51
|
Hamideh Babazadeh K, Foroutan M. Water distribution in layers of an aqueous film on the titanium dioxide surface: A molecular dynamic simulation approach. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
52
|
Müllner M, Balajka J, Schmid M, Diebold U, Mertens SFL. Self-Limiting Adsorption of WO 3 Oligomers on Oxide Substrates in Solution. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:19743-19750. [PMID: 28936277 PMCID: PMC5601357 DOI: 10.1021/acs.jpcc.7b04076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/15/2017] [Indexed: 05/21/2023]
Abstract
Electrochemical surface science of oxides is an emerging field with expected high impact in developing, for instance, rationally designed catalysts. The aim in such catalysts is to replace noble metals by earth-abundant elements, yet without sacrificing activity. Gaining an atomic-level understanding of such systems hinges on the use of experimental surface characterization techniques such as scanning tunneling microscopy (STM), in which tungsten tips have been the most widely used probes, both in vacuum and under electrochemical conditions. Here, we present an in situ STM study with atomic resolution that shows how tungsten(VI) oxide, spontaneously generated at a W STM tip, forms 1D adsorbates on oxide substrates. By comparing the behavior of rutile TiO2(110) and magnetite Fe3O4(001) in aqueous solution, we hypothesize that, below the point of zero charge of the oxide substrate, electrostatics causes water-soluble WO3 to efficiently adsorb and form linear chains in a self-limiting manner up to submonolayer coverage. The 1D oligomers can be manipulated and nanopatterned in situ with a scanning probe tip. As WO3 spontaneously forms under all conditions of potential and pH at the tungsten-aqueous solution interface, this phenomenon also identifies an important caveat regarding the usability of tungsten tips in electrochemical surface science of oxides and other highly adsorptive materials.
Collapse
|
53
|
Sato R, Shibuta Y, Shimojo F, Yamaguchi S. Effects of CO 2 adsorption on proton migration on a hydrated ZrO 2 surface: an ab initio molecular dynamics study. Phys Chem Chem Phys 2017; 19:20198-20205. [PMID: 28726881 DOI: 10.1039/c7cp01650f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydration reactions on a carbonate-terminated cubic ZrO2(110) surface were analyzed using ab initio molecular dynamics (AIMD) simulations. After hydration reactions, carbonates were still present on the surface at 500 K. However, these carbonates are very weak conjugate bases and only act as steric hindrance in proton hopping processes between acidic chemisorbed H2O molecules (Zr-OH2) and monodentate hydroxyl groups (Zr-OH-). Similar to a carbonate-free hydrated surface, Zr-OH2, Zr-OH-, and polydentate hydroxyl groups ([double bond splayed left]OH+) were observed, while the ratio of acidic Zr-OH2 was significantly larger than that on the carbonate-free hydrated surface. A thermodynamic discussion and bond property analysis reveal that CO2 adsorption significantly decreases the basicity of surface oxide ions ([double bond splayed left]O), whereas the acidity of Zr-OH2 is not affected. As a result, protons released from [double bond splayed left]OH+ react with Zr-OH- to form Zr-OH2, leading to a deficiency of proton acceptor sites, which decreases the proton conductivity by the hopping mechanism.
Collapse
Affiliation(s)
- Ryuhei Sato
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | |
Collapse
|
54
|
|
55
|
Hosseinpour S, Tang F, Wang F, Livingstone RA, Schlegel SJ, Ohto T, Bonn M, Nagata Y, Backus EHG. Chemisorbed and Physisorbed Water at the TiO 2/Water Interface. J Phys Chem Lett 2017; 8:2195-2199. [PMID: 28447795 PMCID: PMC5489252 DOI: 10.1021/acs.jpclett.7b00564] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The interfacial structure of water in contact with TiO2 is the key to understand the mechanism of photocatalytic water dissociation as well as photoinduced superhydrophilicity. We investigate the interfacial molecular structure of water at the surface of anatase TiO2, using phase-sensitive sum frequency generation spectroscopy together with spectra simulation using ab initio molecular dynamic trajectories. We identify two oppositely oriented, weakly and strongly hydrogen-bonded subensembles of O-H groups at the superhydrophilic UV irradiated TiO2 surface. The water molecules with weakly hydrogen-bonded O-H groups are chemisorbed, i.e. form hydroxyl groups, at the TiO2 surface with their hydrogen atoms pointing toward bulk water. The strongly hydrogen-bonded O-H groups interact with the oxygen atom of the chemisorbed water. Their hydrogen atoms point toward the TiO2. This strong interaction between physisorbed and chemisorbed water molecules causes superhydrophilicity.
Collapse
Affiliation(s)
- Saman Hosseinpour
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- E-mail:
| | - Fujie Tang
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- International
Center for Quantum Materials, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, China
| | - Fenglong Wang
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ruth A. Livingstone
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Simon J. Schlegel
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
| | - Mischa Bonn
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuki Nagata
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- E-mail:
| | - Ellen H. G. Backus
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- E-mail:
| |
Collapse
|
56
|
Shee J, Zhang S, Reichman DR, Friesner RA. Chemical Transformations Approaching Chemical Accuracy via Correlated Sampling in Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2017; 13:2667-2680. [DOI: 10.1021/acs.jctc.7b00224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James Shee
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Shiwei Zhang
- Department
of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - David R. Reichman
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A. Friesner
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
57
|
Hussain H, Tocci G, Woolcot T, Torrelles X, Pang CL, Humphrey DS, Yim CM, Grinter DC, Cabailh G, Bikondoa O, Lindsay R, Zegenhagen J, Michaelides A, Thornton G. Structure of a model TiO 2 photocatalytic interface. NATURE MATERIALS 2017; 16:461-466. [PMID: 27842073 DOI: 10.1038/nmat4793] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/06/2016] [Indexed: 05/21/2023]
Abstract
The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.
