstrate that mutating residues at one of these sites impairs Rpn12 binding to Rpn10 in vitro and reduces Rpn10 incorporation into proteasomes in vivo.
Collapse
|
86
|
Proteasome allostery as a population shift between interchanging conformers. Proc Natl Acad Sci U S A 2012; 109:E3454-62. [PMID: 23150576 DOI: 10.1073/pnas.1213640109] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein degradation plays a critical role in cellular homeostasis, in regulating the cell cycle, and in the generation of peptides that are used in the immune response. The 20S proteasome core particle (CP), a barrel-like structure consisting of four heptameric protein rings stacked axially on top of each other, is central to this process. CP function is controlled by activator complexes that bind 75 Å away from sites catalyzing proteolysis, and biochemical data are consistent with an allosteric mechanism by which binding is communicated to distal active sites. However, little structural evidence has emerged from the high-resolution images of the CP. Using methyl TROSY NMR spectroscopy, we demonstrate that in solution, the CP interconverts between multiple conformations whose relative populations are shifted on binding of the 11S activator or mutation of residues that contact activators. These conformers differ in contiguous regions of structure that connect activator binding to the CP active sites, and changes in their populations lead to differences in substrate proteolysis patterns. Moreover, various active site modifications result in conformational changes to the activator binding site by modulating the relative populations of these same CP conformers. This distribution is also affected by the binding of a small-molecule allosteric inhibitor of proteolysis, chloroquine, suggesting an important avenue in the development of therapeutics for proteasome inhibition.
Collapse
|
87
|
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
88
|
Sharma LK, Lee NR, Jang ER, Lei B, Zhan CG, Lee W, Kim KB. Activity-based near-infrared fluorescent probe for LMP7: a chemical proteomics tool for the immunoproteasome in living cells. Chembiochem 2012; 13:1899-903. [PMID: 22807337 DOI: 10.1002/cbic.201200307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Indexed: 01/08/2023]
Abstract
Probing the unknown: The immunoproteasome, an alternative form of the constitutive proteasome, has been implicated in a number of pathological states such as cancer and autoimmune diseases. In an effort to understand the role of the immunoproteasome in cells, the first immunoproteasome-specific near-infrared fluorescent probe has been developed.
Collapse
Affiliation(s)
- Lalit Kumar Sharma
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Hochstrasser M, Funakoshi M. Disulfide engineering to map subunit interactions in the proteasome and other macromolecular complexes. Methods Mol Biol 2012; 832:349-62. [PMID: 22350897 DOI: 10.1007/978-1-61779-474-2_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In studies of protein complexes for which high-resolution structural data are unavailable, it is often still possible to determine both nearest-neighbor relationships between subunits and atomic-resolution details of these interactions. The eukaryotic 26S proteasome, a ∼2.5 MDa protein complex with at least 33 different subunits, is a prime example. Important information about quaternary organization and assembly of proteasomes has been gained using a combination of sequence alignments with related proteins of known tertiary structure, molecular modeling, and disulfide engineering to allow oxidative cross-linking between predicted polypeptide neighbors. Here, we provide detailed protocols for engineered cysteine cross-linking of yeast proteasome subunits in whole-cell extracts, in active 26S proteasome complexes first isolated by native polyacrylamide gel electrophoresis, and in subcomplexes that function as potential assembly intermediates.
