51
|
Alanzi AR, Parvez MK, Al-Dosari MS. Structure-based virtual identification of natural inhibitors of SARS-CoV-2 and its Delta and Omicron variant proteins. Future Virol 2023; 18:421-438. [PMID: 38051986 PMCID: PMC10241455 DOI: 10.2217/fvl-2022-0184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/23/2023] [Indexed: 11/02/2023]
Abstract
Aim Structure-based identification of natural compounds against SARS-CoV-2, Delta and Omicron target proteins. Materials & methods Several known antiviral natural compounds were subjected to molecular docking and MD simulation against SARS-CoV-2 Mpro, Helicase and Spike, including Delta and Omicron Spikes. Results Of the docked ligands, 20 selected for each complex exhibited overall good binding affinities (-7.79 to -5.06 kcal/mol) with acceptable physiochemistry following Lipinski's rule. Finally, two best ligands from each complex upon simulation showed structural stability and compactness. Conclusion Quercetin-3-acetyl-glucoside, Rutin, Kaempferol, Catechin, Orientin, Obetrioside and Neridienone A were identified as potential inhibitors of SARS-CoV-2 Mpro, Helicase and Spike, while Orientin and Obetrioside also showed good binding affinities with Omicron Spike. Catechin and Neridienone A formed stable complexes with Delta Spike.
Collapse
Affiliation(s)
- Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
52
|
Saleem M, Durani AI, Asari A, Ahmed M, Ahmad M, Yousaf N, Muddassar M. Investigation of antioxidant and antibacterial effects of citrus fruits peels extracts using different extracting agents: Phytochemical analysis with in silico studies. Heliyon 2023; 9:e15433. [PMID: 37113773 PMCID: PMC10126929 DOI: 10.1016/j.heliyon.2023.e15433] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/25/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The peels extracted from various citrus species are major source of phenols, flavonoids and anti-microbial agents. The purpose of this study was a detailed investigation of the phytochemical and pharmacological character of the ethanolic (80%), methanolic and acetone extracts of the peel of local variants of orange (lemon, grape fruit, mousami, fruiter, and shikri malta). The extracts were studied to find out the total phenolic contents (TPC), and total flavonoids (TF) present. The antioxidant activities were assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effect, and the reducing power was determined through free radical scavenging activity (FRAP) assays. The sensitivity of four bacterial strains to peels extracts was examined by applying the diffusion disc on agar medium method. It was found that ethanol was the best extracting agent for TPC and TF in fruit peels under study. The highest TPC (21.33 ± 0.06 mg GAE/g) was quantified in orange peels, whereas fruiter contained the lowest TPC (20.40 ± 0.03 mg GAE/g) in ethanolic extract. The highest amount of TF (2.02 ± 0.08 mg QE/g) was quantified in lemon peels, whereas shikri malta contained lowest quantity of TF (1.04 ± 0.02 mg QE/g). The highest free radical scavenging activity (93.1%) of DPPH was exhibited by lemon peels, whereas the least activity (78.6%) was shown by mousami peels. Ethanolic extract of orange peels demonstrated more reducing power while showing an absorption of 1.98, followed by methanolic (1.11) and acetone (0.81) extracts. The inhibition effect of methanolic extract of lemon peels (inhibition zone = 18 mm) against B. subtilis was considerable and comparable to that of ciprofloxacin. Gas chromatography/mass spectrometry (GC/MS) was used to detect the compounds in ethanolic extract and up to 14 compounds were detected. These compounds were also assessed for their docking scores. Plausible binding modes with polyphenol oxidase and four best compounds were selected for molecular dynamics (MD) simulation to analyze their structural stability with receptor.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | | | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Corresponding author.
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
- Corresponding author.
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- Corresponding author.
| |
Collapse
|
53
|
Yousaf N, Jabeen Y, Imran M, Saleem M, Rahman M, Maqbool A, Iqbal M, Muddassar M. Exploiting the co-crystal ligands shape, features and structure-based approaches for identification of SARS-CoV-2 Mpro inhibitors. J Biomol Struct Dyn 2023; 41:14325-14338. [PMID: 36946192 DOI: 10.1080/07391102.2023.2189478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 03/23/2023]
Abstract
SARS-CoV-2 enters the host cell through the ACE2 receptor and replicates its genome using an RNA-Dependent RNA Polymerase (RDRP). The functional RDRP is released from pro-protein pp1ab by the proteolytic activity of Main protease (Mpro) which is encoded within the viral genome. Due to its vital role in proteolysis of viral polyprotein chains, it has become an attractive potential drug target. We employed a hierarchical virtual screening approach to identify small synthetic protease inhibitors. Statistically optimized molecular shape and color-based features (various functional groups) from co-crystal ligands were used to screen different databases through various scoring schemes. Then, the electrostatic complementarity of screened compounds was matched with the most active molecule to further reduce the hit molecules' size. Finally, five hundred eighty-seven molecules were docked in Mpro catalytic binding site, out of which 29 common best hits were selected based on Glide and FRED scores. Five best-fitting compounds in complex with Mpro were subjected to MD simulations to analyze their structural stability and binding affinities with Mpro using MM/GB(PB)SA models. Modeling results suggest that identified hits can act as the lead compounds for designing better active Mpro inhibitors to enhance the chemical space to combat COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Yaruq Jabeen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Imran
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Muhammad Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Abbas Maqbool
- Department of Biochemistry and Metabolism John Innes Centre, Norwich Research Park, Norwich, UK
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
54
|
Lu W, Liu Y, Gao Y, Geng Q, Gurbani D, Li L, Ficarro SB, Meyer CJ, Sinha D, You I, Tse J, He Z, Ji W, Che J, Kim AY, Yu T, Wen K, Anderson KC, Marto JA, Westover KD, Zhang T, Gray NS. Development of a Covalent Inhibitor of c-Jun N-Terminal Protein Kinase (JNK) 2/3 with Selectivity over JNK1. J Med Chem 2023; 66:3356-3371. [PMID: 36826833 PMCID: PMC11190964 DOI: 10.1021/acs.jmedchem.2c01834] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family, which includes JNK1-JNK3. Interestingly, JNK1 and JNK2 show opposing functions, with JNK2 activity favoring cell survival and JNK1 stimulating apoptosis. Isoform-selective small molecule inhibitors of JNK1 or JNK2 would be useful as pharmacological probes but have been difficult to develop due to the similarity of their ATP binding pockets. Here, we describe the discovery of a covalent inhibitor YL5084, the first such inhibitor that displays selectivity for JNK2 over JNK1. We demonstrated that YL5084 forms a covalent bond with Cys116 of JNK2, exhibits a 20-fold higher Kinact/KI compared to that of JNK1, and engages JNK2 in cells. However, YL5084 exhibited JNK2-independent antiproliferative effects in multiple myeloma cells, suggesting the existence of additional targets relevant in this context. Thus, although not fully optimized, YL5084 represents a useful chemical starting point for the future development of JNK2-selective chemical probes.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
- Lingang Laboratory, Shanghai 200031, China
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yang Gao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Qixiang Geng
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Deepak Gurbani
- Department of Radiation Oncology, Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Lianbo Li
- Department of Radiation Oncology, Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Scott B Ficarro
- Department of Cancer Biology, Blais Proteomics Center, Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Cynthia J Meyer
- Department of Radiation Oncology, Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Dhiraj Sinha
- Department of Radiation Oncology, Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Inchul You
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Jason Tse
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Wenzhi Ji
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Audrey Y Kim
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Tengteng Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Kenneth Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jarrod A Marto
- Department of Cancer Biology, Blais Proteomics Center, Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Kenneth D Westover
- Department of Radiation Oncology, Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
55
|
Trimmer C, Arroyave R, Vuilleumier C, Wu L, Dumer A, DeLaura C, Kim J, Pierce GM, Borisovska M, De Nanteuil F, Emberger M, Varganov Y, Margot C, Rogers ME, Pfister P. Allosteric modulation of a human odorant receptor. Curr Biol 2023; 33:1523-1534.e4. [PMID: 36977419 DOI: 10.1016/j.cub.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Odor perception is first determined by how the myriad of environmental volatiles are detected at the periphery of the olfactory system. The combinatorial activation of dedicated odorant receptors generates enough encoding power for the discrimination of tens of thousands of odorants. Recent studies have revealed that odorant receptors undergo widespread inhibitory modulation of their activity when presented with mixtures of odorants, a property likely required to maintain discrimination and ensure sparsity of the code for complex mixtures. Here, we establish the role of human OR5AN1 in the detection of musks and identify distinct odorants capable of enhancing its activity in binary mixtures. Chemical and pharmacological characterization indicate that specific α-β unsaturated aliphatic aldehydes act as positive allosteric modulators. Sensory experiments show decreased odor detection threshold in humans, suggesting that allosteric modulation of odorant receptors is perceptually relevant and likely adds another layer of complexity to how odors are encoded in the peripheral olfactory system.
Collapse
|
56
|
Baidya ATK, Das B, Devi B, Långström B, Ågren H, Darreh-Shori T, Kumar R. Mechanistic Insight into the Inhibition of Choline Acetyltransferase by Proton Pump Inhibitors. ACS Chem Neurosci 2023; 14:749-765. [PMID: 36749117 DOI: 10.1021/acschemneuro.2c00738] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Various pharmacoepidemiological investigational studies have indicated that Proton Pump Inhibitors (PPIs) may increase the likelihood of developing Alzheimer's disease (AD) and non-AD related dementias. Previously, we have reported the inhibition of the acetylcholine biosynthesizing enzyme choline acetyltransferase (ChAT) by PPIs, for which omeprazole, lansoprazole, and pantoprazole exhibited IC50 values of 0.1, 1.5, and 5.3 μM, respectively. In this study we utilize a battery of computational tools to perceive a mechanistic insight into the molecular interaction of PPIs with the ChAT binding pocket that may further help in designing novel ChAT ligands. Various in-silico tools make it possible for us to elucidate the binding interaction, conformational stability, and dynamics of the protein-ligand complexes within a 200 ns time frame. Further, the binding free energies for the PPI-ChAT complexes were explored. The results suggest that the PPIs exhibit equal or higher binding affinity toward the ChAT catalytic tunnel and are stable throughout the simulated time and that the pyridine ring of the PPIs interacts primarily with the catalytic residue His324. A free energy landscape analysis showed that the folding process was linear, and the residue interaction network analysis can provide insight into the roles of various amino acid residues in stabilization of the PPIs in the ChAT binding pocket. As a major factor for the onset of Alzheimer's disease is linked to cholinergic dysfunction, our previous and the present findings give clear insight into the PPI interaction with ChAT. The scaffold can be further simplified to develop novel ChAT ligands, which can also be used as ChAT tracer probes for the diagnosis of cholinergic dysfunction and to initiate timely therapeutic interventions to prevent or delay the progression of AD.