Collapse
Affiliation(s)
- H Hussain
- London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
- ESRF, 6 rue Jules Horowitz, F-38000 Grenoble cedex, France
| | - G Tocci
- London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | - T Woolcot
- London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | - X Torrelles
- Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - C L Pang
- London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | - D S Humphrey
- London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | - C M Yim
- London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | - D C Grinter
- London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | - G Cabailh
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, F-75005 Paris, France
| | - O Bikondoa
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry C4 7AL, UK
| | - R Lindsay
- Corrosion and Protection Centre, School of Materials, The University of Manchester, Sackville Street, Manchester M13 9PL, UK
| | - J Zegenhagen
- ESRF, 6 rue Jules Horowitz, F-38000 Grenoble cedex, France
| | - A Michaelides
- London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | - G Thornton
- London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
| |
Collapse
|
58
|
Wang D, Liu ZP, Yang WM. Proton-Promoted Electron Transfer in Photocatalysis: Key Step for Photocatalytic Hydrogen Evolution on Metal/Titania Composites. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00225] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dong Wang
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science (Ministry of Education), Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science (Ministry of Education), Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Wei-Min Yang
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
| |
Collapse
|
59
|
McBriarty ME, von Rudorff GF, Stubbs JE, Eng PJ, Blumberger J, Rosso KM. Dynamic Stabilization of Metal Oxide–Water Interfaces. J Am Chem Soc 2017; 139:2581-2584. [DOI: 10.1021/jacs.6b13096] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin E. McBriarty
- Physical
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Joanne E. Stubbs
- Center
for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60439, United States
| | - Peter J. Eng
- Center
for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60439, United States
| | - Jochen Blumberger
- Department
of Physics and Astronomy, University College London, London WC1E 6BT, U.K
| | - Kevin M. Rosso
- Physical
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
60
|
Zhou P, Zhang H, Ji H, Ma W, Chen C, Zhao J. Modulating the photocatalytic redox preferences between anatase TiO2{001} and {101} surfaces. Chem Commun (Camb) 2017; 53:787-790. [DOI: 10.1039/c6cc08785j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface protonation/deprotonation can change the photocatalytic redox preferences of TiO2{001} and {101} surfaces.
Collapse
Affiliation(s)
- Peng Zhou
- Key Laboratory of Photochemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Hongna Zhang
- Key Laboratory of Photochemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Hongwei Ji
- Key Laboratory of Photochemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Wanhong Ma
- Key Laboratory of Photochemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Chuncheng Chen
- Key Laboratory of Photochemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Jincai Zhao
- Key Laboratory of Photochemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
61
|
Blumenthal L, Kahk JM, Sundararaman R, Tangney P, Lischner J. Energy level alignment at semiconductor–water interfaces from atomistic and continuum solvation models. RSC Adv 2017. [DOI: 10.1039/c7ra08357b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Efficient electronic energy level alignment at solid–liquid interfaces with continuum solvation models.
Collapse
Affiliation(s)
- Lars Blumenthal
- Imperial College London
- Department of Physics
- London SW7 2AZ
- UK
- Thomas Young Centre for Theory and Simulation of Materials
| | - Juhan Matthias Kahk
- Imperial College London
- Department of Materials
- Royal School of Mines
- London SW7 2AZ
- UK
| | | | - Paul Tangney
- Imperial College London
- Department of Physics
- London SW7 2AZ
- UK
- Imperial College London
| | - Johannes Lischner
- Imperial College London
- Department of Physics
- London SW7 2AZ
- UK
- Imperial College London
| |
Collapse
|
62
|
Bochevarov AD, Watson MA, Greenwood JR, Philipp DM. Multiconformation, Density Functional Theory-Based pKa Prediction in Application to Large, Flexible Organic Molecules with Diverse Functional Groups. J Chem Theory Comput 2016; 12:6001-6019. [PMID: 27951674 DOI: 10.1021/acs.jctc.6b00805] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Art D. Bochevarov
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Mark A. Watson
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Jeremy R. Greenwood
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Dean M. Philipp
- Schrödinger, Inc., 101 SW Main Street, Suite 1300, Portland, Oregon 97204, United States
| |
Collapse
|
63
|
He M, Liu X, Lu X, Zhang C, Wang R. Structures and Acidity Constants of Silver-Sulfide Complexes in Hydrothermal Fluids: A First-Principles Molecular Dynamics Study. J Phys Chem A 2016; 120:8435-8443. [PMID: 27709948 DOI: 10.1021/acs.jpca.6b08403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to quantify the speciation and structures of silver-sulfide complexes in aqueous solutions, we have carried out systematic first-principles molecular dynamics (FPMD) simulations at three temperatures (25, 200, and 300 °C). It is found that monosulfide (i.e., Ag(HS)) and disulfide species (i.e., Ag(HS)2-) are the major silver-sulfide species over a wide T-P range, while Ag(HS)32- can hold stably only at ambient temperatures, and Ag(HS)43- does not exist even at the ambient conditions. Ag(H2S)+ has a tetrahedral structure up to 300 °C (i.e., Ag(H2S)(H2O)3+). Ag(H2S)2+ remains 4-coordinated to 200 °C (i.e., Ag(H2S)2(H2O)2+), but it transforms to 3-coordinated at 300 °C (i.e., Ag(H2S)2(H2O)+). All of the other mono- and disulfide species (Ag(HS)(H2O)0, Ag(HS)(OH)-, Ag(HS)(H2S)0, Ag(HS)2-, and AgS(HS)2-) have 2-fold linear structures. For their solvation structures, the H2S ligands donate weak H-bonds to water O; the HS- ligands accept weak H-bonds from water H; the dangling S2- form strong H-bonds with H of water molecules, and the OH- ligands can form strong H-bonds as donors and weak H-bonds as acceptors. We further calculated the acidity constants (i.e., pKas) of Ag(H2S)+ and Ag(H2S)2+ complexes using FPMD based vertical energy gap method. Based on the calculated pKas, the mono- and disulfide species distributions versus pH have been derived. We found that for monosulfide species, Ag(HS)(H2O)0, is the major species in near neutral pH, while Ag(H2S)(H2O)3+ and Ag(HS)(OH)- exist in the acid and alkaline pH range at T ≤ 200 °C, respectively. At 300 °C, both Ag(HS)(OH)- and Ag(HS)(H2O)0 are dominant in the neutral pH range, and Ag(H2S)(H2O)2+ only exists in acidic solutions. For disulfide species, Ag(HS)2- is dominative in near neutral pH condition at the three temperatures; Ag(HS)(H2S)0 stays in mild acidic pH range only at 25 °C; AgS(HS)2- and Ag(H2S)2(H2O)2+ (Ag(H2S)2(H2O)+ at 300 °C) are trivial at the three conditions. The results of structures and acidity constants provide quantitative and microscopic basis for understanding the behavior of silver complexes in hydrothermal fluids.