Collapse
Affiliation(s)
- Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
90
|
Ao L, Wu Y, Kim D, Jang ER, Kim K, Lee DM, Kim KB, Lee W. Development of peptide-based reversing agents for p-glycoprotein-mediated resistance to carfilzomib. Mol Pharm 2012; 9:2197-205. [PMID: 22734651 DOI: 10.1021/mp300044b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carfilzomib is a novel class of peptidyl epoxyketone proteasome inhibitor and has demonstrated promising activity in multiple clinical trials to treat patients with multiple myeloma and other types of cancers. Here, we investigated molecular mechanisms underlying acquired resistance to carfilzomib and a potential strategy to restore cellular sensitivity to carfilzomib. H23 and DLD-1 cells (human lung and colon adenocarcinoma cell lines) with acquired resistance to carfilzomib displayed marked cross-resistance to YU-101, a closely related proteasome inhibitor, and paclitaxel, a known substrate of Pgp. However, carfilzomib-resistant cells remained sensitive to bortezomib, a clinically used dipeptide with boronic acid pharmacophore. In accordance with these observations, carfilzomib-resistant H23 and DLD-1 cells showed marked upregulation of P-glycoprotein (Pgp) as compared to their parental controls, and coincubation with verapamil, a Pgp inhibitor, led to an almost complete restoration of cellular sensitivity to carfilzomib. These results indicate that Pgp upregulation plays a major role in the development of carfilzomib resistance in these cell lines. In developing a potential strategy to overcome carfilzomib resistance, we as a proof of concept prepared a small library of peptide analogues derived from the peptide backbone of carfilzomib and screened these molecules for their activity to restore carfilzomib sensitivity when cotreated with carfilzomib. We found that compounds as small as dipeptides are sufficient in restoring carfilzomib sensitivity. Taken together, we found that Pgp upregulation plays a major role in the development of resistance to carfilzomib in lung and colon adenocarcinoma cell lines and that small peptide analogues lacking the pharmacophore can be used as agents to reverse acquired carfilzomib resistance. Our findings may provide important information in developing a potential strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Lin Ao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, United States
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Jang ER, Lee NR, Han S, Wu Y, Sharma LK, Carmony KC, Marks J, Lee DM, Ban JO, Wehenkel M, Hong JT, Kim KB, Lee W. Revisiting the role of the immunoproteasome in the activation of the canonical NF-κB pathway. MOLECULAR BIOSYSTEMS 2012; 8:2295-302. [PMID: 22722901 DOI: 10.1039/c2mb25125f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of NF-κB signaling pathways has greatly enhanced our understanding of inflammatory and immune responses. In the canonical NF-κB pathway, the proteasomal degradation of IκBα, an inhibitory protein of NF-κB, is widely accepted to be a key regulatory step. However, contradictory findings have been reported as to whether the immunoproteasome plays an obligatory role in the degradation of IκBα and activation of the canonical NF-κB pathway. Such results were obtained mainly using traditional gene deletion strategies. Here, we have revisited the involvement of the immunoproteasome in the canonical NF-κB pathway using small molecule inhibitors of the immunoproteasome, namely UK-101 and LKS01 targeting β1i and β5i, respectively. H23 and Panc-1 cancer cells were pretreated with UK-101, LKS01 or epoxomicin (a prototypic inhibitor targeting both the constitutive proteasome and immunoproteasome). We then examined whether these pretreatments lead to any defect in activating the canonical NF-κB pathway following TNFα exposure by monitoring the phosphorylation and degradation of IκBα, nuclear translocation of NF-κB proteins and DNA binding and transcriptional activity of NF-κB. Our results consistently indicated that there is no defect in activating the canonical NF-κB pathway following selective inhibition of the immunoproteasome catalytic subunits β1i, β5i or both using UK-101 and LKS01, in contrast to epoxomicin. In summary, our current results using chemical genetic approaches strongly support that the catalytic activity of the immunoproteasome subunits β1i and β5i is not required for canonical NF-κB activation in lung and pancreatic adenocarcinoma cell line models.
Collapse
Affiliation(s)
- Eun Ryoung Jang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
It has become increasingly evident that protein degradation via the ubiquitin proteasome system plays a fundamental role in the development, maintenance and remodeling of synaptic connections in the CNS. We and others have recently described the activity-dependent regulation of proteasome activity and recruitment of proteasomes into spine compartments involving the phosphorylation of the 19S ATPase subunit, Rpt6, by the plasticity kinase Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα) (Bingol and Schuman, 2006; Djakovic et al., 2009; Bingol et al, 2010). Here, we investigated the role of Rpt6 phosphorylation on proteasome function and synaptic strength. Utilizing a phospho-specific antibody we verified that Rpt6 is phosphorylated at Serine 120 (S120) by CaMKIIα. In addition, we found that Rpt6 is phosphorylated by CaMKIIα in an activity-dependent manner. Furthermore, we showed that a serine 120 to aspartic acid phospho-mimetic mutant of Rpt6 (S120D) increases its resistance to detergent extraction in rat hippocampal dendrites, indicating phosphorylated Rpt6 may promote the tethering of proteasomes to scaffolds and cytoskeletal components. Expression of Rpt6 S120D decreased miniature EPSC (mEPSC) amplitude, while expression of a phospho-dead mutant (S120A) increased mEPSC amplitude. Surprisingly, homeostatic scaling of mEPSC amplitude produced by chronic application of bicuculline or tetrodotoxin is both mimicked and occluded by altered Rpt6 phosphorylation. Together, these data suggest that CaMKII-dependent phosphorylation of Rpt6 at S120 may be an important regulatory mechanism for proteasome-dependent control of synaptic remodeling in slow homeostatic plasticity.