Collapse
Affiliation(s)
- Anurag T K Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005 U.P., India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005 U.P., India
| | - Bharti Devi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005 U.P., India
| | - Bengt Långström
- Department of Chemistry, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, NEO, Eighth Floor, 141 52 Stockholm, Sweden
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005 U.P., India
| |
Collapse
|
57
|
Ganji M, Bakhshi S, Shoari A, Ahangari Cohan R. Discovery of potential FGFR3 inhibitors via QSAR, pharmacophore modeling, virtual screening and molecular docking studies against bladder cancer. J Transl Med 2023; 21:111. [PMID: 36765337 PMCID: PMC9913026 DOI: 10.1186/s12967-023-03955-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Fibroblast growth factor receptor 3 is known as a favorable aim in vast range of cancers, particularly in bladder cancer treatment. Pharmacophore and QSAR modeling approaches are broadly utilized for developing novel compounds for the determination of inhibitory activity versus the biological target. In this study, these methods employed to identify FGFR3 potential inhibitors. METHODS To find the potential compounds for bladder cancer targeting, ZINC and NCI databases were screened. Pharmacophore and QSAR modeling of FGFR3 inhibitors were utilized for dataset screening. Then, with regard to several factors such as Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties and Lipinski's Rule of Five, the recognized compounds were filtered. In further step, utilizing the flexible docking technique, the obtained compounds interactions with FGFR3 were analyzed. RESULTS The best five compounds, namely ZINC09045651, ZINC08433190, ZINC00702764, ZINC00710252 and ZINC00668789 were selected for Molecular Dynamics (MD) studies. Off-targeting of screened compounds was also investigated through CDD search and molecular docking. MD outcomes confirmed docking investigations and revealed that five selected compounds could make steady interactions with the FGFR3 and might have effective inhibitory potencies on FGFR3. CONCLUSION These compounds can be considered as candidates for bladder cancer therapy with improved therapeutic properties and less adverse effects.
Collapse
Affiliation(s)
- Mahmoud Ganji
- grid.412266.50000 0001 1781 3962Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- grid.411705.60000 0001 0166 0922Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoari
- grid.420169.80000 0000 9562 2611Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316543551, Iran.
| |
Collapse
|
58
|
Spectroscopic, Electronic Properties Analysis for 2, 6-Bis (phenylamino)-4-(iminophenyl) benzoquinone molecule and Molecular Docking Clarification for its Anticancer Activity Detected by Strong Inhibition of NQO1 enzyme. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
59
|
Cui W, Dong J, Wang S, Vogel H, Zou R, Yuan S. Molecular basis of ligand selectivity for melatonin receptors. RSC Adv 2023; 13:4422-4430. [PMID: 36760312 PMCID: PMC9891099 DOI: 10.1039/d2ra06693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Sleep disorders in adults are related to adverse health effects such as reduced quality of life and increased mortality. About 30-40% of adults are suffering from different sleep disorders. The human melatonin receptors (MT1 and MT2) are family A G protein-coupled receptors that respond to the neurohormone melatonin MEL which regulates circadian rhythm and sleep. Many efforts have been made to develop drugs targeting melatonin receptors to treat insomnia, circadian rhythm disorders, and even cancer. However, designing subtype-selective melatonergic drugs remains challenging due to their high similarities in both sequences and structures. MEL (a function-selective compound with a bulky β-naphthyl group) behaves as an MT2-selective antagonist, whereas it is an agonist of MT1. Here, molecular dynamics simulations were used to investigate the ligand selectivity of MT receptors at the atomic level. We found that the binding conformation of MEL differs in different melatonin receptors. In MT1, the naphthalene ring of MEL forms a structure perpendicular to the membrane surface. In contrast, there is a 130° angle between the naphthalene ring of MEL and the membrane surface in MT2. Because of this conformational difference, the MEL leads to a constant water channel in MT1 which activates the receptor. However, MEL hinders the formation of continuous water channels, resulting in an inactive state of MT2. Furthermore, we found that A1173.29 in MT2 is a crucial amino acid capable of hindering the conformational flip of the MEL molecule. These results, coupled with previous functional data, reveal that although MT1 and MT2 share highly similar orthosteric ligand-binding pockets, they also display distinctive features that could be used to design selective compounds. Our findings provide new insights into functionally selective melatonergic drug development for sleep disorders.
Collapse
Affiliation(s)
- Wenqiang Cui
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Junlin Dong
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Shiyu Wang
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Horst Vogel
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Rongfeng Zou
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Shuguang Yuan
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
60
|
Maschietto F, Qiu T, Wang J, Shi Y, Allen B, Lisi GP, Lolis E, Batista VS. Valproate-coenzyme A conjugate blocks opening of receptor binding domains in the spike trimer of SARS-CoV-2 through an allosteric mechanism. Comput Struct Biotechnol J 2023; 21:1066-1076. [PMID: 36688026 PMCID: PMC9841741 DOI: 10.1016/j.csbj.2023.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The receptor-binding domains (RBDs) of the SARS-CoV-2 spike trimer exhibit "up" and "down" conformations often targeted by neutralizing antibodies. Only in the "up" configuration can RBDs bind to the ACE2 receptor of the host cell and initiate the process of viral multiplication. Here, we identify a lead compound (3-oxo-valproate-coenzyme A conjugate or Val-CoA) that stabilizes the spike trimer with RBDs in the down conformation. Val-CoA interacts with three R408 residues, one from each RBD, which significantly reduces the inter-subunit R408-R408 distance by ∼ 13 Å and closes the central pore formed by the three RBDs. Experimental evidence is presented that R408 is part of a triggering mechanism that controls the prefusion to postfusion state transition of the spike trimer. By stabilizing the RBDs in the down configuration, this and other related compounds can likely attenuate viral transmission. The reported findings for binding of Val-CoA to the spike trimer suggest a new approach for the design of allosteric antiviral drugs that do not have to compete for specific virus-receptor interactions but instead hinder the conformational motion of viral membrane proteins essential for interaction with the host cell. Here, we introduce an approach to target the spike protein by identifying lead compounds that stabilize the RBDs in the trimeric "down" configuration. When these compounds trimerize monomeric RBD immunogens as co-immunogens, they could also induce new types of non-ACE2 blocking antibodies that prevent local cell-to-cell transmission of the virus, providing a novel approach for inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
| | - Tianyin Qiu
- Department of Chemistry, Yale University, New Haven, CT 06520-8449, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Yuanjun Shi
- Department of Chemistry, Yale University, New Haven, CT 06520-8449, USA
| | - Brandon Allen
- Department of Chemistry, Yale University, New Haven, CT 06520-8449, USA
| | - George P. Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Elias Lolis
- Department of Pharmacology, Yale University, New Haven, CT 06520-8066, USA
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, CT 06520-8449, USA
| |
Collapse
|
61
|
Sathiyamani B, Daniel EA, Ansar S, Esakialraj BH, Hassan S, Revanasiddappa PD, Keshavamurthy A, Roy S, Vetrivel U, Hanna LE. Structural analysis and molecular dynamics simulation studies of HIV-1 antisense protein predict its potential role in HIV replication and pathogenesis. Front Microbiol 2023; 14:1152206. [PMID: 37020719 PMCID: PMC10067880 DOI: 10.3389/fmicb.2023.1152206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
The functional significance of the HIV-1 Antisense Protein (ASP) has been a paradox since its discovery. The expression of this protein in HIV-1-infected cells and its involvement in autophagy, transcriptional regulation, and viral latency have sporadically been reported in various studies. Yet, the definite role of this protein in HIV-1 infection remains unclear. Deciphering the 3D structure of HIV-1 ASP would throw light on its potential role in HIV lifecycle and host-virus interaction. Hence, using extensive molecular modeling and dynamics simulation for 200 ns, we predicted the plausible 3D-structures of ASP from two reference strains of HIV-1 namely, Indie-C1 (subtype-C) and NL4-3 (subtype-B) so as to derive its functional implication through structural domain analysis. In spite of sequence and structural differences in subtype B and C ASP, both structures appear to share common domains like the Von Willebrand Factor Domain-A (VWFA), Integrin subunit alpha-X (ITGSX), and ETV6-Transcriptional repressor, thereby reiterating the potential role of HIV-1 ASP in transcriptional repression and autophagy, as reported in earlier studies. Gromos-based cluster analysis of the centroid structures also reassured the accuracy of the prediction. This is the first study to elucidate a highly plausible structure for HIV-1 ASP which could serve as a feeder for further experimental validation studies.
Collapse
Affiliation(s)
- Balakumaran Sathiyamani
- Department of Virology and Biotechnology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- University of Madras, Chennai, India
| | - Evangeline Ann Daniel
- Department of Virology and Biotechnology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- University of Madras, Chennai, India
| | - Samdani Ansar
- Center for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Bennett Henzeler Esakialraj
- Department of Virology and Biotechnology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Sameer Hassan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Amrutha Keshavamurthy
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| | - Sujata Roy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- Department of Virology and Biotechnology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- *Correspondence: Luke Elizabeth Hanna, ; Umashankar Vetrivel,
| | - Luke Elizabeth Hanna
- Department of Virology and Biotechnology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- *Correspondence: Luke Elizabeth Hanna, ; Umashankar Vetrivel,
| |
Collapse
|
62
|
Yadav PR, Syed HB, Pindi PK. An in-silico investigation of fluoride ions impact on pancreatic lipase. J Cell Biochem 2023; 124:146-155. [PMID: 36479725 DOI: 10.1002/jcb.30355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Fluorine is a halogen beneficial to teeth and bones at a lower concentration. But in excess, it is a toxin and causes adverse effects. Fluoride is toxic to enzymes generally when it inhibits the enzyme activity involved in metabolic pathways. Here we study invitro and invivo findings on the interaction of fluoride on the enzymes Aconitase, Adenylyl cyclase, Arginase, Cytochrome-c-oxidase, Glucose-6-phosphatase, Protein phosphatase, Succinate dehydrogenase from liver and lipase from pancreas by using molecular docking and simulations to gain insights into the mechanism by which fluoride modifies the activity of pancreatic lipase. our molecular modeling and docking studies identified that lipase is the most strongly inhibited enzyme compared to other enzymes mentioned above with -0.42 Kcal/mol binding energy and 495.78 milli molar of predicted IC50 value with interaction with Phe227 residue. To further validate this, we have taken the lipase enzyme in presence of fluoride ions for molecular dynamic simulations of 100 ns. To analyze the impact of fluoride ions on the lipase dynamics, two different simulations of 100 ns each were performed. In one simulation, we have simulated lipase in its apo form in the aqueous environment without any fluoride ions and in another simulation lipase in its apo form was kept in the presence of randomly placed fluoride ions countered with sodium ions to maintain the pH as neutral. The simulation analysis revealed that major fluctuations in lipase was observed between 230 and 300 residues in presence of fluoride ions. Interestingly, this is the exact location of the "lid" like acting loop of residues responsible for the inward/outward movement of the substrate to lipase catalytically active site containing catalytic triad of residues Leu153, His263, and Pro177. His263 residue random flip is believed to be the critical incident that causes the substrate's inward/outward movement at the catalytically active site coordinated by "lid" opening, providing enough space for the substrate.