Collapse
Affiliation(s)
- Mengjia He
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210046, P. R. China
| | - Xiandong Liu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210046, P. R. China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210046, P. R. China
| | - Chi Zhang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210046, P. R. China
| | - Rucheng Wang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210046, P. R. China
| |
Collapse
|
64
|
Holmström E, Spijker P, Foster AS. The interface of SrTiO 3 and H 2O from density functional theory molecular dynamics. Proc Math Phys Eng Sci 2016; 472:20160293. [PMID: 27713660 DOI: 10.1098/rspa.2016.0293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We use dispersion-corrected density functional theory molecular dynamics simulations to predict the ionic, electronic and vibrational properties of the SrTiO3/H2O solid-liquid interface. Approximately 50% of surface oxygens on the planar SrO termination are hydroxylated at all studied levels of water coverage, the corresponding number being 15% for the planar TiO2 termination and 5% on the stepped TiO2-terminated surface. The lateral ordering of the hydration structure is largely controlled by covalent-like surface cation to H2O bonding and surface corrugation. We find a featureless electronic density of states in and around the band gap energy region at the solid-liquid interface. The vibrational spectrum indicates redshifting of the O-H stretching band due to surface-to-liquid hydrogen bonding and blueshifting due to high-frequency stretching vibrations of OH fragments within the liquid, as well as strong suppression of the OH stretching band on the stepped surface. We find highly varying rates of proton transfer above different SrTiO3 surfaces, owing to differences in hydrogen bond strength and the degree of dissociation of incident water. Trends in proton dynamics and the mode of H2O adsorption among studied surfaces can be explained by the differential ionicity of the Ti-O and Sr-O bonds in the SrTiO3 crystal.
Collapse
Affiliation(s)
- E Holmström
- COMP, Department of Applied Physics , Aalto University , PO Box 11100, 00076 Aalto, Finland
| | - P Spijker
- COMP, Department of Applied Physics , Aalto University , PO Box 11100, 00076 Aalto, Finland
| | - A S Foster
- COMP, Department of Applied Physics, Aalto University, PO Box 11100, 00076 Aalto, Finland; Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
65
|
Hunt D, Sanchez VM, Scherlis DA. A quantum-mechanics molecular-mechanics scheme for extended systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:335201. [PMID: 27352028 DOI: 10.1088/0953-8984/28/33/335201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.
Collapse
Affiliation(s)
- Diego Hunt
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA) Argentina
| | | | | |
Collapse
|
66
|
Farnesi Camellone M, Negreiros Ribeiro F, Szabová L, Tateyama Y, Fabris S. Catalytic Proton Dynamics at the Water/Solid Interface of Ceria-Supported Pt Clusters. J Am Chem Soc 2016; 138:11560-7. [DOI: 10.1021/jacs.6b03446] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matteo Farnesi Camellone
- CNR-IOM
DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Via Bonomea 265, 34136 Trieste, Italy
| | - Fabio Negreiros Ribeiro
- CNR-IOM
DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Via Bonomea 265, 34136 Trieste, Italy
| | - Lucie Szabová
- Center
for Green Research on Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshitaka Tateyama
- Center
for Green Research on Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Stefano Fabris
- CNR-IOM
DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Via Bonomea 265, 34136 Trieste, Italy
- SISSA, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
67
|
Cui Q, Hernandez R, Mason SE, Frauenheim T, Pedersen JA, Geiger F. Sustainable Nanotechnology: Opportunities and Challenges for Theoretical/Computational Studies. J Phys Chem B 2016; 120:7297-306. [PMID: 27388532 DOI: 10.1021/acs.jpcb.6b03976] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For assistance in the design of the next generation of nanomaterials that are functional and have minimal health and safety concerns, it is imperative to establish causality, rather than correlations, in how properties of nanomaterials determine biological and environmental outcomes. Due to the vast design space available and the complexity of nano/bio interfaces, theoretical and computational studies are expected to play a major role in this context. In this minireview, we highlight opportunities and pressing challenges for theoretical and computational chemistry approaches to explore the relevant physicochemical processes that span broad length and time scales. We focus discussions on a bottom-up framework that relies on the determination of correct intermolecular forces, accurate molecular dynamics, and coarse-graining procedures to systematically bridge the scales, although top-down approaches are also effective at providing insights for many problems such as the effects of nanoparticles on biological membranes.