Collapse
|
93
|
Wei D, Lei B, Tang M, Zhan CG. Fundamental reaction pathway and free energy profile for inhibition of proteasome by Epoxomicin. J Am Chem Soc 2012; 134:10436-50. [PMID: 22697787 DOI: 10.1021/ja3006463] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
First-principles quantum mechanical/molecular mechanical free energy calculations have been performed to provide the first detailed computational study on the possible mechanisms for reaction of proteasome with a representative peptide inhibitor, Epoxomicin (EPX). The calculated results reveal that the most favorable reaction pathway consists of five steps. The first is a proton transfer process, activating Thr1-O(γ) directly by Thr1-N(z) to form a zwitterionic intermediate. The next step is nucleophilic attack on the carbonyl carbon of EPX by the negatively charged Thr1-O(γ) atom, followed by a proton transfer from Thr1-N(z) to the carbonyl oxygen of EPX (third step). Then, Thr1-N(z) attacks on the carbon of the epoxide group of EPX, accompanied by the epoxide ring-opening (S(N)2 nucleophilic substitution) such that a zwitterionic morpholino ring is formed between residue Thr1 and EPX. Finally, the product of morpholino ring is generated via another proton transfer. Noteworthy, Thr1-O(γ) can be activated directly by Thr1-N(z) to form the zwitterionic intermediate (with a free energy barrier of only 9.9 kcal/mol), and water cannot assist the rate-determining step, which is remarkably different from the previous perception that a water molecule should mediate the activation process. The fourth reaction step has the highest free energy barrier (23.6 kcal/mol) which is reasonably close to the activation free energy (∼21-22 kcal/mol) derived from experimental kinetic data. The obtained novel mechanistic insights should be valuable for not only future rational design of more efficient proteasome inhibitors but also understanding the general reaction mechanism of proteasome with a peptide or protein.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou, Henan 450052, China
| | | | | | | |
Collapse
|
94
|
Xu J, Wang S, Viollet B, Zou MH. Regulation of the proteasome by AMPK in endothelial cells: the role of O-GlcNAc transferase (OGT). PLoS One 2012; 7:e36717. [PMID: 22574218 PMCID: PMC3345026 DOI: 10.1371/journal.pone.0036717] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/12/2012] [Indexed: 01/29/2023] Open
Abstract
26S proteasome is a macromolecular multi-subunit complex responsible for recognizing, unfolding, and ultimately destroying proteins. It remains poorly understood how 26S proteasome activity is regulated. The present study was to investigate if AMP-activated protein kinase (AMPK) functions as a physiological suppressor of the 26S proteasome in endothelial cells. 26S proteasome assembly, activity, and O-GlcNAcylation of P700 were assayed in cultured human umbilical vein endothelial cells (HUVEC) and mouse aortas isolated from C57BL6 wild type and AMPKα2 knockout mice with or without being exposed to selective AMPK activators or inhibitors. Pharmacological and genetic activation of AMPK effectively suppresses 26S proteasomes in endothelial cells. Conversely, inactivation of AMPK either pharmacologically or genetically increases 26S proteasome activity; furthermore, the inactivation decreases the O-GlcNAcylation of PA700/S10B (the regulatory complex in 26S proteasomes) and increases the assembly of 26S proteasomes. In contrast, AMPK activation increases levels of O-GlcNAcylated PA700/S10B, likely through enhanced association of PA700 with O-GlcNAc transferase (OGT), the enzyme that catalyzes protein O-GlcNAcylation. Finally, aortas from AMPK-KO vs wild type mice exhibit elevated 26S proteasome activity in parallel with decreased PA700/S10B O-GlcNAcylation and PA700/S10B-OGT association. Taken together, we conclude that AMPK functions as a physiological suppressor of 26S proteasomes.