Collapse
Affiliation(s)
- Pulala Raghuveer Yadav
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | | - Pavan Kumar Pindi
- Department of Microbiology, Palamuru University, Mahabubnagar, Telangana, India
| |
Collapse
|
63
|
Dey SK, Saini M, Dhembla C, Bhatt S, Rajesh AS, Anand V, Das HK, Kundu S. Suramin, penciclovir, and anidulafungin exhibit potential in the treatment of COVID-19 via binding to nsp12 of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:14067-14083. [PMID: 34784490 DOI: 10.1080/07391102.2021.2000498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
COVID-19, for which no confirmed therapeutic agents are available, has claimed over 48,14,000 lives globally. A feasible and quicker method to resolve this problem may be 'drug repositioning'. We investigated selected FDA and WHO-EML approved drugs based on their previously promising potential as antivirals, antibacterials or antifungals. These drugs were docked onto the nsp12 protein, which reigns the RNA-dependent RNA polymerase activity of SARS-CoV-2, a key therapeutic target for coronaviruses. Docked complexes were reevaluated using MM-GBSA analysis and the top three inhibitor-protein complexes were subjected to 100 ns long molecular dynamics simulation followed by another round of MM-GBSA analysis. The RMSF plots, binding energies and the mode of physicochemical interaction of the active site of the protein with the drugs were evaluated. Suramin, Penciclovir, and Anidulafungin were found to bind to nsp12 with similar binding energies as that of Remdesivir, which has been used as a therapy for COVID-19. In addition, recent experimental evidences indicate that these drugs exhibit antiviral efficacy against SARS-CoV-2. Such evidence, along with the significant and varied physical interactions of these drugs with the key viral enzyme outlined in this investigation, indicates that they might have a prospective therapeutic potential in the treatment of COVID-19 as monotherapy or combination therapy with Remdesivir.
Collapse
Affiliation(s)
- Sanjay Kumar Dey
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, New Jersey, USA.,Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Manisha Saini
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - A Sai Rajesh
- Department of Biosciences and Biotechnology, Fakir Mohan University, Odisha, India
| | - Varnita Anand
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | | | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
64
|
Thongdee P, Hanwarinroj C, Pakamwong B, Kamsri P, Punkvang A, Leanpolchareanchai J, Ketrat S, Saparpakorn P, Hannongbua S, Ariyachaokun K, Suttisintong K, Sureram S, Kittakoop P, Hongmanee P, Santanirand P, Mukamolova GV, Blood RA, Takebayashi Y, Spencer J, Mulholland AJ, Pungpo P. Virtual Screening Identifies Novel and Potent Inhibitors of Mycobacterium tuberculosis PknB with Antibacterial Activity. J Chem Inf Model 2022; 62:6508-6518. [PMID: 35994014 DOI: 10.1021/acs.jcim.2c00531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis protein kinase B (PknB) is essential to mycobacterial growth and has received considerable attention as an attractive target for novel anti-tuberculosis drug development. Here, virtual screening, validated by biological assays, was applied to select candidate inhibitors of M. tuberculosis PknB from the Specs compound library (www.specs.net). Fifteen compounds were identified as hits and selected for in vitro biological assays, of which three indoles (2, AE-848/42799159; 4, AH-262/34335013; 10, AP-124/40904362) inhibited growth of M. tuberculosis H37Rv with minimal inhibitory concentrations of 6.2, 12.5, and 6.2 μg/mL, respectively. Two compounds, 2 and 10, inhibited M. tuberculosis PknB activity in vitro, with IC50 values of 14.4 and 12.1 μM, respectively, suggesting this to be the likely basis of their anti-tubercular activity. In contrast, compound 4 displayed anti-tuberculosis activity against M. tuberculosis H37Rv but showed no inhibition of PknB activity (IC50 > 128 μM). We hypothesize that hydrolysis of its ethyl ester to a carboxylate moiety generates an active species that inhibits other M. tuberculosis enzymes. Molecular dynamics simulations of modeled complexes of compounds 2, 4, and 10 bound to M. tuberculosis PknB indicated that compound 4 has a lower affinity for M. tuberculosis PknB than compounds 2 and 10, as evidenced by higher calculated binding free energies, consistent with experiment. Compounds 2 and 10 therefore represent candidate inhibitors of M. tuberculosis PknB that provide attractive starting templates for optimization as anti-tubercular agents.
Collapse
Affiliation(s)
- Paptawan Thongdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Chayanin Hanwarinroj
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Bongkochawan Pakamwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | | | - Sombat Ketrat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Kanchiyaphat Ariyachaokun
- Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani, 12120, Thailand
| | - Sanya Sureram
- Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10210, Thailand
| | - Poonpilas Hongmanee
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Pitak Santanirand
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, United Kingdom
| | - Rosemary A Blood
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
65
|
Saeed Q, Ahmad F, Yousaf N, Ali H, Tirmazi SAAS, Alshammari A, Kausar N, Ahmed M, Imran M, Jamshed M, Alharbi M, Muddassar M. In Silico and In Vivo Evaluation of Synthesized SCP-2 Inhibiting Compounds on Life Table Parameters of Helicoverpa armigera (Hübner). INSECTS 2022; 13:1169. [PMID: 36555079 PMCID: PMC9782802 DOI: 10.3390/insects13121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
For environment-friendly, safe and nonpersistent chemical control of a significant polyphagous insect pest, Helicoverpa armigera, discovery of growth-regulating xenobiotics can offer a sustainable alternative to conventional insecticides. For this purpose, chemically synthesized compounds to inhibit sterol carrier protein (SCP-2) function using in silico and in vivo assays were evaluated to estimate their impact on the survivals and lifetable indices of H. armigera. From nine chemically synthesized compounds, OA-02, OA-06 and OA-09 were selected for this study based on binding poses mimicking cholesterol, a natural substrate of sterol carrier protein and molecular dynamics simulations. In vivo bioassays revealed that all compounds significantly reduced the larval and pupal weight accumulations and stadia lengths. Subsequently, the pupal periods were prolonged upon treatment with higher doses of the selected compounds. Moreover, OA-09 significantly reduced pupation and adult emergence rates as well as the fertility of female moths; however, fecundity remained unaffected, in general. The life table parameters of H. armigera were significantly reduced when treated with OA-09 at higher doses. The population treated with 450 μM of OA-09 had the least net reproductive rates (Ro) and gross reproductive rate (GRR) compared to the control population. The same compound resulted in a declining survival during the early stages of development coupled with reduced larval and pupal durations, and fertility. These results have a significant implication for developing an effective and sustainable chemical treatment against H. armigera infestation.
Collapse
Affiliation(s)
- Qamar Saeed
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Faheem Ahmad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Haider Ali
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Ryadh 11451, Saudi Arabia
| | - Naeema Kausar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore 54000, Pakistan
| | - Muhammad Imran
- KAM-School of Life Sciences, FC College (A Chartered University), Lahore 54000, Pakistan
| | - Muhammad Jamshed
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Ryadh 11451, Saudi Arabia
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| |
Collapse
|
66
|
Discovering new potential inhibitors to SARS-CoV-2 RNA dependent RNA polymerase (RdRp) using high throughput virtual screening and molecular dynamics simulations. Sci Rep 2022; 12:19986. [PMID: 36411383 PMCID: PMC9676757 DOI: 10.1038/s41598-022-24695-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
RNA dependent RNA polymerase (RdRp), is an essential in the RNA replication within the life cycle of the severely acute respiratory coronavirus-2 (SARS-CoV-2), causing the deadly respiratory induced sickness COVID-19. Remdesivir is a prodrug that has seen some success in inhibiting this enzyme, however there is still the pressing need for effective alternatives. In this study, we present the discovery of four non-nucleoside small molecules that bind favorably to SARS-CoV-2 RdRp over the active form of the popular drug remdesivir (RTP) and adenosine triphosphate (ATP) by utilizing high-throughput virtual screening (HTVS) against the vast ZINC compound database coupled with extensive molecular dynamics (MD) simulations. After post-trajectory analysis, we found that the simulations of complexes containing both ATP and RTP remained stable for the duration of their trajectories. Additionally, it was revealed that the phosphate tail of RTP was stabilized by both the positive amino acid pocket and magnesium ions near the entry channel of RdRp which includes residues K551, R553, R555 and K621. It was also found that residues D623, D760, and N691 further stabilized the ribose portion of RTP with U10 on the template RNA strand forming hydrogen pairs with the adenosine motif. Using these models of RdRp, we employed them to screen the ZINC database of ~ 17 million molecules. Using docking and drug properties scoring, we narrowed down our selection to fourteen candidates. These were subjected to 200 ns simulations each underwent free energy calculations. We identified four hit compounds from the ZINC database that have similar binding poses to RTP while possessing lower overall binding free energies, with ZINC097971592 having a binding free energy two times lower than RTP.
Collapse
|
67
|
Wang X, Shuai J, Kong Y, Li Z, Li W, Cheng J. Mechanism of the distinct toxicity level of imidacloprid and thiacloprid against honey bees: An in silico study based on cytochrome P450 9Q3. J Mol Graph Model 2022; 116:108257. [PMID: 35816906 DOI: 10.1016/j.jmgm.2022.108257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
The honey bee, Apis mellifera, shows variation in sensitivity to imidacloprid and thiacloprid, which does not reside at the target site but rather in the rapidly oxidative metabolism mediated by P450s (such as a single P450, CYP9Q3). An in silico study was conducted to investigate the various metabolism of imidacloprid and thiacloprid. The binding potency of thiacloprid was stronger and a stable π-π interaction with Phe121 and the N-H⋯N hydrogen bond with Asn214 are found in the CYP9Q3-thiacloprid system but absent in imidacloprid, which might affect the potential metabolic activity. Moreover, the values of highest occupied molecular orbit (HOMO) energy and the vertical ionization potential (IP) of two compounds demonstrated that thiacloprid is more likely to oxidation. The findings revealed the probable binding modes of imidacloprid and thiacloprid with CYP9Q3 and might facilitate future design of the low bee toxicity neonicotinoid insecticides.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Shuai
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijin Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
68
|
Günther J, Hillig RC, Zimmermann K, Kaulfuss S, Lemos C, Nguyen D, Rehwinkel H, Habgood M, Lechner C, Neuhaus R, Ganzer U, Drewes M, Chai J, Bouché L. BAY-069, a Novel (Trifluoromethyl)pyrimidinedione-Based BCAT1/2 Inhibitor and Chemical Probe. J Med Chem 2022; 65:14366-14390. [PMID: 36261130 PMCID: PMC9661481 DOI: 10.1021/acs.jmedchem.2c00441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The branched-chain
amino acid transaminases (BCATs) are
enzymes
that catalyze the first reaction of catabolism of the essential branched-chain
amino acids to branched-chain keto acids to form glutamate. They are
known to play a key role in different cancer types. Here, we report
a new structural class of BCAT1/2 inhibitors, (trifluoromethyl)pyrimidinediones,
identified by a high-throughput screening campaign and subsequent
optimization guided by a series of X-ray crystal structures. Our potent
dual BCAT1/2 inhibitor BAY-069 displays high cellular activity and
very good selectivity. Along with a negative control (BAY-771), BAY-069
was donated as a chemical probe to the Structural Genomics Consortium.