Collapse
Affiliation(s)
- Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Sara E Mason
- Department of Chemistry, University of Iowa , E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Univ of Bremen , D-28359 Bremen, Germany
| | - Joel A Pedersen
- Departments of Soil Science, Civil & Environmental Engineering, and Chemistry, University of Wisconsin-Madison , 1525 Observatory Drive, Madison, Wisconsin 53706, United States
| | - Franz Geiger
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60201, United States
| |
Collapse
|
68
|
Nagata Y, Ohto T, Bonn M, Kühne TD. Surface tension of ab initio liquid water at the water-air interface. J Chem Phys 2016; 144:204705. [DOI: 10.1063/1.4951710] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
69
|
Björneholm O, Hansen MH, Hodgson A, Liu LM, Limmer DT, Michaelides A, Pedevilla P, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz MM, Werner J, Bluhm H. Water at Interfaces. Chem Rev 2016; 116:7698-726. [PMID: 27232062 DOI: 10.1021/acs.chemrev.6b00045] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.
Collapse
Affiliation(s)
- Olle Björneholm
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden
| | - Martin H Hansen
- Technical University of Denmark , 2800 Kongens Lyngby, Denmark.,Department of Chemistry, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Andrew Hodgson
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Li-Min Liu
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom.,Beijing Computational Science Research Center , Beijing, 100193, China
| | - David T Limmer
- Princeton Center for Theoretical Science, Princeton University , Princeton, New Jersey 08544, United States
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom
| | - Philipp Pedevilla
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Huaze Shen
- International Center for Quantum Materials and School of Physics, Peking University , Beijing 100871, China
| | - Gabriele Tocci
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom.,Laboratory for fundamental BioPhotonics, Laboratory of Computational Science and Modeling, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Eric Tyrode
- Department of Chemistry, KTH Royal Institute of Technology , 10044 Stockholm, Sweden
| | - Marie-Madeleine Walz
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden
| | - Josephina Werner
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden.,Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences , Box 7015, 750 07 Uppsala, Sweden
| | - Hendrik Bluhm
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
70
|
von Rudorff GF, Jakobsen R, Rosso KM, Blumberger J. Fast Interconversion of Hydrogen Bonding at the Hematite (001)-Liquid Water Interface. J Phys Chem Lett 2016; 7:1155-1160. [PMID: 26954334 DOI: 10.1021/acs.jpclett.6b00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The interface between transition-metal oxides and aqueous solutions plays an important role in biogeochemistry and photoelectrochemistry, but the atomistic structure is often elusive. Here we report on the surface geometry, solvation structure, and thermal fluctuations of the hydrogen bonding network at the hematite (001)-water interface as obtained from hybrid density functional theory-based molecular dynamics. We find that the protons terminating the surface form binary patterns by either pointing in-plane or out-of-plane. The patterns exist for about 1 ps and spontaneously interconvert in an ultrafast, solvent-driven process within 50 fs. This results in only about half of the terminating protons pointing toward the solvent and being acidic. The lifetimes of all hydrogen bonds formed at the interface are shorter than those in pure liquid water. The solvation structure reported herein forms the basis for a better fundamental understanding of electron transfer coupled to proton transfer reactions at this important interface.
Collapse
Affiliation(s)
| | - Rasmus Jakobsen
- Department of Physics and Astronomy, University College London , London WC1E 6BT, U.K
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London , London WC1E 6BT, U.K
| |
Collapse
|
71
|
Gillan MJ, Alfè D, Michaelides A. Perspective: How good is DFT for water? J Chem Phys 2016; 144:130901. [DOI: 10.1063/1.4944633] [Citation(s) in RCA: 478] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael J. Gillan
- London Centre for Nanotechnology, Gordon St., London WC1H 0AH, United Kingdom
- Thomas Young Centre, University College London, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Dario Alfè
- London Centre for Nanotechnology, Gordon St., London WC1H 0AH, United Kingdom
- Thomas Young Centre, University College London, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom
| | - Angelos Michaelides
- London Centre for Nanotechnology, Gordon St., London WC1H 0AH, United Kingdom
- Thomas Young Centre, University College London, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
72
|
Meng AC, Cheng J, Sprik M. Density Functional Theory Calculation of the Band Alignment of (101̅0) In(x)Ga(1-x)N/Water Interfaces. J Phys Chem B 2016; 120:1928-39. [PMID: 26829439 DOI: 10.1021/acs.jpcb.5b09807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conduction band edge (CBE) and valence band edge (VBE) positions of InxGa1-xN photoelectrodes were computed using density functional theory methods. The band edges of fully solvated GaN and InN model systems were aligned with respect to the standard hydrogen electrode using a molecular dynamics hydrogen electrode scheme applied earlier to TiO2/water interfaces. Similar to the findings for TiO2, we found that the Purdew-Burke-Ernzerhof (PBE) functional gives a VBE potential which is too negative by 1 V. This cathodic bias is largely corrected by application of the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional containing a fraction of Hartree-Fock exchange. The effect of a change of composition was investigated using simplified model systems consisting of vacuum slabs covered on both sides by one monolayer of H2O. The CBE was found to vary linearly with In content. The VBE, in comparison, is much less sensitive to composition. The data show that the band edges straddle the hydrogen and oxygen evolution potentials for In fractions less than 47%. The band gap was found to exceed 2 eV for an In fraction less than 54%.
Collapse
Affiliation(s)
- Andrew C Meng
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom.,Department of Materials Science and Engineering, Stanford University , Stanford, California 94305-4034, United States
| | - Jun Cheng
- Department of Chemistry, University of Aberdeen , Aberdeen AB24 3UE, United Kingdom.,Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Michiel Sprik
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
73
|
Wang Q, Oganov AR, Feya OD, Zhu Q, Ma D. The unexpectedly rich reconstructions of rutile TiO2(011)-(2 × 1) surface and the driving forces behind their formation: an ab initio evolutionary study. Phys Chem Chem Phys 2016; 18:19549-56. [DOI: 10.1039/c6cp01203e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we employ state-of-the-art theoretical approaches to elucidate the structures of the (011) surface of rutile (R-)TiO2.