Collapse
Affiliation(s)
- Jian Xu
- Division of Endocrinology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shuangxi Wang
- Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs, UMR 8104 Paris, France
- Université Paris Descartes, Paris, France
| | - Ming-Hui Zou
- Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
95
|
Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci U S A 2012; 109:E1001-10. [PMID: 22460800 DOI: 10.1073/pnas.1116538109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The 26S proteasome, a molecular machine responsible for regulated protein degradation, consists of a proteolytic core particle (20S CP) associated with 19S regulatory particles (19S RPs) subdivided into base and lid subcomplexes. The assembly of 19S RP base subcomplex is mediated by multiple dedicated chaperones. Among these, Hsm3 is important for normal growth and directly targets the carboxyl-terminal (C-terminal) domain of Rpt1 of the Rpt1-Rpt2-Rpn1 assembly intermediate. Here, we report crystal structures of the yeast Hsm3 chaperone free and bound to the C-terminal domain of Rpt1. Unexpectedly, the structure of the complex suggests that within the Hsm3-Rpt1-Rpt2 module, Hsm3 also contacts Rpt2. We show that in both yeast and mammals, Hsm3 actually directly binds the AAA domain of Rpt2. The Hsm3 C-terminal region involved in this interaction is required in vivo for base assembly, although it is dispensable for binding Rpt1. Although Rpt1 and Rpt2 exhibit weak affinity for each other, Hsm3 unexpectedly acts as an essential matchmaker for the Rpt1-Rpt2-Rpn1 assembly by bridging both Rpt1 and Rpt2. In addition, we provide structural and biochemical evidence on how Hsm3/S5b may regulate the 19S RP association to the 20S CP proteasome. Our data point out the diverse functions of assembly chaperones.
Collapse
|
96
|
Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012; 2012:736905. [PMID: 22518139 PMCID: PMC3320095 DOI: 10.1155/2012/736905] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/06/2012] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation is a continuous process in our cells. Some proteins aggregate in a regulated manner required for different vital functional processes in the cells whereas other protein aggregates result from misfolding caused by various stressors. The decision to form an aggregate is largely made by chaperones and chaperone-assisted proteins. Proteins that are damaged beyond repair are degraded either by the proteasome or by the lysosome via autophagy. The aggregates can be degraded by the proteasome and by chaperone-mediated autophagy only after dissolution into soluble single peptide species. Hence, protein aggregates as such are degraded by macroautophagy. The selective degradation of protein aggregates by macroautophagy is called aggrephagy. Here we review the processes of aggregate formation, recognition, transport, and sequestration into autophagosomes by autophagy receptors and the role of aggrephagy in different protein aggregation diseases.