Collapse
Affiliation(s)
- Judith Günther
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353Berlin, Germany
| | - Roman C Hillig
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353Berlin, Germany
| | - Katja Zimmermann
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Aprather Weg 18a, 42113Wuppertal, Germany
| | - Stefan Kaulfuss
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353Berlin, Germany
| | - Clara Lemos
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353Berlin, Germany
| | - Duy Nguyen
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353Berlin, Germany
| | - Hartmut Rehwinkel
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353Berlin, Germany
| | - Matthew Habgood
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, OxfordshireOX14 4RZ, U.K
| | - Christian Lechner
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353Berlin, Germany
| | - Roland Neuhaus
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353Berlin, Germany
| | - Ursula Ganzer
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353Berlin, Germany
| | - Mark Drewes
- Research & Development BCS, Bayer AG, Alfred-Nobel-Strasse 50, 40789Monheim, Germany
| | - Jijie Chai
- School of Life Sciences, Tsinghua University, 100084Beijing, China
| | - Léa Bouché
- Research & Development, Pharmaceuticals, Bayer Pharma AG, Müllerstrasse 178, 13353Berlin, Germany
| |
Collapse
|
69
|
Grillone K, Riillo C, Rocca R, Ascrizzi S, Spanò V, Scionti F, Polerà N, Maruca A, Barreca M, Juli G, Arbitrio M, Di Martino MT, Caracciolo D, Tagliaferri P, Alcaro S, Montalbano A, Barraja P, Tassone P. The New Microtubule-Targeting Agent SIX2G Induces Immunogenic Cell Death in Multiple Myeloma. Int J Mol Sci 2022; 23:ijms231810222. [PMID: 36142133 PMCID: PMC9499408 DOI: 10.3390/ijms231810222] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/31/2022] Open
Abstract
Microtubule-targeting agents (MTAs) are effective drugs for cancer treatment. A novel diaryl [1,2]oxazole class of compounds binding the colchicine site was synthesized as cis-restricted-combretastatin-A-4-analogue and then chemically modified to have improved solubility and a wider therapeutic index as compared to vinca alkaloids and taxanes. On these bases, a new class of tricyclic compounds, containing the [1,2]oxazole ring and an isoindole moiety, has been synthetized, among which SIX2G emerged as improved MTA. Several findings highlighted the ability of some chemotherapeutics to induce immunogenic cell death (ICD), which is defined by the cell surface translocation of Calreticulin (CALR) via dissociation of the PP1/GADD34 complex. In this regard, we computationally predicted the ability of SIX2G to induce CALR exposure by interacting with the PP1 RVxF domain. We then assessed both the potential cytotoxic and immunogenic activity of SIX2G on in vitro models of multiple myeloma (MM), which is an incurable hematological malignancy characterized by an immunosuppressive milieu. We found that the treatment with SIX2G inhibited cell viability by inducing G2/M phase cell cycle arrest and apoptosis. Moreover, we observed the increase of hallmarks of ICD such as CALR exposure, ATP release and phospho-eIF2α protein level. Through co-culture experiments with immune cells, we demonstrated the increase of (i) CD86 maturation marker on dendritic cells, (ii) CD69 activation marker on cytotoxic T cells, and (iii) phagocytosis of tumor cells following treatment with SIX2G, confirming the onset of an immunogenic cascade. In conclusion, our findings provide a framework for further development of SIX2G as a new potential anti-MM agent.
Collapse
Affiliation(s)
- Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Rocca
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Net4Science s.r.l., Academic Spinoff, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Francesca Scionti
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), 98122 Messina, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Annalisa Maruca
- Net4Science s.r.l., Academic Spinoff, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), 98122 Messina, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science s.r.l., Academic Spinoff, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), 88100 Catanzaro, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (A.M.); (P.T.); Tel.: +39-0912-389682 (A.M.); +39-0961-364-7029 (P.T.)
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (A.M.); (P.T.); Tel.: +39-0912-389682 (A.M.); +39-0961-364-7029 (P.T.)
| |
Collapse
|
70
|
Cui JJ, Li WJ, Wang CL, Huang YQ, Lin W, Zhou B, Yue JM. Antimicrobial abietane-type diterpenoids from Torreya grandis. PHYTOCHEMISTRY 2022; 201:113278. [PMID: 35716715 DOI: 10.1016/j.phytochem.2022.113278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Twelve undescribed abietane-type diterpenoids, along with ten known analogues were isolated from the twigs and leaves of Torreya grandis var. merrillii Hu. Their structures were characterized by spectroscopic data analyses, single-crystal X-ray diffraction, and ECD spectra. Torgranols A-C possess three different architectures shaped via a common 6,7-seco-procedure and subsequent ring formations. In particular, torgranol A represents the first example of a 6,7-seco-abietane diterpenoid featuring a unique oxygen bridge between C-3 and C-6. The biosynthetic pathways for torgranols A-C were proposed. Some compounds displayed antimicrobial activities against Mycobacterium tuberculosis and/or Staphylococcus aureus.
Collapse
Affiliation(s)
- Jiao-Jiao Cui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Wei-Jia Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Cheng-Lei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Yi-Qi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China.
| | - Jian-Min Yue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
71
|
Barreca M, Spanò V, Rocca R, Bivacqua R, Abel AC, Maruca A, Montalbano A, Raimondi MV, Tarantelli C, Gaudio E, Cascione L, Rinaldi A, Bai R, Steinmetz M, Prota A, Alcaro S, Hamel E, Bertoni F, Barraja P. Development of [1,2]oxazoloisoindoles tubulin polymerization inhibitors: Further chemical modifications and potential therapeutic effects against lymphomas. Eur J Med Chem 2022; 243:114744. [DOI: 10.1016/j.ejmech.2022.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
|
72
|
On the Rapid Calculation of Binding Affinities for Antigen and Antibody Design and Affinity Maturation Simulations. Antibodies (Basel) 2022; 11:antib11030051. [PMID: 35997345 PMCID: PMC9397028 DOI: 10.3390/antib11030051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
The accurate and efficient calculation of protein-protein binding affinities is an essential component in antibody and antigen design and optimization, and in computer modeling of antibody affinity maturation. Such calculations remain challenging despite advances in computer hardware and algorithms, primarily because proteins are flexible molecules, and thus, require explicit or implicit incorporation of multiple conformational states into the computational procedure. The astronomical size of the amino acid sequence space further compounds the challenge by requiring predictions to be computed within a short time so that many sequence variants can be tested. In this study, we compare three classes of methods for antibody/antigen (Ab/Ag) binding affinity calculations: (i) a method that relies on the physical separation of the Ab/Ag complex in equilibrium molecular dynamics (MD) simulations, (ii) a collection of 18 scoring functions that act on an ensemble of structures created using homology modeling software, and (iii) methods based on the molecular mechanics-generalized Born surface area (MM-GBSA) energy decomposition, in which the individual contributions of the energy terms are scaled to optimize agreement with the experiment. When applied to a set of 49 antibody mutations in two Ab/HIV gp120 complexes, all of the methods are found to have modest accuracy, with the highest Pearson correlations reaching about 0.6. In particular, the most computationally intensive method, i.e., MD simulation, did not outperform several scoring functions. The optimized energy decomposition methods provided marginally higher accuracy, but at the expense of requiring experimental data for parametrization. Within each method class, we examined the effect of the number of independent computational replicates, i.e., modeled structures or reinitialized MD simulations, on the prediction accuracy. We suggest using about ten modeled structures for scoring methods, and about five simulation replicates for MD simulations as a rule of thumb for obtaining reasonable convergence. We anticipate that our study will be a useful resource for practitioners working to incorporate binding affinity calculations within their protein design and optimization process.
Collapse
|
73
|
Rani P, Kiran, Chahal S, Priyanka, Kataria R, Kumar P, Kumar S, Sindhu J. Unravelling the thermodynamics and binding interactions of bovine serum albumin (BSA) with thiazole based carbohydrazide: Multi-spectroscopic, DFT and molecular dynamics approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
74
|
Identification of potential inhibitors for Hematopoietic Prostaglandin D2 synthase: Computational modeling and molecular dynamics simulations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
75
|
Hu X, Lenz-Himmer MO, Baldauf C. Better force fields start with better data: A data set of cation dipeptide interactions. Sci Data 2022; 9:327. [PMID: 35715420 PMCID: PMC9205945 DOI: 10.1038/s41597-022-01297-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
We present a data set from a first-principles study of amino-methylated and acetylated (capped) dipeptides of the 20 proteinogenic amino acids - including alternative possible side chain protonation states and their interactions with selected divalent cations (Ca2+, Mg2+ and Ba2+). The data covers 21,909 stationary points on the respective potential-energy surfaces in a wide relative energy range of up to 4 eV (390 kJ/mol). Relevant properties of interest, like partial charges, were derived for the conformers. The motivation was to provide a solid data basis for force field parameterization and further applications like machine learning or benchmarking. In particular the process of creating all this data on the same first-principles footing, i.e. density-functional theory calculations employing the generalized gradient approximation with a van der Waals correction, makes this data suitable for first principles data-driven force field development. To make the data accessible across domain borders and to machines, we formalized the metadata in an ontology.