Collapse
Affiliation(s)
- Qinggao Wang
- Moscow Institute of Physics and Technology
- 9 Institutskiy Lane
- Moscow Region
- Russia
- Department of Physics and Electrical Engineering
| | - Artem R. Oganov
- Moscow Institute of Physics and Technology
- 9 Institutskiy Lane
- Moscow Region
- Russia
- Skolkovo Institute of Science and Technology
| | - Oleg D. Feya
- Moscow Institute of Physics and Technology
- 9 Institutskiy Lane
- Moscow Region
- Russia
| | - Qiang Zhu
- Department of Geosciences and Center for Materials by Design
- Stony Brook University
- Stony Brook
- USA
| | - Dongwei Ma
- Department of Physics and Electrical Engineering
- Anyang Normal University
- People's Republic of China
| |
Collapse
|
74
|
Li YF, Liu ZP. Structure and water oxidation activity of 3dmetal oxides. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2015. [DOI: 10.1002/wcms.1236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ye-Fei Li
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Computational Physical Science (Ministry of Education), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry; Fudan University; Shanghai China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Computational Physical Science (Ministry of Education), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry; Fudan University; Shanghai China
| |
Collapse
|
75
|
Cheng J, Liu X, VandeVondele J, Sprik M. Reductive Hydrogenation of the Aqueous Rutile TiO 2 (110) Surface. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
76
|
Ohto T, Usui K, Hasegawa T, Bonn M, Nagata Y. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function. J Chem Phys 2015; 143:124702. [DOI: 10.1063/1.4931106] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kota Usui
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Taisuke Hasegawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| | - Mischa Bonn
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
77
|
Modulation of protein behavior through light responses of TiO2 nanodots films. Sci Rep 2015; 5:13354. [PMID: 26306638 PMCID: PMC4549798 DOI: 10.1038/srep13354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/23/2015] [Indexed: 12/23/2022] Open
Abstract
In this work, the behavior of protein molecules adsorbed on TiO2 nanodots films are modulated through the light responses of the nanodots. TiO2 nanodots films are first prepared through phase separation induced self assembly. Then, bovine serum albumin (BSA) is adsorbed on TiO2 nanodots films and exposed to ultraviolet (365 nm) illumination. It is found the conformation of surface-bound BSA molecules changes with ultraviolet illumination. Moreover, the BSA molecules conjugate to the surface-bound molecules, which are in the overlayer, are released. The reason is ascribed to that TiO2 nanodots absorb ultraviolet and result in the increase of surface hydroxyl groups on nanodots. Such increase further leads to intensified attraction of -NH3 groups in the surface-bound BSA molecules. That not only changes the conformation of the surface-bound BSA molecules, but also weaken the conjugation between surface-bound molecules and other BSA molecules in the overlayer. Eventually, the overlayer of BSA molecules is released. It is believed that such protein conformation variation and release behavior induced through light responses of TiO2 nanodots are crucial in understanding the biomedical performance of TiO2 nanostructures. Also, it could be widely utilized in tailoring of the materials-protein interactions.
Collapse
|
78
|
Vale G, Franco C, Brunnert AM, Correia dos Santos MM. Adsorption of Cadmium on Titanium Dioxide Nanoparticles in Freshwater Conditions - A Chemodynamic Study. ELECTROANAL 2015. [DOI: 10.1002/elan.201500153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
79
|
Kristoffersen HH, Shea JE, Metiu H. Catechol and HCl Adsorption on TiO2(110) in Vacuum and at the Water-TiO2 Interface. J Phys Chem Lett 2015; 6:2277-2281. [PMID: 26266604 DOI: 10.1021/acs.jpclett.5b00958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Coadsorbed water is often unavoidable in electrochemistry and low-temperature catalysis. In addition, water influences the adsorption of biomolecules on surfaces. We use ab initio DFT molecular dynamics and ground-state calculations to study the adsorption of HCl and catechol on the rutile TiO2(110) surface and at a water-rutile interface. We find that a coadsorbed water film reduces the adsorption energy of both catechol and HCl significantly because water molecules must be displaced from the surface before catechol or HCl can adsorb. The adsorption energy of catechol (or HCl) at the water-rutile interface can be estimated as the adsorption energy in vacuum minus the energy to remove two water molecules (respectively, one water molecule) from the rutile surface in vacuum and place them in liquid water. This estimate predicts the effect of a surface water film on adsorption without the need of molecular dynamics.
Collapse
Affiliation(s)
- Henrik H Kristoffersen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Horia Metiu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
80
|
Liu X, Cheng J, Lu X, Wang R. Surface acidity of quartz: understanding the crystallographic control. Phys Chem Chem Phys 2015; 16:26909-16. [PMID: 25376935 DOI: 10.1039/c4cp02955k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a first principles molecular dynamics (FPMD) study of surface acid chemistry of the two growth surfaces of quartz, (101̄0) (including Alpha and Beta terminations) and (101̄1) facets. The interfacial hydration structures are characterized in detail and the intrinsic pKas of surface silanols are evaluated using the FPMD based vertical energy gap method. The calculated acidity constants reveal that every surface termination shows a bimodal acid-base behavior. It is found that all doubly-protonated forms (i.e. SiOH2) on the three terminations have pKas lower than -2.5, implying that the silanols hardly get protonated in a common pH range. The pKas of surface silanols can be divided into 3 groups. The most acidic silanol is the donor SiOH on the (101̄0)-beta surface (pKa = 4.8), the medium includes the germinal silanol on (101̄0)-alpha and the outer silanol on (101̄1) (pKa = 8.5-9.3) and the least acidic are inner silanols on the (101̄1)-facet, acceptor SiOH on (101̄0)-beta, and the secondly-deprotonated OH (i.e. Si(O-)(OH)) on (101̄0)-alpha (pKa > 11.0). With the pKa values, we discuss the implication for understanding metal cations complexing on quartz surfaces.