Collapse
|
97
|
Rockwell CE, Monaco JJ, Qureshi N. A critical role for the inducible proteasomal subunits LMP7 and MECL1 in cytokine production by activated murine splenocytes. Pharmacology 2012; 89:117-26. [PMID: 22398747 DOI: 10.1159/000336335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE The proteasome is a multi-subunit complex that proteolytically cleaves proteins. The replacement of the constitutive proteasome subunits β1, β2, and/or β5 with the IFNγ-inducible subunits LMP2, MECL1, and/or LMP7 results in the 'immunoproteasome'. The inducible subunits change the cleavage specificities of the proteasome, but it is unclear whether they have functions in addition to this. The purpose of the present study was to determine the role of the proteasome in general, as well as LMP7 and MECL1 specifically, with regard to cytokine production by activated primary splenocytes. METHODS A LMP7/MECL1-null mouse was engineered to determine the roles of these subunits in cytokine production. Isolated splenocytes from wild-type and LMP7/MECL1-/- mice were treated with lactacystin and activated with PMA and ionomycin and subsequently cytokine mRNA levels were quantified. RESULTS The present study demonstrates that LMP7/MECL1 regulates the expression of IFNγ, IL4, IL10, IL2Rβ, GATA3, and t-bet. In contrast, the regulation of IL2, IL13, TNFα, and IL2Rα by the proteasome appears to occur independently of LMP7/MECL1. CONCLUSIONS Collectively, the present study demonstrates that LMP7 and MECL1 regulate cytokine expression, suggesting this system represents a novel mechanism for the regulation of cytokines and cytokine signaling.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Mich., USA
| | | | | |
Collapse
|
98
|
Franceschini C, Trapella C, Sforza F, Gavioli R, Marastoni M. Synthesis and biological properties of C-terminal vinyl ketone pseudotripeptides. J Enzyme Inhib Med Chem 2012; 28:560-4. [DOI: 10.3109/14756366.2012.657189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christian Franceschini
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara,
Ferrara, Italy
| | - Claudio Trapella
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara,
Ferrara, Italy
| | - Fabio Sforza
- Department of Biochemistry and Molecular Biology, University of Ferrara,
Ferrara, Italy
| | - Riccardo Gavioli
- Department of Biochemistry and Molecular Biology, University of Ferrara,
Ferrara, Italy
| | - Mauro Marastoni
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara,
Ferrara, Italy
| |
Collapse
|
99
|
Optimizing ring assembly reveals the strength of weak interactions. Proc Natl Acad Sci U S A 2012; 109:2348-53. [PMID: 22308356 DOI: 10.1073/pnas.1113095109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most cellular processes rely on large multiprotein complexes that must assemble into a well-defined quaternary structure in order to function. A number of prominent examples, including the 20S core particle of the proteasome and the AAA+ family of ATPases, contain ring-like structures. Developing an understanding of the complex assembly pathways employed by ring-like structures requires a characterization of the problems these pathways have had to overcome as they evolved. In this work, we use computational models to uncover one such problem: a deadlocked plateau in the assembly dynamics. When the molecular interactions between subunits are too strong, this plateau leads to significant delays in assembly and a reduction in steady-state yield. Conversely, if the interactions are too weak, assembly delays are caused by the instability of crucial intermediates. Intermediate affinities thus maximize the efficiency of assembly for homomeric ring-like structures. In the case of heteromeric rings, we find that rings including at least one weak interaction can assemble efficiently and robustly. Estimation of affinities from solved structures of ring-like complexes indicates that heteromeric rings tend to contain a weak interaction, confirming our prediction. In addition to providing an evolutionary rationale for structural features of rings, our work forms the basis for understanding the complex assembly pathways of stacked rings like the proteasome and suggests principles that would aid in the design of synthetic ring-like structures that self-assemble efficiently.
Collapse
|
100
|
Carmony KC, Lee DM, Wu Y, Lee NR, Wehenkel M, Lee J, Lei B, Zhan CG, Kim KB. A bright approach to the immunoproteasome: development of LMP2/β1i-specific imaging probes. Bioorg Med Chem 2012; 20:607-13. [PMID: 21741845 PMCID: PMC3193892 DOI: 10.1016/j.bmc.2011.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/31/2011] [Accepted: 06/14/2011] [Indexed: 01/01/2023]
Abstract
While the constitutive, 26S proteasome plays an important role in regulating many important cellular processes, a variant form known as the immunoproteasome is thought to primarily function in adaptive immune responses. However, recent studies indicate an association of immunoproteasomes with many physiological disorders such as cancer, neurodegenerative, and inflammatory diseases. Despite this, the detailed functions of the immunoproteasome remain poorly understood. Immunoproteasome-specific probes are essential to gain insight into immunoproteasome function. Here, we describe for the first time the development of cell-permeable activity-based fluorescent probes, UK101-Fluor and UK101-B660, which selectively target the catalytically active LMP2/β1i subunit of the immunoproteasome. These probes facilitate rapid detection of the cellular localization of catalytically active immunoproteasomes in living cells, providing a valuable tool to analyze immunoproteasome functions. Additionally, as LMP2/β1i may serve as a potential tumor biomarker, an LMP2/β1i-targeting fluorescent imaging probe may be applicable to a rapid readout assay to determine tumor LMP2/β1i levels.
Collapse
Affiliation(s)
- Kimberly Cornish Carmony
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|