Collapse
Affiliation(s)
- Xiaojuan Hu
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.
| | | | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.
| |
Collapse
|
76
|
Zhang YY, Li LH, Wang Y, Wang H, Xu ZL, Tian YX, Sun YM, Yang JY, Shen YD. Ultrasensitive and rapid colorimetric detection of paraquat via a high specific VHH nanobody. Biosens Bioelectron 2022; 205:114089. [DOI: 10.1016/j.bios.2022.114089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022]
|
77
|
Wu PQ, Cui YS, Han XY, Wang C, An PP, Zhou JS, Ren YH, Liu ZL, Lin RT, Zhou B, Yue JM. Diterpenoids from Sauropus spatulifolius Leaves with Antimicrobial Activities. JOURNAL OF NATURAL PRODUCTS 2022; 85:1304-1314. [PMID: 35427111 DOI: 10.1021/acs.jnatprod.2c00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a plant used in both food and medicine, Sauropus spatulifolius is consumed widely as a natural herbal tea, food source, and Chinese medicine. Inspired by its extensive applications, we conducted a systematic phytochemical study of the leaves of S. spatulifolius. Thirteen new diterpenoids, sauspatulifols A-M (1-13), including four ent-cleistanthane-type diterpenoids (1-4), eight 15,16-di-nor-ent-cleistanthane-type diterpenoids (5-12), and one 17-nor-ent-pimarane-type diterpenoid (13) as well as one known diterpenoid, cleistanthol (14), were isolated. All of these diterpenoids feature a 2α,3α-dihydroxy unit within the A ring, and their structures were elucidated by spectroscopic data analysis, electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. Compound 14 displayed moderate inhibitory activity against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, and Shigella flexneri with the same minimum inhibitory concentration value of 12 μg/mL as well as activity against vesicular stomatitis virus and influenza A virus.
Collapse
Affiliation(s)
- Pei-Qian Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Yong-Sheng Cui
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Xiao-Ying Han
- Department of Medicine, Lady Davis Institute-Jewish General Hospital, McGill University, Montréal H3T 1E2, Québec, Canada
| | - Chen Wang
- Department of Medicine, Lady Davis Institute-Jewish General Hospital, McGill University, Montréal H3T 1E2, Québec, Canada
| | - Pei-Pei An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jun-Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Yu-Hao Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Zhen-Long Liu
- Department of Medicine, Lady Davis Institute-Jewish General Hospital, McGill University, Montréal H3T 1E2, Québec, Canada
| | - Rong-Tuan Lin
- Department of Medicine, Lady Davis Institute-Jewish General Hospital, McGill University, Montréal H3T 1E2, Québec, Canada
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
78
|
Cilibrasi V, Spanò V, Bortolozzi R, Barreca M, Raimondi MV, Rocca R, Maruca A, Montalbano A, Alcaro S, Ronca R, Viola G, Barraja P. Synthesis of 2H-Imidazo[2',1':2,3] [1,3]thiazolo[4,5-e]isoindol-8-yl-phenylureas with promising therapeutic features for the treatment of acute myeloid leukemia (AML) with FLT3/ITD mutations. Eur J Med Chem 2022; 235:114292. [PMID: 35339838 DOI: 10.1016/j.ejmech.2022.114292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
Despite progressive advances in understanding the molecular biology of acute myeloid leukemia (AML), the conventional therapeutic approach has not changed substantially, and the outcome for most patients is poor. Thus, continuous efforts on the discovery of new compounds with improved features are required. Following a multistep sequence, we have identified a new tetracyclic ring system with strong antiproliferative activity towards several haematological cell lines. The new compounds possess structural properties typical of inactive-state-binding kinase inhibitors and are structurally related to quizartinib which is known as type-II tyrosine kinase inhibitor. In particular, the high activity found in two cell lines MOLM-13 and MV4-11, expressing the constitutively activated mutant FLT3/ITD, indicates inhibition of FLT3 kinase and on the basis of structure-activity relationship (SAR) the presence of an ureido moiety demonstrates to play a key role in driving the antiproliferative activity towards these cell lines. Molecular modelling studies supported the mechanism of recognition of the most active compounds within the FLT3 pocket where quizartinib binds. Moreover, Molecular Dynamics simulation (MDs) revealed the formation of a recurrent H-bond with Asp829, which more stabilizes the complex of 9c and the FLT3 inactive state. In MV4-11 cell line compound 9c reduces the phosphorylation of FLT3 (Y591) and some of its downstream targets leading to cell cycle arrest at G1 phase and induction of apoptosis. In an MV4-11 xenograft mouse model, 9c significantly reduces the tumor growth at the dose of 1-3 mg/kg without apparent toxicity.
Collapse
Affiliation(s)
- Vincenzo Cilibrasi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Bortolozzi
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Rocca
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Medicina Sperimentale e Clinica, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Stefano Alcaro
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123, Brescia, Italy
| | - Giampietro Viola
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy; Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia Università di Padova, Via Giustiniani 2, 35131, Padova, Italy.
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
79
|
Murad AM, Brognaro H, Falke S, Lindner J, Perbandt M, Mudogo C, Schubert R, Wrenger C, Betzel C. Structure and activity of the DHNA Coenzyme-A Thioesterase from Staphylococcus aureus providing insights for innovative drug development. Sci Rep 2022; 12:4313. [PMID: 35279696 PMCID: PMC8918352 DOI: 10.1038/s41598-022-08281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
Humanity is facing an increasing health threat caused by a variety of multidrug resistant bacteria. Within this scenario, Staphylococcus aureus, in particular methicillin resistant S. aureus (MRSA), is responsible for a number of hospital-acquired bacterial infections. The emergence of microbial antibiotic resistance urgently requires the identification of new and innovative strategies to treat antibiotic resistant microorganisms. In this context, structure and function analysis of potential drug targets in metabolic pathways vital for bacteria endurance, such as the vitamin K2 synthesis pathway, becomes interesting. We have solved and refined the crystal structure of the S. aureus DHNA thioesterase (SaDHNA), a key enzyme in the vitamin K2 pathway. The crystallographic structure in combination with small angle X-ray solution scattering data revealed a functional tetramer of SaDHNA. Complementary activity assays of SaDHNA indicated a preference for hydrolysing long acyl chains. Site-directed mutagenesis of SaDHNA confirmed the functional importance of Asp16 and Glu31 for thioesterase activity and substrate binding at the putative active site, respectively. Docking studies were performed and rational designed peptides were synthesized and tested for SaDHNA inhibition activity. The high-resolution structure of SaDHNA and complementary information about substrate binding will support future drug discovery and design investigations to inhibit the vitamin K2 synthesis pathway.
Collapse
|
80
|
Wang G, Li J, Pan XL, Bu FQ, Zhu YM, Wang AX, Ouyang L. Discovery of Tyrosinase Inhibitors: Structure-Based Virtual Screening and Biological Evaluation. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0041-1742095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tyrosinase (EC 1.14.18.1) plays an indispensable role in the rate-limiting steps of melanin biosynthesis, and its uncontrolled activity may result in various diseases, such as albinism, melanoma, freckles, etc. The inhibition of tyrosinase activity may provide a useful and efficient strategy to treat hyperpigmentation disorders. However, the widely used tyrosinase inhibitors, like α-arbutin, hydroquinone, and kojic acid, have many shortcomings, such as lower efficacy and much more side effects. Herein, we reported the use of homology modeling and multistep structure-based virtual screening for the discovery of novel tyrosinase inhibitors. In this study, 10 initial potential hits (compounds T1–T10) were evaluated for enzyme inhibition and kinetic study, with kojic acid being used as a control. Among them, the IC50 values of both T1 (11.56 ± 0.98 μmol/L) and T5 (18.36 ± 0.82 μmol/L) were superior to that of kojic acid (23.12 ± 1.26 μmol/L). Moreover, T1 and T5 were also identified as the effective noncompetitive tyrosinase inhibitors by the subsequent kinetic study. Above all, T1 and T5 may represent the promising drug candidates for hyperpigmentation therapy in pharmaceutical fields, as well as the effective whitening agents in cosmetic applications.
Collapse
Affiliation(s)
- Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jin Li
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiao-Li Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fa-Qian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yu-Meng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ao-Xue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
81
|
Nag S, Miranda-Azpiazu P, Jia Z, Datta P, Arakawa R, Moein MM, Yang Z, Tu Y, Lemoine L, Ågren H, Nordberg A, Långström B, Halldin C. Development of 11C-Labeled ASEM Analogues for the Detection of Neuronal Nicotinic Acetylcholine Receptors (α7-nAChR). ACS Chem Neurosci 2022; 13:352-362. [PMID: 35020351 PMCID: PMC8815074 DOI: 10.1021/acschemneuro.1c00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022] Open
Abstract
The homo-pentameric alpha 7 receptor is one of the major types of neuronal nicotinic acetylcholine receptors (α7-nAChRs) related to cognition, memory formation, and attention processing. The mapping of α7-nAChRs by PET pulls a lot of attention to realize the mechanism and development of CNS diseases such as AD, PD, and schizophrenia. Several PET radioligands have been explored for the detection of the α7-nAChR. 18F-ASEM is the most functional for in vivo quantification of α7-nAChRs in the human brain. The first aim of this study was to initially use results from in silico and machine learning techniques to prescreen and predict the binding energy and other properties of ASEM analogues and to interpret these properties in terms of atomic structures using 18F-ASEM as a lead structure, and second, to label some selected candidates with carbon-11/hydrogen-3 (11C/3H) and to evaluate the binding properties in vitro and in vivo using the labeled candidates. In silico predictions are obtained from perturbation free-energy calculations preceded by molecular docking, molecular dynamics, and metadynamics simulations. Machine learning techniques have been applied for the BBB and P-gp-binding properties. Six analogues of ASEM were labeled with 11C, and three of them were additionally labeled with 3H. Binding properties were further evaluated using autoradiography (ARG) and PET measurements in non-human primates (NHPs). Radiometabolites were measured in NHP plasma. All six compounds were successfully synthesized. Evaluation with ARG showed that 11C-Kln83 was preferably binding to the α7-nAChR. Competition studies showed that 80% of the total binding was displaced. Further ARG studies using 3H-KIn-83 replicated the preliminary results. In the NHP PET study, the distribution pattern of 11C-KIn-83 was similar to other α7 nAChR PET tracers. The brain uptake was relatively low and increased by the administration of tariquidar, indicating a substrate of P-gp. The ASEM blocking study showed that 11C-KIn-83 specifically binds to α7 nAChRs. Preliminary in vitro evaluation of KIn-83 by ARG with both 11C and 3H and in vivo evaluation in NHP showed favorable properties for selectively imaging α7-nAChRs, despite a relatively low brain uptake.