Collapse
Affiliation(s)
- Xiandong Liu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | | | | | | |
Collapse
|
81
|
Cheng J, Liu X, VandeVondele J, Sulpizi M, Sprik M. Redox potentials and acidity constants from density functional theory based molecular dynamics. Acc Chem Res 2014; 47:3522-9. [PMID: 25365148 DOI: 10.1021/ar500268y] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONSPECTUS: All-atom methods treat solute and solvent at the same level of electronic structure theory and statistical mechanics. All-atom computation of acidity constants (pKa) and redox potentials is still a challenge. In this Account, we review such a method combining density functional theory based molecular dynamics (DFTMD) and free energy perturbation (FEP) methods. The key computational tool is a FEP based method for reversible insertion of a proton or electron in a periodic DFTMD model system. The free energy of insertion (work function) is computed by thermodynamic integration of vertical energy gaps obtained from total energy differences. The problem of the loss of a physical reference for ionization energies under periodic boundary conditions is solved by comparing with the proton work function computed for the same supercell. The scheme acts as a computational hydrogen electrode, and the DFTMD redox energies can be directly compared with experimental redox potentials. Consistent with the closed shell nature of acid dissociation, pKa estimates computed using the proton insertion/removal scheme are found to be significantly more accurate than the redox potential calculations. This enables us to separate the DFT error from other sources of uncertainty such as finite system size and sampling errors. Drawing an analogy with charged defects in solids, we trace the error in redox potentials back to underestimation of the energy gap of the extended states of the solvent. Accordingly the improvement in the redox potential as calculated by hybrid functionals is explained as a consequence of the opening up of the bandgap by the Hartree-Fock exchange component in hybrids. Test calculations for a number of small inorganic and organic molecules show that the hybrid functional implementation of our method can reproduce acidity constants with an uncertainty of 1-2 pKa units (0.1 eV). The error for redox potentials is in the order of 0.2 V.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Xiandong Liu
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Joost VandeVondele
- Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
| | - Marialore Sulpizi
- Department of Physics, Johannes Gutenberg Universitat, Staudingerweg 7, 55099, Mainz, Germany
| | - Michiel Sprik
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
82
|
Bourikas K, Kordulis C, Lycourghiotis A. Titanium Dioxide (Anatase and Rutile): Surface Chemistry, Liquid–Solid Interface Chemistry, and Scientific Synthesis of Supported Catalysts. Chem Rev 2014; 114:9754-823. [DOI: 10.1021/cr300230q] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kyriakos Bourikas
- School
of Science and Technology, Hellenic Open University, Tsamadou
13-15, GR-26222 Patras, Greece
| | - Christos Kordulis
- Department
of Chemistry, University of Patras, GR-26500 Patras, Greece
- Institute of Chemical Engineering and High-Temperature Chemical Processes (FORTH/ICE-HT), P.O. Box 1414, GR-26500 Patras, Greece
| | | |
Collapse
|
83
|
Cheng J, Liu X, Kattirtzi JA, VandeVondele J, Sprik M. Aligning Electronic and Protonic Energy Levels of Proton-Coupled Electron Transfer in Water Oxidation on Aqueous TiO2. Angew Chem Int Ed Engl 2014; 53:12046-50. [DOI: 10.1002/anie.201405648] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Indexed: 11/06/2022]
|
84
|
Cheng J, Liu X, Kattirtzi JA, VandeVondele J, Sprik M. Aligning Electronic and Protonic Energy Levels of Proton-Coupled Electron Transfer in Water Oxidation on Aqueous TiO2. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
85
|
Cheng J, Sprik M. The electric double layer at a rutile TiO₂ water interface modelled using density functional theory based molecular dynamics simulation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:244108. [PMID: 24861088 DOI: 10.1088/0953-8984/26/24/244108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A fully atomistic model of a compact electric double layer at the rutile TiO2(1 1 0)-water interface is constructed by adding protons to bridging oxygens or removing them from H2O molecules adsorbed on terminal metal cation sites. The surface charge is compensated by F(-) or Na(+) counter ions in outer as well as inner sphere coordination. For each of the protonation states the energy of the TiO2 conduction band minimum is determined relative to the standard hydrogen electrode by computing the free energy for the combined insertion of an electron in the solid and a proton in solution away from the double layer using density functional theory based molecular dynamics methods. Interpreted as electrode potentials, this gives an estimate of the capacitance which is compared to the capacitance obtained from the difference in the average electrostatic potentials in the solid and aqueous phase. When aligned at the point of zero charge these two methods lead to almost identical potential-charge profiles. We find that inner sphere complexes have a slightly larger capacitance (0.4 F m(-2)) compared to outer sphere complexes (0.3 F m(-2)).
Collapse
Affiliation(s)
- J Cheng
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | |
Collapse
|
86
|
Cimas Á, Tielens F, Sulpizi M, Gaigeot MP, Costa D. The amorphous silica-liquid water interface studied by ab initio molecular dynamics (AIMD): local organization in global disorder. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:244106. [PMID: 24863440 DOI: 10.1088/0953-8984/26/24/244106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The structural organization of water at a model of amorphous silica-liquid water interface is investigated by ab initio molecular dynamics (AIMD) simulations at room temperature. The amorphous surface is constructed with isolated, H-bonded vicinal and geminal silanols. In the absence of water, the silanols have orientations that depend on the local surface topology (i.e. presence of concave and convex zones). However, in the presence of liquid water, only the strong inter-silanol H-bonds are maintained, whereas the weaker ones are replaced by H-bonds formed with interfacial water molecules. All silanols are found to act as H-bond donors to water. The vicinal silanols are simultaneously found to be H-bond acceptors from water. The geminal pairs are also characterized by the formation of water H-bonded rings, which could provide special pathways for proton transfer(s) at the interface. The first water layer above the surface is overall rather disordered, with three main domains of orientations of the water molecules. We discuss the similarities and differences in the structural organization of the interfacial water layer at the surface of the amorphous silica and at the surface of the crystalline (0 0 0 1) quartz surface.
Collapse
Affiliation(s)
- Álvaro Cimas
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE UMR CNRS 8587, Université d'Evry val d'Essonne, Blvd F Mitterrand, Bat. Maupertuis, 91025 Evry, France
| | | | | | | | | |
Collapse
|
87
|
De Angelis F, Di Valentin C, Fantacci S, Vittadini A, Selloni A. Theoretical Studies on Anatase and Less Common TiO2 Phases: Bulk, Surfaces, and Nanomaterials. Chem Rev 2014; 114:9708-53. [DOI: 10.1021/cr500055q] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Filippo De Angelis
- Computational
Laboratory for Hybrid Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via Elce di Sotto 8, I-06123 Perugia, Italy
| | - Cristiana Di Valentin
- Dipartimento
di Scienza dei Materiali, Università di Milano-Bicocca, I-20125 Milano, Italy
| | - Simona Fantacci
- Computational
Laboratory for Hybrid Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via Elce di Sotto 8, I-06123 Perugia, Italy
| | - Andrea Vittadini
- Istituto
CNR per l’Energetica e le Interfasi (IENI), c/o Dipartimento
di Scienze Chimiche, Universita’ di Padova, I-35131 Padova, Italy
| | - Annabella Selloni
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
88
|
Mori T, Hamers RJ, Pedersen JA, Cui Q. Integrated Hamiltonian sampling: a simple and versatile method for free energy simulations and conformational sampling. J Phys Chem B 2014; 118:8210-20. [PMID: 24641518 DOI: 10.1021/jp501339t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Motivated by specific applications and the recent work of Gao and co-workers on integrated tempering sampling (ITS), we have developed a novel sampling approach referred to as integrated Hamiltonian sampling (IHS). IHS is straightforward to implement and complementary to existing methods for free energy simulation and enhanced configurational sampling. The method carries out sampling using an effective Hamiltonian constructed by integrating the Boltzmann distributions of a series of Hamiltonians. By judiciously selecting the weights of the different Hamiltonians, one achieves rapid transitions among the energy landscapes that underlie different Hamiltonians and therefore an efficient sampling of important regions of the conformational space. Along this line, IHS shares similar motivations as the enveloping distribution sampling (EDS) approach of van Gunsteren and co-workers, although the ways that distributions of different Hamiltonians are integrated are rather different in IHS and EDS. Specifically, we report efficient ways for determining the weights using a combination of histogram flattening and weighted histogram analysis approaches, which make it straightforward to include many end-state and intermediate Hamiltonians in IHS so as to enhance its flexibility. Using several relatively simple condensed phase examples, we illustrate the implementation and application of IHS as well as potential developments for the near future. The relation of IHS to several related sampling methods such as Hamiltonian replica exchange molecular dynamics and λ-dynamics is also briefly discussed.
Collapse
Affiliation(s)
- Toshifumi Mori
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
89
|
Hassanali AA, Cuny J, Verdolino V, Parrinello M. Aqueous solutions: state of the art in ab initio molecular dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20120482. [PMID: 24516179 DOI: 10.1098/rsta.2012.0482] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The simulation of liquids by ab initio molecular dynamics (AIMD) has been a subject of intense activity over the last two decades. The significant increase in computational resources as well as the development of new and efficient algorithms has elevated this method to the status of a standard quantum mechanical tool that is used by both experimentalists and theoreticians. As AIMD computes the electronic structure from first principles, it is free of ad hoc parametrizations and has thus been applied to a large variety of physical and chemical problems. In particular, AIMD has provided microscopic insight into the structural and dynamical properties of aqueous solutions which are often challenging to probe experimentally. In this review, after a brief theoretical description of the Born-Oppenheimer and Car-Parrinello molecular dynamics formalisms, we show how AIMD has enhanced our understanding of the properties of liquid water and its constituent ions: the proton and the hydroxide ion. Thereafter, a broad overview of the application of AIMD to other aqueous systems, such as solvated organic molecules and inorganic ions, is presented. We also briefly describe the latest theoretical developments made in AIMD, such as methods for enhanced sampling and the inclusion of nuclear quantum effects.
Collapse
Affiliation(s)
- Ali A Hassanali
- Department of Chemistry and Applied Biosciences, ETH Zurich and Università della Svizzera Italiana, , via G. Buffi 13, 6900 Lugano, Switzerland
| | | | | | | |
Collapse
|
90
|
Tocci G, Michaelides A. Solvent-Induced Proton Hopping at a Water-Oxide Interface. J Phys Chem Lett 2014; 5:474-480. [PMID: 24920998 PMCID: PMC4047599 DOI: 10.1021/jz402646c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/15/2014] [Indexed: 05/16/2023]
Abstract
Despite widespread interest, a detailed understanding of the dynamics of proton transfer at interfaces is lacking. Here, we use ab initio molecular dynamics to unravel the connection between interfacial water structure and proton transfer for the widely studied and experimentally well-characterized water-ZnO(101̅0) interface. We find that upon going from a single layer of adsorbed water to a liquid multilayer, changes in the structure are accompanied by a dramatic increase in the proton-transfer rate at the surface. We show how hydrogen bonding and rather specific hydrogen-bond fluctuations at the interface are responsible for the change in the structure and proton-transfer dynamics. The implications of this for the chemical reactivity and for the modeling of complex wet oxide interfaces in general are also discussed.