Collapse
Affiliation(s)
- Sangram Nag
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Patricia Miranda-Azpiazu
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Zhisheng Jia
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Prodip Datta
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Ryosuke Arakawa
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Mohammad Mahdi Moein
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Zhou Yang
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Yaoquan Tu
- Division
of Theoretical Chemistry and Biology, Royal
Institute of Technology (KTH), 11428 Stockholm, Sweden
| | - Laetitia Lemoine
- Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm Sweden
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Agneta Nordberg
- Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm Sweden
- Theme Aging, Karolinska University
Hospital, 141 52 Stockholm, Sweden
| | - Bengt Långström
- Department
of Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Christer Halldin
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| |
Collapse
|
82
|
Samad A, Huq MA, Rahman MS. Bioinformatics approaches identified dasatinib and bortezomib inhibit the activity of MCM7 protein as a potential treatment against human cancer. Sci Rep 2022; 12:1539. [PMID: 35087187 PMCID: PMC8795118 DOI: 10.1038/s41598-022-05621-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Minichromosome Maintenance Complex Component 7 (MCM7) is a key component of the DNA replication licensing factor and hexamer MCM (MCM2-7) complex that regulates the DNA replication process. The MCM7 protein is associated with tumor cell proliferation that plays an important role in different human cancer progression. As the protein is highly expressed during the cancer development process, therefore, inhibition of the protein can be utilized as a treatment option for different human cancer. However, the study aimed to identify potential small molecular drug candidates against the MCM7 protein that can utilize treatment options for human cancer. Initially, the compounds identified from protein-drugs network analysis have been retrieved from NetworkAnalyst v3.0 server and screened through molecular docking, MM-GBSA, DFT, pharmacokinetics, toxicity, and molecular dynamics (MD) simulation approach. Two compounds namely Dasatinib (CID_3062316) and Bortezomib (CID_387447) have been identified throughout the screening process, which have the highest negative binding affinity (Kcal/mol) and binding free energy (Kcal/mol). The pharmacokinetics and toxicity analysis identified drug-like properties and no toxicity properties of the compounds, where 500 ns MD simulation confirmed structural stability of the two compounds to the targeted proteins. Therefore, we can conclude that the compounds dasatinib and bortezomib can inhibit the activity of the MCM7 and can be developed as a treatment option against human cancer.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
83
|
Calculation of Crystal-Solution Dissociation Constants. Biomolecules 2022; 12:biom12020147. [PMID: 35204648 PMCID: PMC8961641 DOI: 10.3390/biom12020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
The calculation of dissociation constants is an important problem in molecular biophysics. For such a calculation, it is important to correctly calculate both terms of the binding free energy; that is, the enthalpy and entropy of binding. Both these terms can be computed using molecular dynamics simulations, but this approach is very computationally expensive, and entropy calculations are especially slow. We develop an alternative very fast method of calculating the binding entropy and dissociation constants. The main part of our approach is based on the evaluation of movement ranges of molecules in the bound state. Then, the range of molecular movements in the bound state (here, in molecular crystals) is used for the calculation of the binding entropies and, then (using, in addition, the experimentally measured sublimation enthalpies), the crystal-to-vapor dissociation constants. Previously, we considered the process of the reversible sublimation of small organic molecules from crystals to vapor. In this work, we extend our approach by considering the dissolution of molecules, in addition to their sublimation. Similar to the sublimation case, our method shows a good correlation with experimentally measured dissociation constants at the dissolution of crystals.
Collapse
|
84
|
Merkuleva IA, Shcherbakov DN, Borgoyakova MB, Shanshin DV, Rudometov AP, Karpenko LI, Belenkaya SV, Isaeva AA, Nesmeyanova VS, Kazachinskaia EI, Volosnikova EA, Esina TI, Zaykovskaya AV, Pyankov OV, Borisevich SS, Shelemba AA, Chikaev AN, Ilyichev AA. Comparative Immunogenicity of the Recombinant Receptor-Binding Domain of Protein S SARS-CoV-2 Obtained in Prokaryotic and Mammalian Expression Systems. Vaccines (Basel) 2022; 10:vaccines10010096. [PMID: 35062757 PMCID: PMC8779843 DOI: 10.3390/vaccines10010096] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
- Correspondence: ; Tel.: +7-383-363-47-00 (ext. 2007)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Svetlana V. Belenkaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Elena I. Kazachinskaia
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Tatiana I. Esina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry, Ufa Federal Research Center, 450078 Ufa, Russia;
| | - Arseniya A. Shelemba
- Federal Research Center of Fundamental and Translational Medicine, 630060 Novosibirsk, Russia;
| | - Anton N. Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| |
Collapse
|
85
|
Abstract
Constrained peptides represent a relatively new class of biologic therapeutics, which have the potential to overcome several limitations of small-molecule drugs, and of designed antibodies. Because of their modest size, the rational design of such peptides is becoming increasingly amenable to computer simulation; multi-microsecond molecular dynamic (MD) simulations are now routinely possible on consumer-grade graphical processors (GPUs). Here, we describe the procedures for performing and analyzing MD simulations of hydrocarbon-stapled peptides using the CHARMM energy function, in isolation and in complex with a binding partner, to investigate their conformational properties and to compute changes in their binding affinity upon mutation.
Collapse
Affiliation(s)
- Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Aravinda Munasinghe
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
86
|
Lepage RJ, Moore PW, Hewitt RJ, Teesdale-Spittle PH, Krenske EH, Harvey JE. Mechanistic Studies on the Base-Promoted Ring Opening of Glycal-Derived gem-Dibromocyclopropanes. J Org Chem 2021; 87:301-315. [PMID: 34932347 DOI: 10.1021/acs.joc.1c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the presence of a nucleophilic base, ring-fused gem-dibromocyclopropanes derived from d-glycals undergo ring opening to give 2-deoxy-2-(E-bromomethylene)glycosides. Such cleavage of an exocyclic cyclopropane bond contrasts with the more usual silver-promoted ring-expansion reactions in which endocyclic bond cleavage occurs. Experimental and theoretical studies are reported which provide insights into the reaction mechanism and the origin of its kinetic selectivity for E-configured bromoalkene products. Density functional theory computations (M06-2X) predict that the reaction commences with alkoxide-induced HBr elimination from the dibromocyclopropane to form a bromocyclopropene. Ring opening then gives a configurationally stable zwitterionic (oxocarbenium cation/vinyl carbanion) intermediate, which undergoes nucleophilic addition and protonation to give the bromoalkene. There are two competing sources of the proton in the final step: One is the alcohol (co)solvent, and the other is the molecule of alcohol produced during the initial deprotonation step. The roles of the formed alcohol molecule and the bulk (co)solvent are demonstrated by isotope-labeling studies performed with deuterated solvents. The acid-promoted isomerization of the E-bromoalkene product into the corresponding Z-bromoalkene is also described. The mechanistic knowledge gained in this investigation sheds light on the unusual chemistry of this system and facilitates its future application in new settings.
Collapse
Affiliation(s)
- Romain J Lepage
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Peter W Moore
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Russell J Hewitt
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Paul H Teesdale-Spittle
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Joanne E Harvey
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
87
|
Khomenko TM, Shtro AA, Galochkina AV, Nikolaeva YV, Petukhova GD, Borisevich SS, Korchagina DV, Volcho KP, Salakhutdinov NF. Monoterpene-Containing Substituted Coumarins as Inhibitors of Respiratory Syncytial Virus (RSV) Replication. Molecules 2021; 26:7493. [PMID: 34946573 PMCID: PMC8708370 DOI: 10.3390/molecules26247493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a critical cause of infant mortality. However, there are no vaccines and adequate drugs for its treatment. We showed, for the first time, that O-linked coumarin-monoterpene conjugates are effective RSV inhibitors. The most potent compounds are active against both RSV serotypes, A and B. According to the results of the time-of-addition experiment, the conjugates act at the early stages of virus cycle. Based on molecular modelling data, RSV F protein may be considered as a possible target.
Collapse
Affiliation(s)
- Tatyana M. Khomenko
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Anna A. Shtro
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Anastasia V. Galochkina
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Yulia V. Nikolaeva
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Galina D. Petukhova
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Sophia S. Borisevich
- Laboratory of Physical Chemistry, Ufa Chemistry Institute of the Ufa Federal Research Center, 71 Octyabrya pr., 450054 Ufa, Russia;
| | - Dina V. Korchagina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Konstantin P. Volcho
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| |
Collapse
|
88
|
Gao P, Yang X, Tang YH, Zheng M, Andersen A, Murugesan V, Hollas A, Wang W. Graphical Gaussian process regression model for aqueous solvation free energy prediction of organic molecules in redox flow batteries. Phys Chem Chem Phys 2021; 23:24892-24904. [PMID: 34724700 DOI: 10.1039/d1cp04475c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvation free energy of organic molecules is a critical parameter in determining emergent properties such as solubility, liquid-phase equilibrium constants, pKa and redox potentials in an organic redox flow battery. In this work, we present a machine learning (ML) model that can learn and predict the aqueous solvation free energy of an organic molecule using the Gaussian process regression method based on a new molecular graph kernel. To investigate the performance of the ML model for electrostatic interaction, the nonpolar interaction contribution of the solvent and the conformational entropy of the solute in the solvation free energy, three data sets with implicit or explicit water solvent models, and contribution of the conformational entropy of the solute are tested. We demonstrate that our ML model can predict the solvation free energy of molecules at chemical accuracy with a mean absolute error of less than 1 kcal mol-1 for subsets of the QM9 dataset and the Freesolv database. To solve the general data scarcity problem for a graph-based ML model, we propose a dimension reduction algorithm based on the distance between molecular graphs, which can be used to examine the diversity of the molecular data set. It provides a promising way to build a minimum training set to improve prediction for certain test sets where the space of molecular structures is predetermined.
Collapse
Affiliation(s)
- Peiyuan Gao
- Pacific Northwest National Laboratory, Richland 99352, USA.
| | - Xiu Yang
- Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| | - Yu-Hang Tang
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Muqing Zheng
- Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| | - Amity Andersen
- Pacific Northwest National Laboratory, Richland 99352, USA.
| | | | - Aaron Hollas
- Pacific Northwest National Laboratory, Richland 99352, USA.
| | - Wei Wang
- Pacific Northwest National Laboratory, Richland 99352, USA.
| |
Collapse
|
89
|
Seo B, Lin ZY, Zhao Q, Webb MA, Savoie BM. Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force Fields. J Chem Inf Model 2021; 61:5013-5027. [PMID: 34533949 DOI: 10.1021/acs.jcim.1c00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Force-field development has undergone a revolution in the past decade with the proliferation of quantum chemistry based parametrizations and the introduction of machine learning approximations of the atomistic potential energy surface. Nevertheless, transferable force fields with broad coverage of organic chemical space remain necessary for applications in materials and chemical discovery where throughput, consistency, and computational cost are paramount. Here, we introduce a force-field development framework called Topology Automated Force-Field Interactions (TAFFI) for developing transferable force fields of varying complexity against an extensible database of quantum chemistry calculations. TAFFI formalizes the concept of atom typing and makes it the basis for generating systematic training data that maintains a one-to-one correspondence with force-field terms. This feature makes TAFFI arbitrarily extensible to new chemistries while maintaining internal consistency and transferability. As a demonstration of TAFFI, we have developed a fixed-charge force-field, TAFFI-gen, from scratch that includes coverage for common organic functional groups that is comparable to established transferable force fields. The performance of TAFFI-gen was benchmarked against OPLS and GAFF for reproducing several experimental properties of 87 organic liquids. The consistent performance of these force fields, despite their distinct origins, validates the TAFFI framework while also providing evidence of the representability limitations of fixed-charge force fields.
Collapse
Affiliation(s)
- Bumjoon Seo
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Zih-Yu Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
90
|
Shafie A, Khan S, Batra S, Anjum F, Mohammad T, Alam S, Yadav DK, Islam A, Hassan MI. Investigating single amino acid substitutions in PIM1 kinase: A structural genomics approach. PLoS One 2021; 16:e0258929. [PMID: 34679086 PMCID: PMC8535467 DOI: 10.1371/journal.pone.0258929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/09/2021] [Indexed: 12/30/2022] Open
Abstract
PIM1, is a serine/threonine proto-oncogene kinase, involved in many biological functions, including cell survival, proliferation, and differentiation, thus play a key role in oncogenesis. It plays a crucial role in the onset and progression of various hematopoietic and non-hematopoietic malignancies, including acute myeloid leukemia and prostate cancer. Mutations in PIM1, especially in its kinase domain, can induce abnormal structural changes and thus alter functionalities that can lead to disease progression and other complexities. Herein, we have performed an extensive analysis of the PIM1 mutations at sequence and structure level while utilizing state-of-the-art computational approaches. Based on the impact on PIM1, numerous pathogenic and destabilizing mutations were identified and subsequently analyzed in detail. Finally, two amino acid substitutions (W109C and F147C) in the kinase domain of PIM1 were selected to explore their impact on the PIM1 structure in a time evolution manner using all-atom molecular dynamics (MD) simulations for 200 ns. MD results indicate significant conformational altercations in the structure of PIM1, especially upon F147C mutation. This study provides a significant insight into the PIM1 dysfunction upon single amino acid substitutions, which can be utilized to get insights into the molecular basis of PIM1-associated disease progression.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Sagar Batra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Yeonsu-gu, Incheon City, South Korea
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
91
|
Borozdenko DA, Ezdoglian AA, Shmigol TA, Gonchar DI, Lyakhmun DN, Tarasenko DV, Golubev YV, Cherkashova EA, Namestnikova DD, Gubskiy IL, Lagunin AA, Gubsky LV, Chekhonin VP, Borisevich SS, Gureev MA, Shagina AD, Kiseleva NM, Negrebetsky VV, Baukov YI. A Novel Phenylpyrrolidine Derivative: Synthesis and Effect on Cognitive Functions in Rats with Experimental Ishemic Stroke. Molecules 2021; 26:molecules26206124. [PMID: 34684709 PMCID: PMC8541353 DOI: 10.3390/molecules26206124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
We performed an in silico, in vitro, and in vivo assessment of a potassium 2-[2-(2-oxo-4-phenylpyrrolidin-1-yl) acetamido]ethanesulfonate (compound 1) as a potential prodrug for cognitive function improvement in ischemic brain injury. Using in silico methods, we predicted the pharmacological efficacy and possible safety in rat models. In addition, in silico data showed neuroprotective features of compound 1, which were further supported by in vitro experiments in a glutamate excitotoxicity-induced model in newborn rat cortical neuron cultures. Next, we checked whether compound 1 is capable of crossing the blood-brain barrier in intact and ischemic animals. Compound 1 improved animal behavior both in intact and ischemic rats and, even though the concentration in intact brains was low, we still observed a significant anxiety reduction and activity escalation. We used molecular docking and molecular dynamics to support our hypothesis that compound 1 could affect the AMPA receptor function. In a rat model of acute focal cerebral ischemia, we studied the effects of compound 1 on the behavior and neurological deficit. An in vivo experiment demonstrated that compound 1 significantly reduced the neurological deficit and improved neurological symptom regression, exploratory behavior, and anxiety. Thus, here, for the first time, we show that compound 1 can be considered as an agent for restoring cognitive functions.
Collapse
Affiliation(s)
- Denis A. Borozdenko
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Aiarpi A. Ezdoglian
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Tatiana A. Shmigol
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Darya I. Gonchar
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Dmitri N. Lyakhmun
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Dmitri V. Tarasenko
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Yaroslav V. Golubev
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Elvira A. Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Medicine Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies, Federal Medical Bio-logical Agency, 117997 Moscow, Russia; (E.A.C.); (D.D.N.); (I.L.G.)
| | - Daria D. Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Medicine Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies, Federal Medical Bio-logical Agency, 117997 Moscow, Russia; (E.A.C.); (D.D.N.); (I.L.G.)
| | - Ilya L. Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Medicine Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies, Federal Medical Bio-logical Agency, 117997 Moscow, Russia; (E.A.C.); (D.D.N.); (I.L.G.)
| | - Alexey A. Lagunin
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Leonid V. Gubsky
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Medicine Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies, Federal Medical Bio-logical Agency, 117997 Moscow, Russia; (E.A.C.); (D.D.N.); (I.L.G.)
| | - Vladimir P. Chekhonin
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Sophia S. Borisevich
- Laboratory of Physical Chemistry, Ufa Institute of Chemistry UFRS RAS, pr. Oktyabrya 71, 450054 Ufa, Russia;
| | - Maxim A. Gureev
- Laboratory of Bioinformatics, Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov University, 119991 Moscow, Russia;
- Laboratory of Bioinformatics and Computational Modelling of Biological Systems, Department of Computational Biology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasia D. Shagina
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Nina M. Kiseleva
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Vadim V. Negrebetsky
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
| | - Yuri I. Baukov
- Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (A.A.E.); (T.A.S.); (D.I.G.); (D.N.L.); (D.V.T.); (Y.V.G.); (A.A.L.); (L.V.G.); (A.D.S.); (N.M.K.); (V.V.N.)
- Correspondence:
| |
Collapse
|
92
|
Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorg Chem 2021; 116:105301. [PMID: 34492558 DOI: 10.1016/j.bioorg.2021.105301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023]
Abstract
A combination of several pharmacophores in one molecule has been successfully used for multi-target-directed ligands (MTDL) design. New propargylamine substituted derivatives combined with salicylic and cinnamic scaffolds were designed and synthesized as potential cholinesterases and monoamine oxidases (MAOs) inhibitors. They were evaluated invitro for inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE) using Ellman's method. All the compounds act as dual inhibitors. Most of the derivatives are stronger inhibitors of AChE, the best activity showed 5-bromo-N-(prop-2-yn-1-yl)salicylamide 1e (IC50 = 8.05 µM). Carbamates (4-bromo-2-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2d and 2,4-dibromo-6-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2e were selective and the most active for BuChE (25.10 and 26.09 µM). 4-Bromo-2-[(prop-2-yn-1-ylimino)methyl]phenol 4a was the most potent inhibitor of MAOs (IC50 of 3.95 and ≈10 µM for MAO-B and MAO-A, respectively) along with a balanced inhibition of both cholinesterases being a real MTDL. The mechanism of action was proposed, and binding modes of the hits were studied by molecular docking on human enzymes. Some of the derivatives also exhibited antioxidant properties. Insilico prediction of physicochemical parameters affirm that the molecules would be active after oral administration and able to reach brain tissue.
Collapse
|
93
|
Elucidation of Agonist and Antagonist Dynamic Binding Patterns in ER-α by Integration of Molecular Docking, Molecular Dynamics Simulations and Quantum Mechanical Calculations. Int J Mol Sci 2021; 22:ijms22179371. [PMID: 34502280 PMCID: PMC8431471 DOI: 10.3390/ijms22179371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a ligand-dependent transcriptional factor in the nuclear receptor superfamily. Many structures of ERα bound with agonists and antagonists have been determined. However, the dynamic binding patterns of agonists and antagonists in the binding site of ERα remains unclear. Therefore, we performed molecular docking, molecular dynamics (MD) simulations, and quantum mechanical calculations to elucidate agonist and antagonist dynamic binding patterns in ERα. 17β-estradiol (E2) and 4-hydroxytamoxifen (OHT) were docked in the ligand binding pockets of the agonist and antagonist bound ERα. The best complex conformations from molecular docking were subjected to 100 nanosecond MD simulations. Hierarchical clustering was conducted to group the structures in the trajectory from MD simulations. The representative structure from each cluster was selected to calculate the binding interaction energy value for elucidation of the dynamic binding patterns of agonists and antagonists in the binding site of ERα. The binding interaction energy analysis revealed that OHT binds ERα more tightly in the antagonist conformer, while E2 prefers the agonist conformer. The results may help identify ERα antagonists as drug candidates and facilitate risk assessment of chemicals through ER-mediated responses.
Collapse
|
94
|
Preparing and Analyzing Polarizable Molecular Dynamics Simulations with the Classical Drude Oscillator Model. Methods Mol Biol 2021. [PMID: 34302679 DOI: 10.1007/978-1-0716-1468-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Molecular dynamics (MD) simulations performed with force fields that include explicit electronic polarization are becoming more prevalent in the field. The increasing emergence of these simulations is a result of continual refinement against a range of theoretical and empirical target data, optimization of software algorithms for higher performance, and availability of graphical processing unit hardware to further accelerate the simulations. Polarizable MD simulations are likely to be most impactful in biomolecular systems in which heterogeneous environments or unique microenvironments exist that would lead to inaccuracies in simulations performed with fixed-charge, nonpolarizable force fields. The further adoption of polarizable MD simulations will benefit from tutorial material that specifically addresses preparing and analyzing their unique features. In this chapter, we introduce common protocols for preparing routine biomolecular systems containing proteins, including both a globular protein in aqueous solvent and a transmembrane model peptide in a phospholipid bilayer. Details and example input files are provided for preparation of the simulation system using CHARMM, performing the simulations with OpenMM, and analyzing interesting dipole moment properties in CHARMM.