Collapse
|
91
|
Lv Y, Cheng J, Matthews PD, Holgado JP, Willkomm J, Leskes M, Steiner A, Fenske D, King TC, Wood PT, Gan L, Lambert RM, Wright DS. A study of the optical properties of metal-doped polyoxotitanium cages and the relationship to metal-doped titania. Dalton Trans 2014; 43:8679-89. [DOI: 10.1039/c4dt00555d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
92
|
English NJ, Rahman M, Wadnerkar N, MacElroy JMD. Photo-active and dynamical properties of hematite (Fe2O3)–water interfaces: an experimental and theoretical study. Phys Chem Chem Phys 2014; 16:14445-54. [DOI: 10.1039/c3cp54700k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
Kılıç M, Ensing B. Acidity constants of lumiflavin from first principles molecular dynamics simulations. Phys Chem Chem Phys 2014; 16:18993-9000. [DOI: 10.1039/c4cp01450b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DFT-based molecular dynamics simulations predict the acidity of lumiflavin in different redox states.
Collapse
Affiliation(s)
- Murat Kılıç
- Van't Hoff Institute for Molecular Science
- University of Amsterdam
- Amsterdam, The Netherlands
| | - Bernd Ensing
- Van't Hoff Institute for Molecular Science
- University of Amsterdam
- Amsterdam, The Netherlands
| |
Collapse
|
94
|
Zhao WN, Liu ZP. Mechanism and active site of photocatalytic water splitting on titania in aqueous surroundings. Chem Sci 2014. [DOI: 10.1039/c3sc53385a] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Photocatalytic water oxidation is both phase and surface structure-sensitive due to the heat-driven first-step of O–H bond breaking.
Collapse
Affiliation(s)
- Wei-Na Zhao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry
- Key Laboratory of Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433, China
| | - Zhi-Pan Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry
- Key Laboratory of Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200433, China
| |
Collapse
|
95
|
Mori T, Hamers RJ, Pedersen JA, Cui Q. An Explicit Consideration of Desolvation is Critical to Binding Free Energy Calculations of Charged Molecules at Ionic Surfaces. J Chem Theory Comput 2013; 9:5059-69. [DOI: 10.1021/ct400487e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Toshifumi Mori
- Department
of Chemistry and Theoretical Chemistry Institute, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Robert J. Hamers
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Joel A. Pedersen
- Department of Soil Science, Civil & Environmental Engineering, and Chemistry, University of Wisconsin—Madison, 1525 Observatory Drive, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department
of Chemistry and Theoretical Chemistry Institute, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
96
|
Turci F, Peira E, Corazzari I, Fenoglio I, Trotta M, Fubini B. Crystalline Phase Modulates the Potency of Nanometric TiO2 to Adhere to and Perturb the Stratum Corneum of Porcine Skin under Indoor Light. Chem Res Toxicol 2013; 26:1579-90. [DOI: 10.1021/tx400285j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Francesco Turci
- Dip.
Chimica, “G. Scansetti” Interdepartmental
Center and NIS Excellence Center, University of Torino, via P. Giuria
7, 10125, Torino, Italy
| | - Elena Peira
- Dip.
Scienza e Tecnologia del Farmaco, University of Torino, via P. Giuria
9, 10125, Torino, Italy
| | - Ingrid Corazzari
- Dip.
Chimica, “G. Scansetti” Interdepartmental
Center and NIS Excellence Center, University of Torino, via P. Giuria
7, 10125, Torino, Italy
| | - Ivana Fenoglio
- Dip.
Chimica, “G. Scansetti” Interdepartmental
Center and NIS Excellence Center, University of Torino, via P. Giuria
7, 10125, Torino, Italy
| | - Michele Trotta
- Dip.
Scienza e Tecnologia del Farmaco, University of Torino, via P. Giuria
9, 10125, Torino, Italy
| | - Bice Fubini
- Dip.
Chimica, “G. Scansetti” Interdepartmental
Center and NIS Excellence Center, University of Torino, via P. Giuria
7, 10125, Torino, Italy
| |
Collapse
|
97
|
English NJ. Dynamical properties of physically adsorbed water molecules at the TiO2 rutile-(110) surface. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.07.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
98
|
Bankura A, Klein ML, Carnevale V. Proton affinity of the histidine-tryptophan cluster motif from the influenza A virus from ab initio molecular dynamics. Chem Phys 2013; 422:156-164. [PMID: 25914436 PMCID: PMC4407280 DOI: 10.1016/j.chemphys.2013.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ab initio molecular dynamics calculations have been used to compare and contrast the deprotonation reaction of a histidine residue in aqueous solution with the situation arising in a histidine-tryptophan cluster. The latter is used as a model of the proton storage unit present in the pore of the M2 proton conducting ion channel. We compute potentials of mean force for the dissociation of a proton from the Nδ and Nε positions of the imidazole group to estimate the pKa's. Anticipating our results, we will see that the estimated pKa for the first protonation event of the M2 channel is in good agreement with experimental estimates. Surprisingly, despite the fact that the histidine is partially desolvated in the M2 channel, the affinity for protons is similar to that of a histidine in aqueous solution. Importantly, the electrostatic environment provided by the indoles is responsible for the stabilization of the charged imidazolium.
Collapse
Affiliation(s)
- Arindam Bankura
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L. Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
99
|
Curchod BFE, Rothlisberger U, Tavernelli I. Trajectory-Based Nonadiabatic Dynamics with Time-Dependent Density Functional Theory. Chemphyschem 2013; 14:1314-40. [DOI: 10.1002/cphc.201200941] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 11/11/2022]
|
100
|
Liu X, Sprik M, Cheng J. Hydration, acidity and metal complexing of polysulfide species: A first principles molecular dynamics study. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.01.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|