Collapse
|
95
|
Seep L, Bonin A, Meier K, Diedam H, Göller AH. Ensemble completeness in conformer sampling: the case of small macrocycles. J Cheminform 2021; 13:55. [PMID: 34325738 PMCID: PMC8320181 DOI: 10.1186/s13321-021-00524-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/05/2021] [Indexed: 11/18/2022] Open
Abstract
In this study we compare the three algorithms for the generation of conformer ensembles Biovia BEST, Schrödinger Prime macrocycle sampling (PMM) and Conformator (CONF) form the University of Hamburg, with ensembles derived for exhaustive molecular dynamics simulations applied to a dataset of 7 small macrocycles in two charge states and three solvents. Ensemble completeness is a prerequisite to allow for the selection of relevant diverse conformers for many applications in computational chemistry. We apply conformation maps using principal component analysis based on ring torsions. Our major finding critical for all applications of conformer ensembles in any computational study is that maps derived from MD with explicit solvent are significantly distinct between macrocycles, charge states and solvents, whereas the maps for post-optimized conformers using implicit solvent models from all generator algorithms are very similar independent of the solvent. We apply three metrics for the quantification of the relative covered ensemble space, namely cluster overlap, variance statistics, and a novel metric, Mahalanobis distance, showing that post-optimized MD ensembles cover a significantly larger conformational space than the generator ensembles, with the ranking PMM > BEST >> CONF. Furthermore, we find that the distributions of 3D polar surface areas are very similar for all macrocycles independent of charge state and solvent, except for the smaller and more strained compound 7, and that there is also no obvious correlation between 3D PSA and intramolecular hydrogen bond count distributions.
Collapse
Affiliation(s)
- Lea Seep
- Pharmaceuticals R&D, Digital Technologies, Bayer AG, 42096, Wuppertal, Germany
| | - Anne Bonin
- Pharmaceuticals R&D, Digital Technologies, Bayer AG, 42096, Wuppertal, Germany
| | - Katharina Meier
- Pharmaceuticals R&D, Digital Technologies, Bayer AG, 42096, Wuppertal, Germany
| | - Holger Diedam
- Engineering & Technology, Applied Mathematics, Bayer AG, 51368, Leverkusen, Germany
| | - Andreas H Göller
- Pharmaceuticals R&D, Digital Technologies, Bayer AG, 42096, Wuppertal, Germany.
| |
Collapse
|
96
|
Antifungal Azoles as Tetracycline Resistance Modifiers in Staphylococcus aureus. Appl Environ Microbiol 2021; 87:e0015521. [PMID: 33990311 DOI: 10.1128/aem.00155-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus has developed resistance to antimicrobials since their first use. The S. aureus major facilitator superfamily (MFS) efflux pump Tet(K) contributes to resistance to tetracyclines. The efflux pump diminishes antibiotic accumulation, and biofilm hampers the diffusion of antibiotics. None of the currently known compounds have been approved as efflux pump inhibitors (EPIs) for clinical use. In the current study, we screened clinically approved drugs for possible Tet(K) efflux pump inhibition. By performing in silico docking followed by in vitro checkerboard assays, we identified five azoles (the fungal ergosterol synthesis inhibitors) showing putative EPI-like potential with a fractional inhibitory concentration index of ≤0.5, indicating synergism. The functionality of the azoles was confirmed using ethidium bromide (EtBr) accumulation and efflux inhibition assays. In time-kill kinetics, the combination treatment with butoconazole engendered a marked increase in the bactericidal capacity of tetracycline. When assessing the off-target effects of the azoles, we observed no disruption of bacterial membrane permeability and polarization. Finally, the combination of azoles with tetracycline led to a significant eradication of preformed mature biofilms. This study demonstrates that azoles can be repurposed as putative Tet(K) EPIs and to reduce biofilm formation at clinically relevant concentrations. IMPORTANCE Staphylococcus aureus uses efflux pumps to transport antibiotics out of the cell and thus increases the dosage at which it endures antibiotics. Also, efflux pumps play a role in biofilm formation by the excretion of extracellular matrix molecules. One way to combat these pathogens may be to reduce the activity of efflux pumps and thereby increase pathogen sensitivity to existing antibiotics. We describe the in silico-based screen of clinically approved drugs that identified antifungal azoles inhibiting Tet(K), a pump that belongs to the major facilitator superfamily, and showed that these compounds bind to and block the activity of the Tet(K) pump. Azoles enhanced the susceptibility of tetracycline against S. aureus and its methicillin-resistant strains. The combination of azoles with tetracycline led to a significant reduction in preformed biofilms. Repurposing approved drugs may help solve the classical toxicity issues related to efflux pump inhibitors.
Collapse
|
97
|
Yuan YR, Li YW, Huang YQ, Liu QF, Ren YH, Yue JM, Zhou B. Four new diterpenoids from the twigs and leaves of Phyllanthus acidus. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
98
|
Yang YX, Li P, Wang P, Zhu BT. 17β-Estradiol-Induced Conformational Changes of Human Microsomal Triglyceride Transfer Protein: A Computational Molecular Modelling Study. Cells 2021; 10:cells10071566. [PMID: 34206252 PMCID: PMC8304645 DOI: 10.3390/cells10071566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Human microsomal triglyceride transfer protein (hMTP) plays an essential role in the assembly of apoB-containing lipoproteins, and has become an important drug target for the treatment of several disease states, such as abetalipoproteinemia, fat malabsorption and familial hypercholesterolemia. hMTP is a heterodimer composed of a larger hMTPα subunit and a smaller hMTPβ subunit (namely, protein disulfide isomerase, hPDI). hPDI can interact with 17β-estradiol (E2), an endogenous female sex hormone. It has been reported that E2 can significantly reduce the blood levels of low-density lipoprotein, cholesterol and triglyceride, and modulate liver lipid metabolism in vivo. However, some of the estrogen’s actions on lipid metabolism are not associated with estrogen receptors (ER), and the exact mechanism underlying estrogen’s ER-independent lipid-modulating action is still not clear at present. In this study, the potential influence of E2 on the stability of the hMTP complex is investigated by jointly using multiple molecular dynamics analyses based on available experimental structures. The molecular dynamics analyses indicate that the hMTP complex in the presence of E2 has reduced interface contacts and surface areas. A steered molecular dynamics analysis shows that the forces required to separate the two subunits (namely, hPDI and hMTPα subunit) of the hMTP complex in the absence of E2 are significantly higher than the forces required to separate the complex in which its hPDI is already bound with E2. E2 makes the interface between hMTPα and hPDI subunits more flexible and less stable. The results of this study suggest that E2-induced conformational changes of the hMTP complex might be a novel mechanism partly accounting for the ER-independent lipid-modulating effect of E2.
Collapse
Affiliation(s)
- Yong-Xiao Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.-X.Y.); (P.L.); (P.W.)
| | - Peng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.-X.Y.); (P.L.); (P.W.)
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.-X.Y.); (P.L.); (P.W.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Bao-Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.-X.Y.); (P.L.); (P.W.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-84273851
| |
Collapse
|
99
|
Kashefolgheta S, Wang S, Acree WE, Hünenberger PH. Evaluation of nine condensed-phase force fields of the GROMOS, CHARMM, OPLS, AMBER, and OpenFF families against experimental cross-solvation free energies. Phys Chem Chem Phys 2021; 23:13055-13074. [PMID: 34105547 PMCID: PMC8207520 DOI: 10.1039/d1cp00215e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/28/2021] [Indexed: 12/02/2022]
Abstract
Experimental solvation free energies are nowadays commonly included as target properties in the validation of condensed-phase force fields, sometimes even in their calibration. In a previous article [Kashefolgheta et al., J. Chem. Theory. Comput., 2020, 16, 7556-7580], we showed how the involved comparison between experimental and simulation results could be made more systematic by considering a full matrix of cross-solvation free energies . For a set of N molecules that are all in the liquid state under ambient conditions, such a matrix encompasses N×N entries for considering each of the N molecules either as solute (A) or as solvent (B). In the quoted study, a cross-solvation matrix of 25 × 25 experimental value was introduced, considering 25 small molecules representative for alkanes, chloroalkanes, ethers, ketones, esters, alcohols, amines, and amides. This experimental data was used to compare the relative accuracies of four popular condensed-phase force fields, namely GROMOS-2016H66, OPLS-AA, AMBER-GAFF, and CHARMM-CGenFF. In the present work, the comparison is extended to five additional force fields, namely GROMOS-54A7, GROMOS-ATB, OPLS-LBCC, AMBER-GAFF2, and OpenFF. Considering these nine force fields, the correlation coefficients between experimental values and simulation results range from 0.76 to 0.88, the root-mean-square errors (RMSEs) from 2.9 to 4.8 kJ mol-1, and average errors (AVEEs) from -1.5 to +1.0 kJ mol-1. In terms of RMSEs, GROMOS-2016H66 and OPLS-AA present the best accuracy (2.9 kJ mol-1), followed by OPLS-LBCC, AMBER-GAFF2, AMBER-GAFF, and OpenFF (3.3 to 3.6 kJ mol-1), and then by GROMOS-54A7, CHARM-CGenFF, and GROMOS-ATB (4.0 to 4.8 kJ mol-1). These differences are statistically significant but not very pronounced, and are distributed rather heterogeneously over the set of compounds within the different force fields.
Collapse
Affiliation(s)
- Sadra Kashefolgheta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCICH-8093 ZürichSwitzerland+41 44 632 55 03
| | - Shuzhe Wang
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCICH-8093 ZürichSwitzerland+41 44 632 55 03
| | - William E. Acree
- Department of Chemistry, University of North Texas1155 Union Circle Drive #305070DentonTexas 76203USA
| | - Philippe H. Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCICH-8093 ZürichSwitzerland+41 44 632 55 03
| |
Collapse
|
100
|
Prescher M, Bonus M, Stindt J, Keitel-Anselmino V, Smits SHJ, Gohlke H, Schmitt L. Evidence for a credit-card-swipe mechanism in the human PC floppase ABCB4. Structure 2021; 29:1144-1155.e5. [PMID: 34107287 DOI: 10.1016/j.str.2021.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
ABCB4 is described as an ATP-binding cassette (ABC) transporter that primarily transports lipids of the phosphatidylcholine (PC) family but is also capable of translocating a subset of typical multidrug-resistance-associated drugs. The high degree of amino acid identity of 76% for ABCB4 and ABCB1, which is a prototype multidrug-resistance-mediating protein, results in ABCB4's second subset of substrates, which overlap with ABCB1's substrates. This often leads to incomplete annotations of ABCB4, in which it was described as exclusively PC-lipid specific. When the hydrophilic amino acids from ABCB4 are changed to the analogous but hydrophobic ones from ABCB1, the stimulation of ATPase activity by 1,2-dioleoyl-sn-glycero-3-phosphocholine, as a prime example of PC lipids, is strongly diminished, whereas the modulation capability of ABCB1 substrates remains unchanged. This indicates two distinct and autonomous substrate binding sites in ABCB4.
Collapse
Affiliation(s)
- Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Stindt
- Clinic for Gastroenterology, Hepatology and Infectious Diseases University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel-Anselmino
- Clinic for Gastroenterology, Hepatology and Infectious Diseases University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|